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Travel Time Tomography

Global Seismology

Inverse Problem: Determine inner structure of Earth by measuring travel
time of seismic waves.



Travel Time Tomography

Travel time tomography: recover the sound speed of Earth from
travel times of earthquakes.



Tsunami of 1960 Chilean Earthquake

Black represents the largest waves, decreasing in height through purple,
dark red, orange and on down to yellow. In 1960 a tongue of massive
waves spread across the Pacific, with big ones throughout the region.



Human Body Seismology

ULTRASOUND TRANSMISSION TOMOGRAPHY(UTT)

T =

∫
γ

1
c(x)

ds = Travel Time (Time of Flight).



Travel Time Tomography (Transmission)

Motivation:Determine inner structure of Earth by measuring travel
times of seismic waves

Herglotz (1905), Wiechert-Zoeppritz (1907)
Sound speed c(r), r = |x |

d
dr

(
r

c(r)

)
> 0

T =
∫
γ

1
c(r) . What are the curves of propagation γ?



Anisotropic Sound Speed
The curves are geodesics of a metric.

ds2 = 1
c2(r)

dx2

More generally ds2 = 1
c2(x)

dx2

Velocity v(x , ξ) = c(x), |ξ| = 1 (isotropic)

Anisotropic case

ds2 =
n∑

i ,j=1

gij(x)dxidxj

g = (gij) is a positive definite symmetric matrix

Velocity v(x , ξ) =
√∑n

i ,j=1 g
ij(x)ξiξj , |ξ| = 1

g ij = (gij)
−1

The information is encoded in the boundary distance function



Boundary Rigidity

More general set-up

Let (M, g) be a compact Riemannian manifold with boundary,
g = (gij).

x , y ∈ ∂M

dg (x , y) = inf
σ(0)=x
σ(1)=y

L(σ)

L(σ) = length of curve σ

L(σ) =
∫ 1
0

√∑n
i ,j=1 gij(σ(t))

dσi
dt

dσj
dt dt

Inverse problem: Determine g knowing dg (x , y) x , y ∈ ∂M



Another Motivation (String Theory)

HOLOGRAPHY

Inverse problem: Can we recover (M, g) (bulk) from
boundary distance function ?

M. Parrati and R. Rabadan, Boundary rigidity and holography,
JHEP 01 (2004) 034
B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral
geometry and holography, JHEP 10 (2015) 175



Non-uniqueness

dg ⇒ g ?
(Boundary rigidity problem)

Answer NO ψ : M → M diffeomorphism

ψ
∣∣
∂M

= Identity, dψ∗g = dg
ψ∗g =

(
Dψ ◦ g ◦ (Dψ)T

)
◦ ψ

Lg (σ) =
∫ 1
0

√∑n
i ,j=1 gij(σ(t))

dσi
dt

dσj
dt dt

σ̃ = ψ ◦ σ Lψ∗g (σ̃) = Lg (σ)



Non-uniqueness

dψ∗g = dg

Only obstruction to determining g from dg ? No

dg (x0, ∂M) > supx ,y∈∂M dg (x , y)

Can change metric near SP



Boundary Rigidity

Def (M, g) is boundary rigid if (M, g̃) satisfies dg̃ = dg . Then
∃ψ : M → M diffeomorphism, ψ

∣∣
∂M

= Identity, so that

g̃ = ψ∗g

Need an a-priori condition for (M, g) to be boundary rigid.

One such condition is that (M, g) is simple



Michel’s Conjecture
DEF (M, g) is simple if given two points x , y ∈ ∂M, ∃! minimizing
geodesic joining x and y and ∂M is strictly convex

strictly convex

CONJECTURE
(M, g) is simple then (M, g) is boundary rigid ,that is dg

determines g up to the natural obstruction. (dψ∗g = dg )
( Conjecture posed by R. Michel, 1981 )



Metrics Satisfying the Herglotz condition

Francois Monard: SIAM J. Imaging Sciences (2014)



Results in Anisotropic Case

(M, g) simple
• R. Michel (1981) Compact subdomains of R2 or H2

or the open round hemisphere
• Gromov (1983) Compact subdomains of Rn

• Besson-Courtois-Gallot (1995) Compact subdomains
of negatively curved symmetric spaces

(All examples above have constant curvature or special symmetries)

•


Stefanov-U (1998)

Lassas-Sharafutdinov-U (2003)
Burago-Ivanov (2010)


dg = dg0 , g0 close to Euclidean



Two Dimensional Case

n = 2

• Otal and Croke (1990) Kg < 0

THEOREM(Pestov-U, 2005)

Two dimensional Riemannian manifolds with boundary which are
simple are boundary rigid (dg ⇒ g up to natural obstruction)



Geodesics in Phase Space

g = (gij(x)) symmetric, positive definite

Hamiltonian is given by

Hg (x , ξ) =
1
2

( n∑
i ,j=1

g ij(x)ξiξj − 1
)

g−1 =
(
g ij(x)

)

Xg (s,X
0) =

(
xg (s,X

0), ξg (s,X
0)
)

be bicharacteristics ,

sol. of
dx

ds
=
∂Hg

∂ξ
,

dξ

ds
= −∂Hg

∂x

x(0) = x0, ξ(0) = ξ0, X 0 = (x0, ξ0), where ξ0 ∈ Sn−1
g (x0)

Sn−1
g (x) =

{
ξ ∈ Rn; Hg (x , ξ) = 0

}
.

Geodesics Projections in x : x(s) .



Scattering Relation

dg only measures first arrival times of waves.

We need to look at behavior of all geodesics

∥ξ∥g = ∥η∥g = 1

αg (x , ξ) = (y , η), αg is SCATTERING RELATION

If we know direction and point of entrance of geodesic then we
know its direction and point of exit.



Scattering Relation

Scattering relation follows all geodesics.

Conjecture Assume (M,g) non-trapping. Then αg determines
g up to natural obstruction.

(Pestov-U, 2005) n = 2 Connection between αg and Λg

(Dirichlet-to-Neumann map)

(M, g) simple then dg ⇔ αg



Lens Rigidity

Define the scattering relation αg and the length (travel time)
function ℓ:

αg : (x , ξ) → (y , η), ℓ(x , ξ) → [0,∞].

Diffeomorphisms preserving ∂M pointwise do not change L, ℓ!

Lens rigidity: Do αg , ℓ determine g uniquely, up to isometry?



Lens Rigidity

No, There are counterexamples for trapping manifolds
(Croke-Kleiner).

The lens rigidity problem and the boundary rigidity one are
equivalent for simple metrics! This is also true locally, near a point
p where ∂M is strictly convex.

For non-simple metrics (caustics and/or non-convex boundary), lens
rigidity is the right problem to study.

Some results: local generic rigidity near a class of non-simple
metrics (Stefanov-U, 2009), lens rigidity for real-analytic metrics
satisfying a mild condition (Vargo, 2010), the torus is lens rigid
(Croke 2014), stability estimates for a class of non-simple metrics
(Bao-Zhang 2014), Stefanov-U-Vasy, 2016 (foliation condition,
conformal case); Guillarmou, 2017 (hyperbolic trapping),
Stefanov-U-Vasy, 2021 (foliation condition, general case).



Partial Data

Boundary Rigidity with partial data: Does dg , known on
∂M × ∂M near some p, determine g near p up to isometry?



Partial Data

Theorem (Stefanov-U-Vasy, 2021)
Let dim M ≥ 3. If ∂M is strictly convex near p for g and g̃ , and
dg = dg̃ near (p, p), then g = g̃ up to isometry near p.

Also stability and reconstruction.

The only results so far of similar nature is for real analytic metrics
(Lassas-Sharafutdinov-U, 2003). We can recover the whole jet of
the metric at ∂M and then use analytic continuation.



Foliation condition
We could use a layer stripping argument to get deeper and deeper
in M and prove that one can determine g (up to isometry) in the
whole M.

Foliation condition: M is foliated by strictly convex hypersurfaces
if, up to a nowhere dense set, M = ∪t∈[0,T )Σt , where Σt is a
smooth family of strictly convex hypersurfaces and Σ0 = ∂M.

A more general condition: several families, starting from outside M.



Global result under the foliation condition (isotropic case)

Theorem (Stefanov-U-Vasy, 2016)
Let dim M ≥ 3, let g̃ = βg with β > 0 smooth on M, let ∂M be
strictly convex with respect to both g and g̃ . Assume that M can
be foliated by strictly convex hypersurfaces for g . Then if
αg = αg̃ , l = l̃ we have g = g̃ in M.

Examples: The foliation condition is satisfied for strictly convex
manifolds of non-negative sectional curvature, simply connected
manifolds with non-positive sectional curvature and simply
connected manifolds with no focal points.

Foliation condition is an analog of the Herglotz, Wieckert-Zoeppritz
condition for non radial speeds.



Revisit the Herglotz and Wiechert & Zoeppritz condition

Example: Herglotz and Wiechert & Zoeppritz showed that one can
determine a radial speed c(r) in the ball B(0, 1) satisfying

d

dr

r

c(r)
> 0.

The uniqueness is in the class of radial speeds.

One can check directly that their condition is equivalent to the
following one: the Euclidean spheres {|x | = t}, t ≤ 1 are strictly
convex for c−2dx2 as well. Then B(0, 1) satisfies the foliation
condition. Therefore, if c̃(x) is another speed, not necessarily
radial, with the same lens relation, equal to c on the boundary,
then c = c̃ . There could be conjugate points.

Therefore, speeds satisfying the Herglotz and Wiechert & Zoeppritz
condition are conformally lens rigid.



Global Result (general case)

Theorem (Stefanov-U-Vasy, 2021)
Let (M, g) be a compact n-dimensional Riemannian manifold,
n ≥ 3, with strictly convex boundary so that there exists a strictly
convex function f on M with {f = 0} = ∂M. Let g̃ be another
Riemannian metric on M, an assume that ∂M is strictly convex
w.r.t. g̃ as well. If g and g̃ have the same lens relations, then there
exists a diffeomorphism ψ on M fixing ∂M pointwise such that
g = ψ∗g̃ .

Examples: This condition is satisfied for strictly convex manifolds
of non-negative sectional curvature, simply connected manifolds
with non-positive sectional curvature and simply connected
manifolds with no focal points.



Travel Time Tomography

Long-awaited mathematics proof could help scan Earth’s innards

Nature, Feb, 2017



New Results on Boundary Rigidity
The Boundary Rigidity problem is to recover g from dg .

Corollary (New result on boundary rigidity)
Simple manifolds satisfying the foliation condition are boundary
rigid.
Example: Simple manifold of non-negative sectional curvature,
simple connected manifolds with non-positive sectional curvature
and simply connected manifolds with no focal points.

Question: Do simple manifolds satisfy the foliation condition?



Metrics Satisfying the Herglotz condition

Francois Monard: SIAM J. Imaging Sciences (2014)



The Linear Problem

Let (M, g) be compact with smooth boundary. Linearizing g 7→ dg
in a fixed conformal class leads to the ray transform

If (x , ξ) =

∫ τ(x ,ξ)

0
f (γ(t, x , ξ)) dt

where x ∈ ∂M and ξ ∈ SxM = {ξ ∈ TxM ; |ξ| = 1}.

Here γ(t, x , ξ) is the geodesic starting from point x in direction ξ,
and τ(x , ξ) is the time when γ exits M. We assume that (M, g) is
nontrapping, i.e. τ is always finite.



Inversion of X-ray Transform
(M, g) simple

If (x , ξ) =

∫ τ(x ,ξ)

0
f (γ(x , t, ξ))dt

ξ ∈ SxM = {ξ ∈ TxM : |ξ| = 1}

where γ(x , t, ξ) is the geodesic starting from x in direction ξ,
τ(x , ξ) is the exit time.

Theorem (Guillemin 1975, Stefanov-U, 2004)
(M, g) simple. Then I ∗I is an elliptic pseudodifferential operator of
order -1.



Inversion of X-ray Transform (Radon 1917)

▶ If (x , θ) =

∫
f (x + tθ)dt, |θ| = 1

▶ (−∆)1/2I ∗If = cf , c ̸= 0

▶ (−∆)−1/2f =

∫
f (y)

|x − y |n−1 dy

I ∗I is an elliptic pseudodifferential operator of order -1.



Idea of the Proof in Isotropic Case

The proof is based on two main ideas.

First, we use the approach in a recent paper by U-Vasy (2012) on
the linear integral geometry problem.

Second, we convert the non-linear boundary rigidity problem to a
“pseudo-linear” one. Straightforward linearization, which works for
the problem with full data, fails here.



The Local Linear Problem

U-Vasy result: Consider the inversion of the geodesic ray
transform

If (γ) =

∫
f (γ(s)) ds

known for geodesics intersecting some neighborhood of p ∈ ∂M
(where ∂M is strictly convex) “almost tangentially”. It is proven
that those integrals determine f near p uniquely. It is a Helgason
support type of theorem for non-analytic curves! This was extended
recently by H. Zhou for arbitrary curves (∂M must be strictly
convex w.r.t. them) and non-vanishing weights.



The main idea in U-Vasy is the following:

Introduce an artificial, still strictly convex boundary near p which
cuts a small subdomain near p. Then use Melrose’s scattering
calculus to show that the I , composed with a suitable
‘‘back-projection” is elliptic in that calculus. Since the subdomain is
small, it would be invertible as well.



Artificial Boundary
Consider

Pf (z) := I ∗χIf (z) =

∫
SzM

x−2χIf (γz,v )dv ,

where χ is a smooth cutoff sketched below (angle ∼ x), and x is
the distance to the artificial boundary.



Inversion of Local Geodesic Transform

Pf (z) := I ∗χIf (z) =

∫
SzM

x−2χIf (γz,v )dv ,

Main result: P is an elliptic pseudodifferential operator in
Melrose’s scattering calculus.

There exists A such that AP = Identity + R

This is Fredholm and R has a small norm in a neighborhood of p.
Therefore invertible near p.



Scattering Calculus

The scattering calculus (Melrose) is a version of the classical one on
Rn
x with a compactification of Rn

x ×Rn
ξ . Consider pseudodifferential

operators with symbols a(z , ζ) satisfying symbol-like estimates both
w.r.t. z and ζ (Hörmander, Parenti, Shubin)

|∂αz ∂
β
ζ a(z , ζ)| ≤ Cα,β⟨z⟩l−|α|⟨ζ⟩m−|β|

This defines the class S l .m(Rn × Rn). Lower order means both
lower order of differentiaion and a slower growth at infinity.
Now compactify both Rn

x and Rn
ξ to get the scattering calculus.



Goal: To Determine the Topology and Metric of
Space-Time

How can we determine the topology and metric of complicated
structures in space-time with a radar-like device?

Figures: Anderson institute and Greenleaf-Kurylev-Lassas-U.



Non-linearity Helps

We will consider inverse problems for non-linear wave equations, e.g.
∂2

∂t2
u(t, y)− c(t, y)2∆u(t, y) + a(t, y)u(t, y)2 = f (t, y).

We will show that:

-Non-linearity helps to solve

the inverse problem,

-“Scattering” from

the interacting

wave packets

determines the

structure of the spacetime.


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Inverse Problems in Space-Time: Passive
Measurements

Can we determine the structure of space-time when we see light
coming from many point sources varying in time? We can also
observe gravitational waves.



Gravitational Lensing

We consider e.g. light or X-ray observations or measurements of
gravitational waves.



Gravitational Lensing

Double Einstein Ring Conical Refraction



Duke Math. J. Volume 46, Number 3 (1979), 571-582.



Passive Measurements: Gravitational Waves

NSF Announcement, Feb 11, 2015


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}




Inverse Problem for Passive Measurements

E

Can we determine the structure of space-time when we observe
wavefronts produced by point sources?
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Inverse Problem for Passive Measurements

E

Can we determine the structure of space-time when we observe
wavefronts produced by point sources?



Lorentzian Geometry

(n + 1)-dimensional Minkowski space: (M, g)

M = R1+n = Rt × Rn
x , metric: g = −dt2 + dx2.

Null/lightlike vectors: V ∈ TqM with g(V ,V ) = 0.

Rt

Rn
x

L±q M: future/past null vectors



Lorentzian Geometry

In general:

M = (n + 1)-dimensional manifold, g Lorentzian (−,+, . . . ,+).

Assume: existence of time orientation.

TqM ∼= (R1+n,Minkowski metric).

Null-geodesics: γ(s) = expq(sV ), V ∈ TqM null.

Future light cone: L+
q = {expq(V ) : V future null}

q



Lorentzian Manifolds

Let (M, g) be a 1 + 3 dimensional time oriented Lorentzian manifold.
The signature of g is (−,+,+,+).
Example: Minkowski space-time (R4, gm), gm = −dt2 + dx2 + dy2 + dz2.

▶ L±q M is the set
of future (past) pointing
light like vectors at q.

▶ Casual vectors are
the collection of time-like
and light-like vectors.

▶ A curve
γ is time-like (light-like,
causal) if the tangent
vectors are time-like
(light-like, causal).



Causal Relations

Let µ̂ be a time-like geodesic, which corresponds to the world-line
of an observer in general relativity. For p, q ∈ M, p ≪ q means p, q
can be joined by future pointing time-like curves, and p < q means
p, q can be joined by future pointing causal curves.

▶ The chronological future
of p ∈ M is
I+(p) = {q ∈ M : p ≪ q}.

▶ The causal future of p ∈ M
is J+(p) = {q ∈ M : q < p}.

▶ J(p, q) = J+(p) ∩ J−(q),
I (p, q) = I+(p) ∩ I−(q).



Global Hyperbolicity

A Lorentzian manifold (M, g) is globally hyperbolic if

▶ there is no closed causal paths in M;
▶ for any p, q ∈ M

and p < q, the set J(p, q) is compact.
Then hyperbolic equations are well-posed on (M, g)
Also, (M, g) is isometric to the product manifold

R× N with g = −β(t, y)dt2 + κ(t, y).

Here β : R× N → R+ is smooth, N is a 3 dimensional manifold
and κ is a Riemannian metric on N and smooth in t.
We shall use x = (t, y) = (x0, x1, x2, x3) as the local coordinates on
M.



Light Observation Set
Let µ = µ([−1, 1]) ⊂ M be time-like geodesics containing p− and p+.
We consider observations in a neighborhood V ⊂ M of µ.

Let W ⊂ I−(p+) \ J−(p−) be relatively compact and open set.

The light observation set for q ∈ W is

PV (q) := {γq,ξ(r) ∈ V ; r ≥ 0, ξ ∈ L+q M}.

6

p+

p−
V

W
q

�
�
��

PV (q)



Inverse Problems with Passive Measurements

The earliest light observation set of q ∈ M in V is

EV (q) = {x ∈ PV (q) : there is no y ∈ PV (q) and future pointing
time like path α such that α(0) = y and α(1) = x} ⊂ V .

In the physics literature the light observation sets are called
light-cone cuts (Engelhardt-Horowitz, arXiv 2016)

Theorem (Kurylev-Lassas-U 2018, arXiv 2014)
Let (M, g) be an open smooth globally hyperbolic Lorentzian manifold of
dimension n ≥ 3 and let p+, p− ∈ M be the points of a time-like
geodesic µ̂([−1, 1]) ⊂ M, p± = µ̂(s±). Let V ⊂ M be a neighborhood of
µ̂([−1, 1]) and W ⊂ M be a relatively compact set. Assume that we
know

EV (W ).

Then we can determine the topological structure, the differential
structure, and the conformal structure of W , up to diffeomorphism.



Interaction of Nonlinear Waves

b

t

R
3

Earth



Inverse Problem for a Non-linear Wave Equation
Consider the non-linear wave equation

□gu(x) + a(x) u(x)2 = f (x) on M0 = (−∞,T )× N,

supp (u) ⊂ J+g (supp (f )),

where supp(f ) ⊂ V , V ⊂ M is open,

□gu = −
4∑

p,q=1

(−det(g(x)))−1/2 ∂

∂xp

(
(−det(g(x)))1/2gpq(x)

∂

∂xq
u(x)

)
,

det(g) = det((gpq(x))4p,q=1), f ∈ C 6
0 (V ) is a controllable source,

and a(x) is a non-vanishing C∞-smooth function.
In a neighborhood W ⊂ C 2

0 (V ) of the zero-function, define the
measurement operator by

LV : f 7→ u|V , f ∈ C 6
0 (V ).



Theorem (Kurylev-Lassas-U, 2018)
Let (M, g) be a globally hyperbolic Lorentzian manifold of
dimension (1+ 3). Let µ be a time-like path containing p− and p+,
V ⊂ M be a neighborhood of µ, and a : M → R be a non-vanishing
function. Then (V , g |V ) and the measurement operator LV
determines the set I+(p−)∩ I−(p+)⊂ M and the conformal class of
the metric g , up to a change of coordinates, in I+(p−) ∩ I−(p+).

1

2

3

5

p+

p−
V

I+(p−) ∩ I−(p+)



Idea of the Proof in the Case of Quadratic
Nonlinearity: Interaction of Singularities

We construct the earliest light observation set by producing
artificial point sources in I (p−, p+). The key is the singularities
generated from nonlinear interaction of linear waves.

▶ We construct sources
f so that the solution
u has new singularities.

▶ We characterize the
type of the singularities.

▶ We determine the order
of the singularities and
find the principal symbols.



Non-linear Geometrical Optics

Let u = εw1 + ε2w2 + ε3w3 + ε4w4 + Eε satisfy

□gu + au2 = f , in M0 = (−∞,T )× N,

u|(−∞,0)×N = 0

with f = εf1. When Q = □−1
g , we have

w1 = Qf ,

w2 = −Q(a w1 w1),

w3 = 2Q(a w1 Q(a w1 w1)),

w4 = −Q(aQ(a w1 w1)Q(a w1 w1))

−4Q(a w1 Q(a w1 Q(a w1 w1))),

∥Eε∥ ≤ Cε5.



Non-linear Geometrical Optics

The product has, in a suitable microlocal sense, a principal symbol.

There is a lot of technology availale for the interaction analysis of
conormal waves: intersecting pairs of conormal distributions
(Melrose-U, 1979, Guillemin-U, 1981, Greenleaf-U, 1991).

3

1

2



Pieces of spherical waves

Consider solutions of □gu1 = f1, where f1 is a conormal distribution
that is singular on {t0} × Σ. The solution u1 is a distribution
associated to two intersecting Lagrangian manifolds. We can
control the width s of the waves.



From □gu1 = f1 we have

u1 = □−1
g f1.

Thus,
WFu1 ⊂ WFf1 ∪ Λp(WFf1)

where

Λp(WFf1) = forward flow out by Hp starting at WFf1 intersected
with {p = 0}.

Here p = τ2 −
∑

g ij(y)ξiξj .

Hp is the Hamiltonian vector field.

Notice that {p = 0} is the light cone.



Comm. Pure Appl. Math., 32 (1979), no.4, 483-519.



Interaction of Waves in Minkowski Space R4

Let x j , j = 1, 2, 3, 4 be coordinates such that {x j = 0} are
light-like. We consider waves

uj(x) = v · (x j)m+, (s)m+ = |s|mH(s), v ∈ R, j = 1, 2, 3, 4.
x j = t − x · ωj , |ωj | = 1

Waves uj are conormal distributions, uj ∈ Im+1(Kj), where

Kj = {x j = 0}, j = 1, 2, 3, 4.

The interaction of the waves uj(x) produce new sources on

K12 = K1 ∩ K2,

K123 = K1 ∩ K2 ∩ K3 = line,
K1234 = K1 ∩ K2 ∩ K3 ∩ K4 = {q} = one point.



Interaction of Two Waves (Second order linearization)

If we consider sources fε⃗(x) = ε1f(1)(x) + ε2f(2)(x), ε⃗ = (ε1, ε2),
and the corresponding solution uε⃗, we have

W2(x) =
∂

∂ε1

∂

∂ε2
uε⃗(x)|ε⃗=0

= Q(a u(1) · u(2)),

where Q = □−1
g and

u(j) = Qf(j).

Recall that K12 = K1 ∩ K2 = {x1 = x2 = 0}. Since the normal
bundle N∗K12 contain only light-like directions N∗K1 ∪ N∗K2,

singsupp(W2) ⊂ K1 ∪ K2.

Thus no new interesting singularities are produced by the
interaction of two waves (Greenleaf-U, 1991).



Three plane waves interact and produce a conic wave. (Bony, 1996,
Melrose-Ritter, 1987, Rauch-Reed, 1982)
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Interaction of Three Waves (Third order linearization)

If we consider sources fε⃗(x) =
∑3

j=1 εj f(j)(x), ε⃗ = (ε1, ε2, ε3), and
the corresponding solution uε⃗, we have

W3 = ∂ε1∂ε2∂ε3uε⃗|ε⃗=0

= 4Q(a u(1) Q(a u(2) u(3)))

+4Q(a u(2) Q(a u(1) u(3)))

+4Q(a u(3) Q(a u(1) u(2))),

where Q = □−1
g . The interaction of the three waves happens on

the line K123 = K1 ∩ K2 ∩ K3.
The normal bundle N∗K123 contains light-like directions that are
not in N∗K1 ∪ N∗K2 ∪ N∗K3 and hence new singularities are
produced.
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Interaction of Four Waves (Fourth order linearization)

If we consider sources fε⃗(x) =
∑4

j=1 εj f(j)(x), ε⃗ = (ε1, ε2, ε3, ε4),
and the corresponding solution uε⃗, we have following. Consider

W4 = ∂ε1∂ε2∂ε3∂ε4uε⃗|ε⃗=0.

Since K1234 = {q} we have N∗K1234 = T ∗
qM. Hence new

singularities are produced and

singsupp(W4) ⊂ (∪4
j=1Kj) ∪ Σ ∪ L+

q M,

where Σ is the union of conic waves produced by sources on K123,
K134, K124, and K234. Moreover, L+

q M is the union of future going
light-like geodesics starting from the point q.



Interaction of Four Waves

The 3-interaction produces conic waves (only one is shown below).

The 4-interaction produces

a spherical wave from the point q

that determines the light

observation set PV (q).

3

1

2
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Active and Passive Measurements

(M, g) (2 + 1)-dimensional, □gu = u3 + f .

Idea (Kurylev-Lassas-U 2018, arXiv 2014): Using nonlinearity to
create point sources in I (p−, p+).

f =
3∑

i=1

ϵi fi , ui := □−1
g fi .

Take fi = conormal distribution, e.g.

f1(t, x) = (t − x1)
11
+ χ(t, x), χ ∈ C∞

c (R1+2).

Then
u ≈

∑
ϵiui + 6ϵ1ϵ2ϵ3□−1

g (u1u2u3).



Generating Point Sources

non-linear interaction of conormal waves ui = □−1
g fi : □−1

g (u1u2u3)

u1 u2

u3

u1 u2

u3

q

L+
q

q =
3⋂

i=1

sing supp ui , L+
q = sing supp □−1

g (u1u2u3)

⇒ singularities of ∂3
ϵ1ϵ2ϵ3u give light observation sets L+

q



Further Developments
1. Einstein’s equations coupled with scalar fields

(Kurylev-Lassas-U, 2013; Kurylev-Lassas-Oksanen-U, 2022)

2. Einstein-Maxwell’s equations in vacuum (Lassas-U-Wang,
2017)

3. Einstein’s equations (U-Wang, 2020)

4. Non-linear elasticity (de Hoop-U-Wang, 2020; U-Zhai, 2021)

5. Yang-Mills (Chen-Lassas-Oksanen-Paternain, 2021, 2022)

6. Inverse Scattering (Sa Barreto-U-Wang, 2022)

7. Semilinear equations (Kurylev-Lassas-U, 2018; Wang-U, 2018;
Wang-Zhou, 2019; Hintz-U-Zhai, 2022; Stefanov-Sa Barreto,
2021; U-Zhang 2021; Hintz-U-Zhai, 2022)

8. Non-linear Acoustics (Acosta-U-Zhai, 2023; U-Zhang, 2023)



Boundary Light Observation Set

M = {(t, x) : |x | < 1} ⊂ R1+2.

q

L+
q ∩ U

∂M
S

U

Rt

R2
x

Set of sources S ⊂ M◦.

Observations in U ⊂ ∂M.

Data: S = {L+
q ∩ U : q ∈ S}

Theorem
The collection S determines the topological, differentiable, and
conformal structure [g |S ] = {fg |S : f > 0} of S .



Reflection at the Boundary

γ null-geodesic until γ(s) ∈ ∂M.

∂M

ρ(V )

V
ν

γ

γ(s)

ρ(V ) = reflection of V across ∂M. (Snell’s law.)

→ continuation of γ as broken null-geodesic



Null-convexity
Simplest case:

All null-geodesics starting in M◦ hit ∂M transversally. (1)

Proposition
(1) is equivalent to null-convexity of ∂M:

II (W ,W ) = g(∇W ν,W ) ≥ 0, W ∈ T∂M null.

Stronger notion: strict null-convexity. (II (W ,W ) > 0, W ̸= 0.)

Define light cones L+
q using broken

null-geodesics.

L+
q

q
∂M



Main Result

Setup:
▶ (M, g) Lorentzian, dim ≥ 2, strictly null-convex boundary
▶ existence of t : M → R proper, timelike
▶ sources: S ⊂ M◦ with S̄ compact
▶ observations in U ⊂ ∂M open

Assumptions:
1. L+

q1
∩ U ̸= L+

q2
∩ U for q1 ̸= q2 ∈ S̄

2. points in S and U are not (null-)conjugate

Theorem (Hintz–U, 2019)
The smooth manifold U and the unlabelled collection
S = {L+

q ∩ U : q ∈ S} ⊂ 2U uniquely determine (S , [g |S ])
(topologically, differentiably, and conformally).



Example for (M , g)

(X , h) compact Riemannian manifold with boundary.

(X, h)

M = Rt × X , g = −dt2 + h.

(Strict) null-convexity of ∂M ⇐⇒ (strict) convexity of ∂X



‘Counterexamples’

Necessity of assumption 1. (L+
q1

∩ U ̸= L+
q2

∩ U for q1 ̸= q2 ∈ S̄)

q2

q1

∂M ∂M

S1

S2

UU

q

∂M

S

U

S1 and S1 ∪ S2 are indistinguishable from U .



Active Measurements for Boundary Value
Problems

UD

UN

(Special case: UN = UD .)

Propagation of singularities:
(strict) null-convexity assumption
simplifies structure of
null-geodesic flow. (Taylor ’75,
’76, Melrose–Sjöstrand ’78, ’82.)



Inverse Boundary Value Problem

Assume M = R× N is a Lorentzian manifold of dimension (1 + 3)
with time-like boundary.

□gu(x) + a(x)u(x)4 = 0, on M,

u(x) = f (x), on ∂M,

u(t, y) = 0, t < 0,

Inverse Problem: determine the metric g and the coefficient a from
the Dirichlet-to-Neumann map.



The Main Result

Theorem (Hintz-U-Zhai, 2022)
Consider the semilinear wave equations

□g (j)u(x) + a(j)u(x)4 = 0, j = 1, 2,

on Lorentzian manifold M(j) with the same boundary R× ∂N. If
the Dirichlet-to-Neumann maps Λ(j) acting on C5([0,T ]× ∂N) are
equal, Λ(1) = Λ(2), then there exist a diffeomorphism
Ψ: Ug (1) → Ug (2) with Ψ|(0,T )×∂N = Id and a smooth function
β ∈ C∞(M(1)), β|(0,T )×∂N = ∂νβ|(0,T )×∂N = 0, so that, in Ug (1) ,

Ψ∗g (2) = e−2βg (1), Ψ∗a(2) = e−βa(1), □ge
−β = 0.



Ultrasound Imaging

Nonlinear interaction: waves at frequency fC generate waves at
frequency 2fC :



Inverse Boundary Value Problem

The acoustic waves are modeled by the Westervelt-type equation

1
c2(x)

∂2
t p(t, x)− β(x)∂2

t p
2(t, x) = ∆p(t, x), in (0,T )× Ω,

p(t, x) = f , on (0,T )× ∂Ω,

p =
∂p

∂t
= 0, on {t = 0},

▶ c : wavespeed
▶ β: nonlinear parameter

Inverse problem: recover β from the Dirichlet-to-Neumann map Λ.



Second Order Linearization

Second order linearization and the resulted integral identity:∫ T

0

∫
∂Ω

∂2

∂ϵ1∂ϵ2
Λ(ϵ1f1 + ϵ2f2)

∣∣∣
ϵ1=ϵ2=0

f0d Sd t

=2
∫ T

0

∫
Ω
β(x)∂t(u1u2)∂tu0d xd t.

where uj , j = 1, 2 are solutions to the linear wave equation

1
c2∂

2
t ui (t, x)−∆uj(t, x) = 0

with uj |(0,T )×∂Ω = fj , and u0 is the solution to the backward wave
equation with u0|(0,T )×∂Ω = f0



Reduction to a Weighted Ray Transform

Construct Gaussian beam solutions u0, u1, u2 traveling along the
same null-geodesic ϑ(t) = (t, γ(t)), where γ(t), t ∈ (t−, t+) is the
geodesic in (Ω, g) joining two boundary points γ(t−), γ(t+) ∈ ∂Ω.

γ Ω

t

ϑ

γ(t
−
)

γ(t+)

Insert into the integral identity, one can extract the Jacobi-weighted
ray transform of f = βc3/2 ⇒ invert this weighted ray transform
(Paternain-Salo-U-Zhou, 2019; Feizmohammadi-Oksanen, 2020)



Figure: L/λ = 10 (top row) and L/λ = 100 (bottom row) where L is the
size of the image and λ is the wavelength.



Figure: L/λ = 10 (top row) and L/λ = 100 (bottom row) where L is the
size of the image and λ is the wavelength.



Belated Happy Birthday, Richard!
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