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Index theory on pin manifolds has been studied sporadically, for example in works by

Gilkey, Stolz, and Zhang, but not as far as I know in a systematic way

Mike Hopkins and I encountered index theory on pin manifolds in two recent projects, and

this talk is based in part on our joint works arXiv:1604.06527 and arXiv:1908.09916

So I thought I would take this opportunity to indicate some systematics and to use pin

manifolds as an excuse to expose general points of topological and geometric index theory

Let’s begin with the question: Why pin manifolds?
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Geometric structures

Definition: A symmetry type (of dim n) is a homomorphism of Lie groups � : Gn Ñ GLnR

Examples: ‚ On ãÑ GLnR (Riemannian geometry)

‚ Spinn Ñ GLnR (spin geometry)

‚ Pin
˘
n Ñ GLnR (pin geometry)

A�ne symmetry group:
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Symmetry „„„B structure on a smooth manifold M , encoded in a lift of the frame bundle:

pP,⇥q
Gn

✏✏
M

BpMq ✓
–

//

GLnR ##

�pP q

GLnR||
M

p⇥ is a Gn-connection)

Reflection symmetry „„„B unoriented manifolds

Relativistic quantum theory with time-reversal symmetry „„„B unoriented manifolds

Relativistic quantum theory with time-reversal symmetry and spinors „„„B pin manifolds
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Pin groups and Cli↵ord algebras

Cli↵p,q : e21 “ ¨ ¨ ¨ “ e2p “ `1, e2p`1 “ ¨ ¨ ¨ “ e2p`q “ ´1

Spinp,q Ä Pinp,q ãÑ Cli↵p,q

Pin`
n “ Pinn,0 Pin´

n “ Pin0,n Cli↵`n “ Cli↵n,0 Cli↵´n “ Cli↵0,n

Spinn “ Spin0,n – Spinn,0

In low dimensions there are special isomorphisms:

n Spinn Pin`
n Pin´

n

1 /µ
2

/µ
2

ˆ /µ
2

/µ
4

2 T /µ
2

˙ T p/µ
4

˙ Tq{/µ
2

3 SU2 p/µ
4

ˆ SU2q{/µ
2

/µ
2

ˆ SU2
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Key observation: There exist embeddings

Pin`
n ã›Ñ Spinn,1 Ä Cli↵0

n,1 –
“
Cli↵`n b Cli↵´1

‰0

Pin´
n ã›Ñ Spinn`1 Ä Cli↵0

`pn`1q –
“
Cli↵`n b Cli↵`1

‰0

g fi›Ñ g b 1, g P Spinn
g fi›Ñ g b e, g P Pin˘

n zSpinn

Note the Morita equivalence

Cli↵n,1 – Cli↵`pn´1q bCli↵1,1
Morita» Cli↵`pn´1q

and so the opposite shifts
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A 10-fold way

Theorem: There are embeddings Hnpsq ãÑ Cli↵`n bDpsq compatible with Cli↵ord
multiplication

s H
c

K Cartan D

0 Spinc T A C

1 Pinc T AIII Cli↵C
´1

s H K Cartan D

0 Spin /µ
2

D R

´1 Pin`
/µ

2
DIII Cli↵´1

´2 Pin` ˙t˘1u T T AII Cli↵´2

´3 Pin´ ˆt˘1u Sp1 Sp1 CII Cli↵´3

4 Spin ˆt˘1u Sp1 Sp1 C H

3 Pin` ˆt˘1u Sp1 Sp1 CI Cli↵`3

2 Pin´ ˙t˘1u T T AI Cli↵`2

1 Pin´
/µ

2
BDI Cli↵`1



The Cli↵ord linear Dirac operator

M Riemannian spin manifold

OpMq ›Ñ M bundle of orthonormal frames

B1, . . . , Bn tautological horizontal vector fields

SpinpMq ›Ñ OpMq ›Ñ M lift to principal Spinn-bundle

Spinn Ä Cli↵`n ö Cli↵`n ö Cli↵`n left regular Cli↵`n-module

En
: D “ �1

B
Bx1 ` ¨ ¨ ¨ ` �n

B
Bxn ö

´
 : En ›Ñ Cli↵`n

¯

ö Cli↵`n

M : D “ �1 B1 ` ¨ ¨ ¨ ` �n Bn ö
´
 : SpinpMq ›Ñ Cli↵`n

¯

ö Cli↵`n

·->&,

gar 2 :
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2 ↓ On
->
D

M



The Cli↵ord linear Dirac operator

M Riemannian spin manifold

OpMq ›Ñ M bundle of orthonormal frames

B1, . . . , Bn tautological horizontal vector fields

SpinpMq ›Ñ OpMq ›Ñ M lift to principal Spinn-bundle

Spinn Ä Cli↵`n ö Cli↵`n ö Cli↵`n left regular Cli↵`n-module

En
: D “ �1

B
Bx1 ` ¨ ¨ ¨ ` �n

B
Bxn ö

´
 : En ›Ñ Cli↵`n

¯

ö Cli↵`n

M : D “ �1 B1 ` ¨ ¨ ¨ ` �n Bn ö
´
 : SpinpMq ›Ñ Cli↵`n

¯

ö Cli↵`n

g 192

↑ Cliffn <
Y

>& Spin (M)

In >
~
Spinn

M



Modification for a Pin manifold:

Pin
˘pMq ›Ñ OpMq ›Ñ M principal Pin

˘
n -bundle

Pin
`
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B
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´
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¯
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From now on we restrict to Pin`; everything works for Pin´ with the opposite shift

The (Z{2Z-graded) opposite algebra to Cli↵p,q is Cli↵q,p, and so

Pin`
n Ä Cli↵n,1 ö Cli↵n,1 ö Cli↵n,1

is equivalent to commuting left actions

Pin`
n Ä Cli↵n,1 ö

Cli↵n,1
Cli↵1,n ö

Therefore, the Dirac operators

En : D “ �1
B

Bx1 ` ¨ ¨ ¨ ` �n
B

Bxn ö
´
 : En ›Ñ Cli↵n,1

¯

M : D “ �1 B1 ` ¨ ¨ ¨ ` �n Bn ö
´
 : Pin`pMq ›Ñ Cli↵n,1

¯

have a commuting Cli↵1,n
Morita» Cli↵´pn´1q action
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Atiyah-Singer index theorem for Dirac operators

⇡ : X ›Ñ S proper fiber bundle of relative dimension n

relative spin structure

Riemannian structure on ⇡ (relative metric + horizontal distribution)

E ›Ñ X orthogonal vector bundle with compatible r

From this construct a family of Dirac operators Cli↵´n ö DX{S

The Fredholm (analytic) index indDX{S P KO
´npSq

Thom class (Atiyah-Bott-Shapiro) defines pushforward ⇡! : KO
0pXq ›Ñ KO

´npSq

Theorem: indDX{S “ ⇡!

`
rEs

˘

E

L

#
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Modification for Pin`

⇡ : X ›Ñ E proper fiber bundle of relative dimension n

relative pin` structure

Riemannian structure on ⇡ (relative metric + horizontal distribution)

E ›Ñ X orthogonal vector bundle with compatible r

From this construct a family of Dirac operators Cli↵´pn´1q
Morita» Cli↵1,n ö DX{S

The Fredholm (analytic) index indDX{S P KO
´pn´1qpSq

Thom class (Atiyah-Bott-Shapiro) defines pushforward ⇡! : KO
0pXq ›Ñ KO

´pn´1qpSq

Theorem: indDX{S “ ⇡!

`
rEs

˘



The topological index is a pin` bordism invariant, but not always e↵ective

Example: For n “ 2 the index on a single closed pin` manifold ⇡
M : M ›Ñ pt lands

in KO
´1pptq – Z{2Z

The index is an isomorphism ⌦Pin`
2

–››Ñ Z{2Z

A generator of ⌦Pin`
2 is the Klein bottle (with a nonbounding pin` structure)

Example: For n “ 4 we have ⌦Pin`
4 – Z{16Z with generator RP4 (with either pin`

structure), but KO
´3pptq “ 0 so the index carries no information

To extract more information we turn to di↵erential K-theory and secondary invariants
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Generalized di↵erential cohomology

Precursors: Deligne cohomology (1971) and Cheeger-Simons di↵erential characters (1973)

Di↵erential K-theory and KO-theory arose (1999) in string theory from two sources:

(i) Green-Schwarz anomaly cancellation and (ii) D-branes in string theory

This stimulated developments in generalized di↵erential cohomology by Hopkins-Singer,

Bunke-Nikolaus-Völkl and many others

There are geometric models of di↵erential K-theory (Bunke-Schick, Simons-Sullivan, . . . )

and an index theorem in di↵erential K-theory (F-Lott)

Recent work on di↵erential KO-theory by Grady-Sati, Gomi-Yamashita

This only scratches the surface; see the recent survey by Debray and Amabel-Debray-Haine
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Let M be a smooth manifold

H
1pM ;Zq –

 
smooth maps M ›Ñ R{Z

( L
homotopy

qH1pMq –
 
smooth maps M ›Ñ R{Z

(

H
2pM ;Zq –

 
principal R{Z-bundles P ›Ñ M

( L
isomorphism

qH2pMq –
 
principal R{Z-connections pP,⇥q ›Ñ M

( L
isomorphism

qHqpMq curvature //

⇡0

✏✏

⌦q
ZpMq

de Rham
✏✏

H
qpM ;Zq // HqpM ;Rq

This is a commutative square of abelian groups, but not a pullback square: try q “ 1 and
M “ pt
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One constructs qHqpMq by a homotopy pullback

qHqpMq can be given the structure of an abelian Lie group (Becker-Schenkel-Szabo)
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qHqpMq ›Ñ H

qpM ;Zq underlying topological class

◆ : H
q´1pM ;R{Zq ã›Ñ qHqpMq flat subgroup

‚ di↵erential cohomology combines local information (di↵erential forms) with integrality

‚ calculus of di↵erential cocycles lifts calculus of di↵erential forms

‚ interplay of ⇡0 and ◆ gives topological information beyond cohomology
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Di↵erential KO-theory

}KO
qpMq curvature //

⇡0

✏✏

⌦
`
M ;Rrv, v´1s

˘q
closed, integral

de Rham

✏✏

KOqpMq // H
`
M ;Rrv, v´1s

˘q

pdeg v “ 4q

◆ : KOq´1pM ;R{Zq ã›Ñ }KO
qpMq flat subgroup (zero curvature)

Geometric model: pE,r, ⌘q with E Ñ M orthogonal vector bundle with covariant
derivative r and ⌘ a Chern-Simons type di↵erential form

Simons-Sullivan prove (for qK) that each di↵erential K-class has an ⌘ “ 0 representative

⇡0 : qK0pptq –››Ñ K0pptq – Z

◆ : R{Z – K0ppt;R{Zq –ã››Ñ qK1pptq
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Di↵erential K-theory and ⌘-invariants

Theorem (Klono↵): Let M be a closed n-dimensional spin
c
manifold, and suppose

E Ñ M is a unitary vector bundle with covariant derivative. Then the pushforward

q⇡M
! : qK0pMq ›Ñ qK´npptq is

q⇡M
!

`
r qEs

˘
“

#
indDM pEq, n even

⇠M pEq pmod 1q, n odd

⇠ “ ⌘`dimker
2 is the Atiyah-Patodi-Singer ⌘-invariant and qK´npptq –

#
Z, n even

R{Z, n odd

‚ Other invariants of geometric index theory—Pfa�an and determinant line bundles,

index gerbes, Bismut superconnection, . . .—are unified in di↵erential K(O)-theory

‚ We use the extension of Theorem to }KO, though I don’t know if proofs exist in print

‚ A thorough development of geometric index theory using qK- and }KO-theory is needed
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Di↵erential KO-theory and ⌘-invariants on spin manifolds

}KO
´npptq –

$
’’’’’’’’’’’’’’&

’’’’’’’’’’’’’’%

R{Z, n ” 7 pmod 8q
0, n ” 6 pmod 8q
0, n ” 5 pmod 8q
Z, n ” 4 pmod 8q
R{Z, n ” 3 pmod 8q
Z{2Z, n ” 2 pmod 8q
Z{2Z, n ” 1 pmod 8q
Z, n ” 0 pmod 8q

For M spin the pushforward q⇡M
! : }KO

0pMq ›Ñ }KO
´npptq gives:

‚ usual primary topological index invariants of Atiyah-Singer if n ” 0, 1, 2, 4 pmod 8q
‚ usual ⌘-invariant for spin manifolds if n ” 3, 7 pmod 8q

For n ” 3 pmod 8q the correct invariant is ⇠{2 pmod 1q
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Di↵erential KO-theory and ⌘-invariants on pin` manifolds

If M is a closed n-dimensional pin` manifold, then q⇡M
! : }KO

0pMq ›Ñ }KO
´pn´1qpptq

Theorem/Conjecture: Let M be a closed n-dimensional pin` manifold, and suppose
E Ñ M is an orthogonal vector bundle with covariant derivative. Then

q⇡M
!

`
r qEs

˘
“

#
⇠M pEq{2 pmod 1q, n ” 4 pmod 8q
⇠M pEq pmod 1q, n ” 0 pmod 8q

Furthermore, q⇡M
!

`
r qEs

˘
is rational (lies in Q{Z), is independent of metrics and covariant

derivatives, depends only on rEs P KO
0pMq, and is a pin` bordism invariant.

Key point: the shift by one implies the characteristic di↵erential form that computes the
variation has odd degree, so it vanishes
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Example: (n=4) The pushforward M fi›Ñ q⇡M
! p1q induces an isomorphism

⌦Pin`
4 ›Ñ 1

16
Z

L
Z

M fi›Ñ ⇠M{2 pmod 1q

This is an example of di↵erential cohomology theory encoding topological information
beyond the Z and R{Z topological theories

Remark: Another example of this phenomenon: Let E ›Ñ M be a rank r real vector
bundle, r odd. The usual Euler class is �Z

`
wr´1pEq

˘
P HrpM ;Zq. The

Euler class in di↵erential cohomology is wr´1pEq, interpreted as an element
of order 2 in Hr´1pM ;R{Zq, the flat subgroup of qHrpMq. There is a similar
statement for the Euler class in K-theory and KO-theory.

Problem: Produce topological formulas for ⇠M pEq and ⇠M pEq{2
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M-Theory from 11d supergravity

Fields in M-theory (F): ⇢ pin` structure

g Riemannian metric

 Rarita-Schwinger field

C local 3-form, field strength is global closed 4-form
p2
..-
F =dA



‚ Wick rotation: time-reversal symmetry if the theory is defined on unoriented
manifolds. The Rarita-Schwinger field  is a form of spinor field; in this case we need
a pin` structure

‚ There is an additional term from string theory: in total an inhomogeneous cubic form

pcq “ c3 ´ p ¨ c
48

which is skew-symmetric: p´cq “ ´pcq

‚ Dirac quantization (Witten): C-field gives a w1-twisted integral lift of w4

Definition: Let M be a pin` manifold. An mc structure on M is a w1-twisted integer
lift of w4pMq. Compare: spinc structure = integer lift of w2pMq
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The Rarita-Schwinger anomaly

There are two contributions to the anomaly in M-theory: (1) a quantum anomaly from

integrating out the Rarita-Schwinger field  , and (2) an anomaly from the cubic form 

Mike Hopkins and I gave a computational proof that the total anomaly vanishes

This came down to computing the bordism group of 12-dimensional mc manifolds and

computing two quantities, one of which is ⇠M pTM ´ 2q{2

This motivated us to find topological formulas for this invariant
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Generators of the mc bordism group

Theorem: The following six mc-manifolds generate the group ⇡12Mmc b Z2:

pW 1
0, c0q, pW 2

0 , 0q, pW1,�q
pK ˆ HP

2,�q, pRP4, c
RP

4q ˆ B, pRP4
#RP

4, 0q ˆ B.

K K3 surface

HP
2

quaternionic projective plane

B Bott manifold

HP
2
#HP

2 ›Ñ W 1
0 ›Ñ RP

4 S4 ˆ pHP
2
#HP

2q 2:1››Ñ W 1
0

RP
8 ›Ñ W 2

0 “ PpK‘2

R
‘ Rq ⇢››Ñ S4 KR Ñ S4

generating H-line bundle

HP
2 ›Ñ W1 ›Ñ CP

1 ˆ CP
1 BSO

`
Op1, 1qR ‘ R Ñ CP

1 ˆ CP
1
˘

SO3 – P Sp1

ö

HP
2



Adams spectral sequence

E
s,t
2

“ Ext
s,t
A pH˚

Mmc,Z{2Zq ñ ⇡t´sMmc b Z2



Topological computations of ⇠MpEq{2
We state for pin` 12-manifolds; analogs exist in dims 4 pmod 8q and for pin´ manifolds

M closed pin` 12-manifold

E ›Ñ M real vector bundle

⇠M pEq{2 pmod 1q P Q{Z ⌘-invariant of interest

Method 1: If M is spin, then ⇠M pEq{2 “ 1
4 indDM pEq pmod 1q

Method 2 (Stolz): ⇡ : xM ›Ñ M orientation double cover with free orientation-reversing
involution � : xM Ñ xM . Suppose xM “ BZ, Z compact pin`, and
⇡˚E ›Ñ xM extends over Z, as does �. If the extension has a finite
set tfu of fixed points then (based on APS, Donnelly)

⇠M pEq{2 “
ÿ

f

✏f⌧f
28

, ✏f “ ˘1, ⌧f “ trace of involution on fiber
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Method 3 (Zhang)

Zhang proved a variant of the following with analytic techniques based on Bismut–Zhang

H ›Ñ RP
20

Hopf bundle

ÅKO
0pRP20q – Z{211Z generator is 1 ´ rHs

Theorem: Suppose � : M ›Ñ RP
20

such that �˚w1pRP20q “ w1pMq. Then

�!
`
rEs

˘
“ 2

11 ⇠M pEq
2

`
1 ´ rHs

˘
in ÅKOpRP20q

We applied this to compute ⇠M pEq{2 for the manifold W 2
0 :

RP
8 ›Ñ W 2

0 “ PpK‘2
R

‘ Rq ⇢››Ñ S4 KR Ñ S4
generating H-line bundle

Problem: Give a topological proof of Theorem
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Possible approach

M
� //

⇡M
  

RP20

⇡RP20||
pt

q⇡M
! , q⇡RP20

! : }KO ›Ñ }KOpptq factor through }KO ›Ñ KO in the domain

Reformulation: q⇡M
! “ q⇡RP20

! ˝ �! : KO
0pMq ›Ñ }KO

´11pptq – R{Z

This formulation illustrates the interplay of di↵erential and topological aspects of
di↵erential cohomology, and should be an instance of a more general principle

- uz Zugun
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Method 4 (F–Melrose)

Warmup Question: Given a space Y and y P HmpY ;Zq, how do we measure y?

Z-periods xF ˚y, rW sy P Z of closed probes F : W Ñ Y determine y P HmpY ;Zq{torsion

Z{kZ-periods
A
F

˚
y, rW s

E
P Z{kZ of compact Z{kZ-manifold probes F : W Ñ Y

Theorem (Morgan–Sullivan): The collection of all Z-periods and Z{kZ-periods
determine y P HmpY ;Zq

Analogous statements hold for K- and KO-theory

Richard and I proved a Z{kZ analog of the Atiyah-Singer index theorem that equates a-ind
and t-ind for symbols of elliptic operators; it can be used to compute Z{kZ-periods of a
K-theory class
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Method 4 (F–Melrose)

Now apply a KO version of our index theorem (proved?) for real elliptic operators

M
12 closed pin` manifold

E ›Ñ M real vector bundle

W
13 compact Z{kZ-manifold with BW “ k ¨ M

E ›Ñ W extension of E ›Ñ M

⇡! : KO
0pW q ›Ñ 1

k
Z

L
Z direct image

Combine the mod k index theorem with Atiyah-Patodi-Singer for pin` manifolds to obtain

Theorem: ⇠M pEq{2 “ ⇡!

`
rEs

˘
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Happy Birthday, Richard!


