On a problem of conformal fill in by Poincare
Einstein metrics

Sun-Yung Alice Chang , Princeton University
Report of joint works with
Yuxin Ge, University of Toulouse, France

From Microlocal to Global Analysis
A celebration of 75th birthday of Richard Melrose
May 10-12, 2024
MIT



§1. Conformal fill ins by Einstein manifolds

Given a compact manifold (M", h), when is it the boundary of a
conformally compact Einstein manifold (X1, g*) with

p2g*|m = h, where p is a defining function on X? This problem of
finding “conformal fill in” is motivated by:

e The AdS/CFT correspondence in quantum gravity (proposed
by Maldacena also Witten, around 1998)

e Geometric considerations to study the structure of
non-compact asymptotically hyperbolic manifolds.



Outline of talk

1. Introduction and a brief survey.
2. Set-up of the compactness problem.

3. Compactness results for conformally compact Einstein
manifolds of dimension 3+41.

4. Some existence Results.

5. Components of proofs.



§1. Conformally compact Einstein manifolds, Definition

e On a manifold X with boundary M, we call p a defining
functionon X, if p>0o0n X, p=0o0on Mand dp#0 on M.

e (X"l g*) is conformally compact if (X", p?g™) is compact.
Denote h = p?g* |y, we call (M",[h]) the conformal infinity of
(X1 g*), where [h] denotes the conformal class of metrics of h,
i.e. the collection of metrics ¢2h for some function ¢ on M.

e If Ric[g*] = —n g*, we call (X"*1,M", g*) a conformally
compact (Poincaré) Einstein (CCE) manifold.

e We remark on a CCE manifold, special r (called the geodesic
defining function) can be chosen, with [V (,2.+)r| =1 in an nbhd
of M x (0, ¢) for some € > 0, so that r’g* is with totally geodesic
boundary.



§1. Examples of CCE manifold

e Example 1.

On (R”H R gir), where gy dxyi x€eR", y>0. Choose
r =y, then (R7™ dx? + dy?) is not compact, but conformal to
gu, with conformal infinity (R”, [dx?]).

e Example 2.
On (B"*1,S", gu), where (B"*!, gy = (=% MQ) |dy|?)). Choose

1yl
L+ |yl

2 2
gn=g"= r2 (dr (1- Z) gc> .

with (S",[gc]) as conformal infinity.
We remark that r = e~2f, where t(y) = dist,+(0,y).

r.=2




§1. Examples of CCE manifold

e Example 3.

On SY(\) x S? with the product metric, when 0 < \ < % there
are at least 3 different " conformal fill ins”.

(a) One is when X is (St()\) x B3) with the fill in the hyperbolic

metric g* = f(y)dt? + 83 (y)-

(b) The other two: X is the AdS-Schwarzchild space
(R? x §2,g), where

g = Vdt? + V7 ldr? + rg.,

2
v=1+r2-
r

It turns out for A < % there are two different choices of m. This
is the famous "non-unique fill in” example of Hawking-Page '83.



§1. Some earlier existence results, Scattering theory on
CCE manifolds

e “Ambient Metric" of Fefferman-Graham '85. On any compact
manifold (M", h), h real analytic, there is a CCE metric on some
M"™+1 % (0,¢€) of M. Gursky-Székelyhidi '17, extend to smooth h .

e Graham-Lee '91: Any h in a small smooth neighborhood of h. on
S™. We remark that the fill in metrics constructed by Graham-Lee

g* for h all exist in a small nbhd of the Hyperbolic metric, it turns
out they are "unique” by a later result of C-Ge-Qing, '21.

e Gursky-Han '17 and Gursky-Han-Stolz "18 constructed many
examples of boundary conformal classes that do not allow
Poincaré-Einstein extensions on specified manifolds X** for k > 2.
Theorem (J, Lee '95). On CCE manifolds, if R(h) > 0, then
/\1(—Ag+) = %2
Corollary (J.Qing '03) On CCE manifolds, if R(h) > 0, then there
exists a compactified metric g with g|y = h and R(g) > 0.



§1. Scattering theory on CCE manifolds

e Starting point of all
Theorem (Mazzeo-Melrose,’ 87) On an AH manifolds (X"*1, g*),

n

the essential spectrum of the —A,+ includes [7-,0) and may be a

finite points of point spectrum in (0, ”72)

Theorem (J. Lee '95). On a CCE manifold, if R(h) is positive,
2

then )\1(—Ag+) = nT
In the proof of Lee, he studied solution of the Poisson equation:

(#) —Ag+v+(n+1)v =0 on X"

with asymptotic behavior v = r=1(1 + fr? + ...), where r denotes
the geodesic defining function for h and when R(h) > 0, he used
v2 as a testing function to estimate A1(—=Agt).

e An observation of J. Qing is that in Lee's proof, R(h) > 0
implies the scalar curvature of metric v=2g* is positive.



§2. Compactness of CCE manifolds — the set-up

e An open question: Does the entire class of metrics (S3, h) with
positive scalar curvature allow CCE fill in B*?

The class is path-connected by a result of F. Marques '12.

The index argument for non-existence of Gursky-Han,
Gursky-Han-Stolz does not apply.

e We propose to study the “compactness’ problem, and as an
application some existence result for conformal fill in. More
precisely, we ask the question:

Given a sequence of (M", [h;]) metrics with positive Yamabe
constants, which are conformal infinity of CCE (X", g*); when
would

{[hi]} forms a compact family on M"

— {[gi]} forms a compact family on X"*1?

where g; is some compactification of {g;"} with gi|y = h;.



§2. Compactness of CCE manifolds — an non-local inverse

problem
The difficulty of the problem lies in the existence of an‘“non-local”
term.
We will illustrate the case on (X*, M3, g*) CCE manifold with
(M3, h) conformal infinity, recall the asymptotic behavior

gi=r’gt =dr? +h+g?r2 4 g®B3 L g®Wrt 4.

where g(@ = —%(Ric — ZRph) determined by h (a local term),
Trg® = 0, while

is a non-local term not determined by h.

We remark that h together with g(3) determines the asymptotic
behavior of g. Fefferman-Graham '07, Biquard '08).

We remark that h together with g(3 determines the asymptotic
behavior of g.



§2. Conformal invariants
Yamabe constant
e On (M", h), compact closed manifold,
Y(M, [h]) = infrepy Wi"(‘”g We remark Y (M, [A])
Vol(M,h)
corresponds to the "isoperimetric constant” of the Sobolev

2n
embedding of W12 into L2,
e On compact manifold with boundary, there are two such
constants. (X" M" )

R|g]|dvol|g " Hlz dols
Vo(X, M, [3]) = inf D RIEIIIE] + cnfyy HIElw]do1E]u]
gele] Vol (X, g) )

Y,o(X, M, [g]) = inf SX R[&]dvol[g] +CnSM g|M]dU[g]M]

gelz] Vol (M, &) "5

Y. and Y}, each corresponds to the (isoperimetric) constants in the
Sobolev and Sobolev trace embeddings.



§2. Conformal invariants

e As we have mentioned before, it follows from result of J. Lee '95,
and the observation by J. Qing, that on CCE setting,
Y (M, [h]) > 0 implies that Y,(X, M, [g]) = 0.

e Combining works of Gursky-Han '17, X. Chen- M. Lai and F.
Wang '18, Chang-Ge '21 we established that, there exists some
constant ¢, such that

n

Ya(X7 Ma [g]) > CnY(M7 [h])m
Recall X. Chen-M. Lai and F. Wang

Yo(X, M, [g]) = CoY (M, [h])?



§2. Conformal invariants
e Another conformally invariant quantity is Weyl curvature W.
- _ o ntl .
|WI[g] = p~2|W|[g]. if & = p?g. Thus §, W]z [g]dvg is a
conformal invariant.
e On 4-manifold X, Bach tensor

1 _.
B,‘j = V,Vi Wk,'/j + ER/CkIWkilj

is a conformally invariant. Bach flat metrics are the critical metric
of the functional g— > {, [W/[?[g]dv,. Einstein metrics are Bach
flat, hence so are all metrics in the same conformal class of
Einstein metric. Thus in a CCE setting (X, M, g™), all
compactified metrics of [g*] are Bach flat.

o We remark that it turns out we can re-write Bach flat condition
as a 4th order system of PDE of elliptic type,

ARjj = cV;V;R + Ry * Ric,

which plays an important role in our estimates of the compactified
metrics later. We also remark that for this PDE, the non-local
tensor —3g(®) = ag—n’c\m is a natural matching boundary condition.



§2. Compactness of CCE manifolds — the set-up.
e For convenience, we choose h = hY € [h], the Yamabe metric on
M. But what is a good choice of the compactified metric g € [gT]?
A first attempt is to choose g = g¥, a Yamabe metric among
compactified metrics of g™. The difficulty of this choice is we do
not know how to control the behavior of g |u in terms of hY.
e Instead, following the work of Lee, Graham-Zworski, '03 we will
make a choice of a special representative metric , which we call
scalar flat Adapted metrics on X obtained by solving the Poisson
equation (#)s the boundary metric h with R(h) > 0 on M.

(¥)s — Dgpv—s(n—s)v =0, X"

with Dirichlet data f = 1. Choose p = vas and denote the
adapted metric gx = p°g™.

e Properties of (#)s has been studied in Fefferman-Graham '02,
Chang-Gonzalez '11, Case-Chang '16, F. Wang '21-'22 and S. Lee
'23 and others, Lee's metric is the adapted metric when

s = n+ 1. In the statement of the theorems below, we choose

s = 5 + 1, call it the scalar flat adapted metric.



§2. Properties of the adapted metric

On (X, M, g+) CCE, for a given metric we have the adapted
metric g%, g*|pm = h, with the key properties:

(1) R[g*] =0 on X.

(2) R[h] >0on M impIies the mean curvature H > 0 on M.
(3) Denote g* = p?g™, |[Vgxp| <1

(4) Gauss Bonnet formula

1 1 4 2
20 — | (ZIWIR-Z|ER thH—HW
81X JX(4\ \ 2!|)+ (3 [h] > )
M

Hence Hence under the assumption R[h] > 0,

NG i W< o] wi+ g@m[hm)

where E denote the traceless Ricci.



§3. A compactness result on 4-manifold

Compactness Theorem (C and Yuxin Ge)

Let {X,M = 0X,g;"} be a family of 4-dimensional CCE manifolds.
gi is a sequence of adapted metrics. Denote h; = g;|y. Assume

1. The boundary metric (M, h;) is compact in C® norm with
k = 6; and there exists some positive constant C; > 0

Y (M, [hi]) = G;

2. There exists some positive constant C; > 0 such that

f WiglP < G

3. Ha(X,Z) =0 and H;(X,Z) = 0.
Then, the sequence g; is compact in C5 norm for any o € (0, )
up to a diffeomorphism fixing the boundary.



84, An Existence Result

e Recall Graham-Lee '91: Any h in a small smooth neighborhood
of he on S3 allows a CCE fill in, which are in a small nbhd of the
Hyperbolic metirc on B*, thus has the small L2 norm of its Weyl
tensor.

On the other hand, we also have the following result:

e When n = 3, on a CCE manifold (X*, M3, g*) if Y(M,[h]) >0,
and
(*)J (W2, dvgr < Y3
X

for some ¢ < l—éQ then any metric in some small nbhd of h allows
a (unique) CCE fill in.

The natural question we then ask is can one impose conditions on
the boundary metric h which will ensure (%) to happen? As an
application of our compactness result, we partially answer the
question above.



§4. Statement of an existence result

Existence Theorem Let (X = B* M = S3) and he C%“ be a
metric with the positive scalar curvature on S3. Given the positives
constants (4,0 > 0, such that

L |hce < Ga,
2. Y(M, [hlm]) = 6;
3. vol(h) =1.

Then there exists some constant C(Cy,,d) > 0 and some (small)
positive constant € so that denote E(h) the traceless Ricci of h, if

IE()l2 <€

then for some dimension constant ¢y, we can find a CCE fill in
metric with the conformal infinity [h] satisfying

= 1
aol|W]l2 < /eC(G,0) < ZYa.

Moreover, such solution with the above bound is unique.



§5. Some outline of proof of the existence theorem

The strategy of proof is as follows: Denote g = g*, and S = g®
the non-local term, under assumptions of the theorem.
e Step 1: Apply Bach flat equation to g , control ||W/||2 by the

norm of S and E, where £ = E(h). More precisely, We apply the
Bach equation to g to obtain

(Ya = co(|IWI[2 + [[E|)) (W3 + [|EIZ) < C§SE-
53
where ¢y and C are some dimension constant.
o Step 2: Under assumption (**) (35 Ya — co(||W/||2 + ||E]2) > 0),
Yy|IS]l3 < C(Ga, d).
(This is the hard step, which we will supplement later.)

Combine step (1) and (2) we have if ||é||% < € then under () ,
we have

([[Wll2 +[[Ell2) < 7 Ya.

El



§5. Outline of proof of the existence theorem
e Step 3 We now run a continuity argument connecting h to h¢ in
S3. Note for metrics close to hc, the fill in metric always exists and
[|W||2 tends to zero so (x#) condition is always satisfied. It turns
out we can find such a path via the Ricci flow due to some recent
work of E. Chen, G. Wei and R. Ye '24, here we quote a special
case n = 3 of their work.
Theorem On (S3, h), assume R(h) > 0 , there exists a constant
d(3) sufficient small, so that

IE()[s + [IR(h) — R(h)|

3 < 5(3),

where R(h) denotes the average of R(h), then along the
normalized Ricci flow the family h(t) converges smoothly to he.
e We remark that under the assumption ||£(h)||» small and
vol(h) = 1, the condition in the theorem above is satisfied by an
earlier result of Y. Ge and G. Wang '14.

e Combining the three steps, along this path, under the
assumptions of the Existence theorem, (**) is automatic and we
reached the estimate in Step 2 and finished the proof of.the



§6. More outline of proof of Step 2
e Step 2
Estimate of S-tensor: Recall § = a Ricg. To estimate S, we first
recall a fact which was used in the work of S. Bando, A. Kasue, H.
Nakajima [BKN]'89 to derive ALE decay of sequence of Einstein
metrics. In the special case of 4-manifold, if g* is an Einstein
metric, denote W™ the Weyl tensor of g, then there is a Kato
inequality

5
Ver W = 2| Ve WH? (1)
From these, one can derive
1
DA |WHM < e WH3 6Rg+\w+yl/3
In work of [BKN], when scalar curvature R+ = 0, on a region
$a |W+|§Jr dvg+ is small, [BKN] derive the decay estimate

IWH|Y3(x) £ —— when x€ A and |x| — ©

Our Lemma is an appllcatlon of (1) in conformal Einstein setting.



§5. More outline of proof of Step 2

Lemma 1 Let gt be CCE, g = p?g™ be a compactification, define
W\ 1/3
U=Ug := (‘T|g> , then

—AgU<cyW1gU+% U (2)
Lemma 2 Denote 7(x) = distg(x, M), x € X, g = g*, then
W2 = ex® + e3P + O(7*), where
e> = 8|S|2 + 4|C|?, C is the Cotton tensor on M3,
e3 = —45,5(V+ Copy + V4, Coay) + 4H|S[>+ some other lower
order terms.



§5. More outline of proof of Step 2

Lemma 3
g IWE _WE 2
£ g 2 pg
where
H
pg = F — 173F2 + O(7)
USlox = e
ous 1
© = _He+e

or 9



§5. More outline of proof of Step 2

We then use the estimates

Y, <L U12> 1/2 - JX NU3|2 (6)
Y, (j U9)1/3 _ L TP (7)

X
while
5 324y _ 5, 1 [oU°
9L|vu 2ay L(AgU)U re b (8)
1 [ ous
< 6L - ¢ =
< CL|W|gU Ty (9)
oX

1/2 121 ous
2 12 1o
s¢ (Jx |W|g) <fx v ) - 6 ff or (10)

oX



§6. More outline of proof of Step 2

6
Combine (6) and (7) and estimate in (4) and (5) of Ug and %irg on

0X, we get
5 1/2
BYe-dwh) ([ v2) +wlsE @
18 X
< fx SVE|+ 1613, + [Ricl2l Y Cla + [Riel3IVEE  (12)
Thus under the assumption

2y, W >0 (13)

() 18

we get _
15[z < C(Ca,d)

where C4 is C* norm of hand Y(M,[h]) = 6 > 0, since Y}, = V6.



Congratulations, Richard,
for your fantastic life long

achievement! _
May you have many more productive

years to comel!



