Paris-Saclay Conference in Analysis and PDE In Honor of Maciej Zworski's 60th Birthday

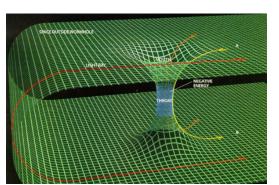
Inverse Problem for Nonlinear Equations

Gunther Uhlmann

University of Washington

Orsay, May 27, 2024

Goal: To Determine the Topology and Metric of Space-Time



How can we determine the topology and metric of complicated structures in space-time with a radar-like device?

Figures: Anderson institute and Greenleaf-Kurylev-Lassas-U.

Non-linearity Helps

We will consider inverse problems for non-linear wave equations, e.g.

$$\frac{\partial^2}{\partial t^2}u(t,y)-c(t,y)^2\Delta u(t,y)+a(t,y)u(t,y)^2=f(t,y).$$

We will show that:

 -Non-linearity helps to solve the inverse problem,

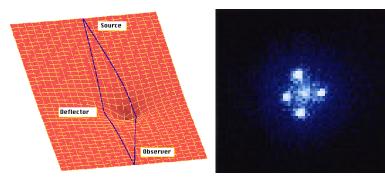
-"Scattering" from
the interacting
wave packets
determines the
structure of the spacetime.

Inverse Problems in Space-Time: Passive Measurements

Can we determine the structure of space-time when we see light coming from many point sources varying in time? We can also observe gravitational waves.

Gravitational Lensing

We consider e.g. light or X-ray observations or measurements of gravitational waves.



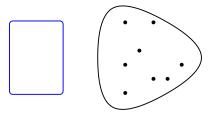
Gravitational Lensing

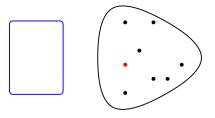
Double Einstein Ring

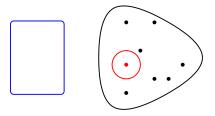
Conical Refraction

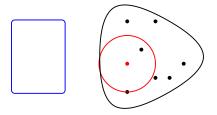
Passive Measurements: Gravitational Waves

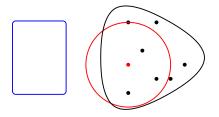
NSF Announcement, Feb 11, 2015

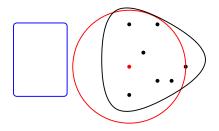


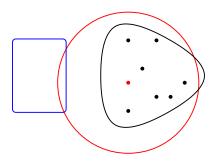


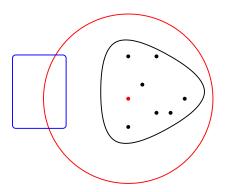


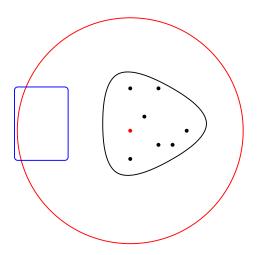


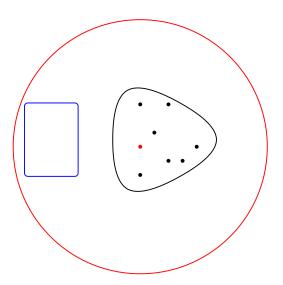


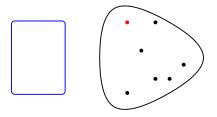


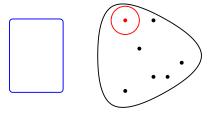


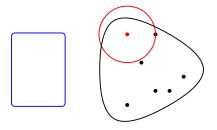


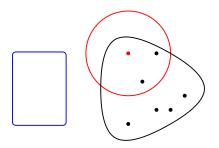


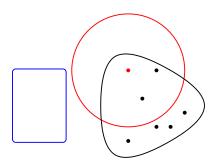


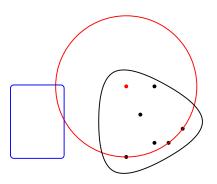


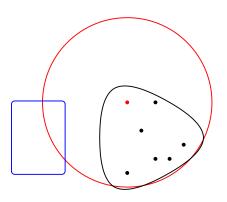


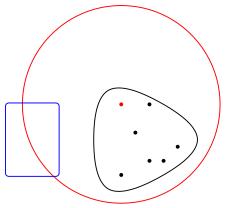












Lorentzian Geometry

(n+1)-dimensional Minkowski space: (M,g)

$$M = \mathbb{R}^{1+n} = \mathbb{R}_t \times \mathbb{R}_x^n$$
, metric: $g = -dt^2 + dx^2$.

Null/lightlike vectors: $V \in T_q M$ with g(V, V) = 0.



 $L_a^{\pm}M$: future/past null vectors

Lorentzian Geometry

In general:

$$M = (n+1)$$
-dimensional manifold, g Lorentzian $(-, +, ..., +)$.

Assume: existence of time orientation.

$$T_qM\cong (\mathbb{R}^{1+n}, Minkowski metric).$$

Null-geodesics: $\gamma(s) = \exp_q(sV)$, $V \in T_qM$ null.

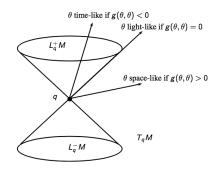
Future light cone: $\mathcal{L}_q^+ = \{ \exp_q(V) \colon V \text{ future null} \}$

Lorentzian Manifolds

Let (M,g) be a 1+3 dimensional time oriented Lorentzian manifold. The signature of g is (-,+,+,+).

Example: Minkowski space-time (\mathbb{R}^4 , g_m), $g_m = -dt^2 + dx^2 + dy^2 + dz^2$.

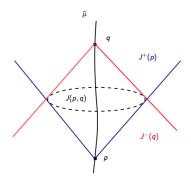
- ► $L_q^{\pm}M$ is the set of future (past) pointing light like vectors at q.
- Casual vectors are the collection of time-like and light-like vectors.
- A curve γ is time-like (light-like, causal) if the tangent vectors are time-like (light-like, causal).



Causal Relations

Let $\widehat{\mu}$ be a time-like geodesic, which corresponds to the world-line of an observer in general relativity. For $p,q\in M,\ p\ll q$ means p,q can be joined by future pointing time-like curves, and p< q means p,q can be joined by future pointing causal curves.

- ► The chronological future of $p \in M$ is $I^+(p) = \{q \in M : p \ll q\}$.
- ► The causal future of $p \in M$ is $J^+(p) = \{q \in M : q < p\}$.
- $J(p,q) = J^{+}(p) \cap J^{-}(q),$ $I(p,q) = I^{+}(p) \cap I^{-}(q).$



Global Hyperbolicity

A Lorentzian manifold (M,g) is globally hyperbolic if

- ▶ there is no closed causal paths in *M*;
- ▶ for any $p, q \in M$ and p < q, the set J(p, q) is compact.

Then hyperbolic equations are well-posed on (M,g) Also, (M,g) is isometric to the product manifold

$$\mathbb{R} \times N$$
 with $g = -\beta(t, y)dt^2 + \kappa(t, y)$.

Here $\beta: \mathbb{R} \times N \to \mathbb{R}_+$ is smooth, N is a 3 dimensional manifold and κ is a Riemannian metric on N and smooth in t. We shall use $x = (t, y) = (x_0, x_1, x_2, x_3)$ as the local coordinates on M.

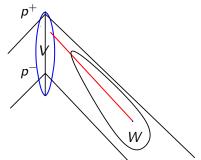
Light Observation Set

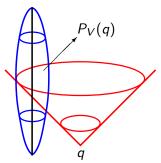
Let $\mu = \mu([-1,1]) \subset M$ be time-like geodesics containing p^- and p^+ . We consider observations in a neighborhood $V \subset M$ of μ .

Let $W \subset I^-(p^+) \setminus J^-(p^-)$ be relatively compact and open set.

The light observation set for $q \in W$ is

$$P_V(q) := \{ \gamma_{q,\xi}(r) \in V; \ r \ge 0, \ \xi \in L_q^+ M \}.$$





The earliest light observation set of $q \in M$ in V is

 $\mathcal{E}_V(q) = \{x \in \mathcal{P}_V(q) : \text{ there is no } y \in \mathcal{P}_V(q) \text{ and future pointing time like path } \alpha \text{ such that } \alpha(0) = y \text{ and } \alpha(1) = x\} \subset V.$

In the physics literature the light observation sets are called light-cone cuts (Engelhardt-Horowitz, arXiv 2016)

Theorem (Kurylev-Lassas-U 2018, arXiv 2014)

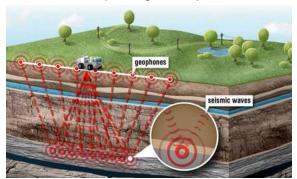
Let (M,g) be an open smooth globally hyperbolic Lorentzian manifold of dimension $n \geq 3$ and let $p^+, p^- \in M$ be the points of a time-like geodesic $\widehat{\mu}([-1,1]) \subset M, p^\pm = \widehat{\mu}(s_\pm)$. Let $V \subset M$ be a neighborhood of $\widehat{\mu}([-1,1])$ and $W \subset M$ be a relatively compact set. Assume that we know

$$\mathcal{E}_V(W)$$
.

Then we can determine the topological structure, the differential structure, and the conformal structure of W, up to diffeomorphism.

Inverse Problems for Linear Hyperbolic Equations

- ► Rakesh-Symes 1987: Inverse problem for $\partial_t^2 \Delta + q$.
- ▶ Belishev-Kurylev 1992 and Tataru 1995: Reconstruction of a Riemannian manifold with time-independent metric.
- Unique continuation needed for Belishev-Kurylev-Tataru results fail for time-depending wave speed.



Active Measurements

Wave equation: Let $g = [g_{jk}(y)]_{j,k=1}^n$ and $u = u^f(y,t)$ be the solution of

$$(\partial_t^2 u - \Delta_g)u = 0$$
 on $N \times \mathbb{R}_+$,
 $u|_{\partial N \times \mathbb{R}_+} = f$,
 $u|_{t=0} = 0$, $u_t|_{t=0} = 0$.

Here N is a Riemannian manifold, ν is the unit normal of ∂N ,

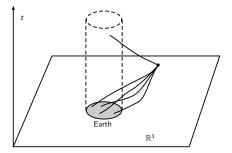
$$\Delta_{g} u = \sum_{i,k=1}^{n} |g|^{-1/2} \frac{\partial}{\partial y^{j}} (|g|^{1/2} g^{jk} \frac{\partial}{\partial y^{k}} u),$$

where $|g| = \det(g_{ij})$ and $[g_{ij}] = [g^{jk}]^{-1}$. Let

$$\Lambda f = \partial_{\nu} u^f |_{\partial N \times \mathbb{R}_+}.$$

We are given boundary data $(\partial N, \Lambda)$.

Interaction of Nonlinear Waves



Inverse Problem for a Non-linear Wave Equation

Consider the non-linear wave equation

$$\Box_g u(x) + a(x) u(x)^2 = f(x) \quad \text{on } M^0 = (-\infty, T) \times N,$$

$$\text{supp } (u) \subset J_g^+(\text{supp } (f)),$$

where $supp(f) \subset V$, $V \subset M$ is open,

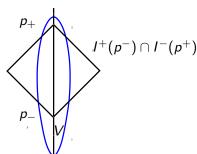
$$\square_g u = -\sum_{p,q=1}^4 (-\det(g(x)))^{-1/2} \frac{\partial}{\partial x^p} \left((-\det(g(x)))^{1/2} g^{pq}(x) \frac{\partial}{\partial x^q} u(x) \right),$$

 $\det(g) = \det((g_{pq}(x))_{p,q=1}^4)$, $f \in C_0^6(V)$ is a controllable source, and a(x) is a non-vanishing C^{∞} -smooth function. In a neighborhood $\mathcal{W} \subset C_0^2(V)$ of the zero-function, define the measurement operator by

$$L_V: f \mapsto u|_V, \quad f \in C_0^6(V).$$

Theorem (Kurylev-Lassas-U, 2018)

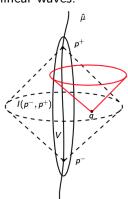
Let (M,g) be a globally hyperbolic Lorentzian manifold of dimension (1+3). Let μ be a time-like path containing p^- and p^+ , $V \subset M$ be a neighborhood of μ , and $a:M \to \mathbb{R}$ be a non-vanishing function. Then $(V,g|_V)$ and the measurement operator L_V determines the set $I^+(p^-) \cap I^-(p^+) \subset M$ and the conformal class of the metric g, up to a change of coordinates, in $I^+(p^-) \cap I^-(p^+)$.



Idea of the Proof in the Case of Quadratic Nonlinearity: Interaction of Singularities

We construct the earliest light observation set by producing artificial point sources in $I(p_-, p_+)$. The key is the singularities generated from nonlinear interaction of linear waves.

- We construct sources
 f so that the solution
 u has new singularities.
- We characterize the type of the singularities.
- We determine the order of the singularities and find the principal symbols.



Non-linear Geometrical Optics

Let
$$u = \varepsilon w_1 + \varepsilon^2 w_2 + \varepsilon^3 w_3 + \varepsilon^4 w_4 + E_\varepsilon$$
 satisfy
$$\Box_g u + a u^2 = f, \quad \text{in } M^0 = (-\infty, T) \times N,$$

$$u|_{(-\infty,0)\times N} = 0$$
 with $f = \varepsilon f_1$. When $Q = \Box_g^{-1}$, we have
$$w_1 = Qf,$$

$$w_2 = -Q(a w_1 w_1),$$

$$w_3 = 2Q(a w_1 Q(a w_1 w_1)),$$

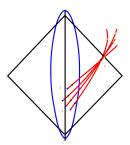
$$w_4 = -Q(a Q(a w_1 w_1) Q(a w_1 w_1)) -4Q(a w_1 Q(a w_1 w_1)),$$

$$||E_\varepsilon|| \le C\varepsilon^5.$$

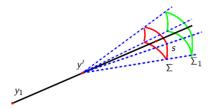
Non-linear Geometrical Optics

The product has, in a suitable microlocal sense, a principal symbol.

There is a lot of technology availale for the interaction analysis of conormal waves: intersecting pairs of conormal distributions (Melrose-U, 1979, Guillemin-U, 1981, Greenleaf-U, 1991).



Pieces of spherical waves



Consider solutions of $\Box_g u_1 = f_1$, where f_1 is a conormal distribution that is singular on $\{t_0\} \times \Sigma$. The solution u_1 is a distribution associated to two intersecting Lagrangian manifolds. We can control the width s of the wayes.

From $\square_g u_1 = f_1$ we have

$$u_1=\Box_g^{-1}f_1.$$

Thus,

$$\mathsf{WF} u_1 \subset \mathsf{WF} f_1 \cup \mathsf{\Lambda}_p(\mathsf{WF} f_1)$$

where

 $\Lambda_p(WFf_1) = \text{forward flow out by } H_p \text{ starting at } WFf_1 \text{ intersected with } \{p = 0\}.$

Here $p = \tau^2 - \sum g^{ij}(y)\xi_i\xi_j$.

 H_p is the Hamiltonian vector field.

Notice that $\{p = 0\}$ is the light cone.

Interaction of Waves in Minkowski Space \mathbb{R}^4

Let $x^j,\,j=1,2,3,4$ be coordinates such that $\{x^j=0\}$ are light-like. We consider waves

$$u_j(x) = v \cdot (x^j)_+^m, \quad (s)_+^m = |s|^m H(s), \quad v \in \mathbb{R}, j = 1, 2, 3, 4.$$

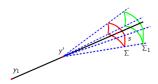
 $x^j = t - x \cdot \omega_j, \quad |\omega_j| = 1$

Waves u_j are conormal distributions, $u_j \in I^{m+1}(K_j)$, where

$$K_j = \{x^j = 0\}, j = 1, 2, 3, 4.$$

The interaction of the waves $u_j(x)$ produce new sources on

$$K_{12} = K_1 \cap K_2,$$
 $K_{123} = K_1 \cap K_2 \cap K_3 = \text{line},$
 $K_{1234} = K_1 \cap K_2 \cap K_3 \cap K_4 = \{q\} = \text{one point}.$



Interaction of Two Waves (Second order linearization)

If we consider sources $f_{\vec{\varepsilon}}(x) = \varepsilon_1 f_{(1)}(x) + \varepsilon_2 f_{(2)}(x)$, $\vec{\varepsilon} = (\varepsilon_1, \varepsilon_2)$, and the corresponding solution $u_{\vec{\varepsilon}}$, we have

$$W_2(x) = \frac{\partial}{\partial \varepsilon_1} \frac{\partial}{\partial \varepsilon_2} u_{\vec{\varepsilon}}(x)|_{\vec{\varepsilon}=0}$$

= $Q(a u_{(1)} \cdot u_{(2)}),$

where $Q = \square_{g}^{-1}$ and

$$u_{(j)}=Qf_{(j)}.$$

Recall that $K_{12} = K_1 \cap K_2 = \{x^1 = x^2 = 0\}$. Since the normal bundle N^*K_{12} contain only light-like directions $N^*K_1 \cup N^*K_2$,

$$singsupp(W_2) \subset K_1 \cup K_2$$
.

Thus no new interesting singularities are produced by the interaction of two waves (Greenleaf-U, 1991).

Three plane waves interact and produce a conic wave. (Bony, 1986, Melrose-Ritter, 1987, Rauch-Reed, 1982)

Interaction of Three Waves (Third order linearization)

If we consider sources $f_{\vec{\varepsilon}}(x) = \sum_{j=1}^{3} \varepsilon_{j} f_{(j)}(x)$, $\vec{\varepsilon} = (\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3})$, and the corresponding solution $u_{\vec{\varepsilon}}$, we have

$$W_{3} = \partial_{\varepsilon_{1}} \partial_{\varepsilon_{2}} \partial_{\varepsilon_{3}} u_{\varepsilon}|_{\vec{\varepsilon}=0}$$

$$= 4Q(a u_{(1)} Q(a u_{(2)} u_{(3)}))$$

$$+4Q(a u_{(2)} Q(a u_{(1)} u_{(3)}))$$

$$+4Q(a u_{(3)} Q(a u_{(1)} u_{(2)})),$$

where $Q = \Box_g^{-1}$. The interaction of the three waves happens on the line $K_{123} = K_1 \cap K_2 \cap K_3$.

The normal bundle N^*K_{123} contains light-like directions that are not in $N^*K_1 \cup N^*K_2 \cup N^*K_3$ and hence new singularities are produced.

Interaction of Four Waves (Fourth order linearization)

If we consider sources $f_{\vec{\varepsilon}}(x) = \sum_{j=1}^4 \varepsilon_j f_{(j)}(x)$, $\vec{\varepsilon} = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$, and the corresponding solution $u_{\vec{\varepsilon}}$, we have following. Consider

$$W_4 = \partial_{\varepsilon_1} \partial_{\varepsilon_2} \partial_{\varepsilon_3} \partial_{\varepsilon_4} u_{\vec{\varepsilon}}|_{\vec{\varepsilon}=0}.$$

Since $K_{1234} = \{q\}$ we have $N^*K_{1234} = T_q^*M$. Hence new singularities are produced and

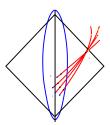
$$\mathsf{singsupp}(W_4) \subset (\cup_{j=1}^4 K_j) \cup \Sigma \cup \mathcal{L}_q^+ M,$$

where Σ is the union of conic waves produced by sources on K_{123} , K_{134} , K_{124} , and K_{234} . Moreover, $\mathcal{L}_q^+ M$ is the union of future going light-like geodesics starting from the point q.

Interaction of Four Waves

The 3-interaction produces conic waves (only one is shown below).

The 4-interaction produces a spherical wave from the point q that determines the light observation set $P_V(q)$.



Active and Passive Measurements

(M,g) (2+1)-dimensional, $\square_g u = u^3 + f$.

Idea (Kurylev-Lassas-U 2018, arXiv 2014): Using nonlinearity to create point sources in $I(p_-, p_+)$.

$$f = \sum_{i=1}^{3} \epsilon_i f_i, \quad u_i := \square_g^{-1} f_i.$$

Take f_i = conormal distribution, e.g.

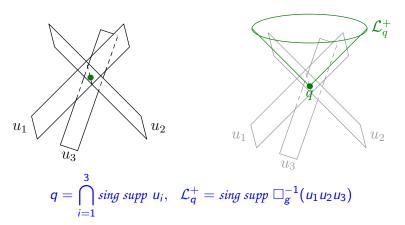
$$f_1(t,x) = (t-x_1)_+^{11} \chi(t,x), \quad \chi \in \mathcal{C}_c^{\infty}(\mathbb{R}^{1+2}).$$

Then

$$u \approx \sum \epsilon_i u_i + 6\epsilon_1 \epsilon_2 \epsilon_3 \Box_g^{-1} (u_1 u_2 u_3).$$

Generating Point Sources

non-linear interaction of conormal waves $u_i = \Box_g^{-1} f_i$: $\Box_g^{-1} (u_1 u_2 u_3)$



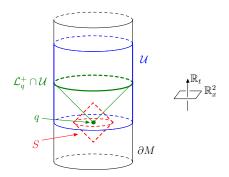
 \Rightarrow singularities of $\partial^3_{\epsilon_1\epsilon_2\epsilon_3} u$ give light observation sets \mathcal{L}_q^+

Further Developments

- Einstein's equations coupled with scalar fields (Kurylev-Lassas-U, 2013; Kurylev-Lassas-Oksanen-U, 2022)
- 2. Einstein-Maxwell's equations in vacuum (Lassas-U-Wang, 2017)
- 3. Einstein's equations (U-Wang, 2020)
- 4. Non-linear elasticity (de Hoop-U-Wang, 2020; U-Zhai, 2021)
- 5. Yang-Mills (Chen-Lassas-Oksanen-Paternain, 2021, 2022)
- 6. Inverse Scattering (Sa Barreto-U-Wang, 2022)
- 7. Semilinear equations (Kurylev-Lassas-U, 2018; Wang-U, 2018; Wang-Zhou, 2019; Hintz-U-Zhai, 2022; Stefanov-Sa Barreto, 2021; U-Zhang 2021; Hintz-U-Zhai, 2022)
- 8. Non-linear Acoustics (Acosta-U-Zhai, 2023; U-Zhang, 2023)

Boundary Light Observation Set

$$M = \{(t, x) \colon |x| < 1\} \subset \mathbb{R}^{1+2}.$$



Set of sources $S \subset M^{\circ}$.

Observations in $\mathcal{U} \subset \partial M$.

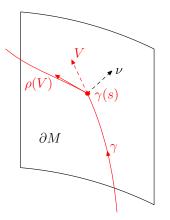
Data: $\mathscr{S} = \{\mathcal{L}_q^+ \cap \mathcal{U} \colon q \in S\}$

Theorem

The collection \mathcal{S} determines the topological, differentiable, and conformal structure $[g|_S] = \{fg|_S : f > 0\}$ of S.

Reflection at the Boundary

 γ null-geodesic until $\gamma(s) \in \partial M$.



 $\rho(V) = \text{reflection of } V \text{ across } \partial M. \text{ (Snell's law.)}$

 \rightarrow continuation of γ as broken null-geodesic

Null-convexity

Simplest case:

All null-geodesics starting in M° hit ∂M transversally. (1)

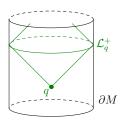
Proposition

(1) is equivalent to null-convexity of ∂M :

$$II(W, W) = g(\nabla_W \nu, W) \ge 0, \quad W \in T \partial M \text{ null.}$$

Stronger notion: strict null-convexity. (II(W, W) > 0, $W \neq 0$.)

Define light cones \mathcal{L}_q^+ using broken null-geodesics.



Main Result

Setup:

- ▶ (M,g) Lorentzian, dim ≥ 2 , strictly null-convex boundary
- existence of $t: M \to \mathbb{R}$ proper, timelike
- ▶ sources: $S \subset M^{\circ}$ with \bar{S} compact
- ▶ observations in $\mathcal{U} \subset \partial M$ open

Assumptions:

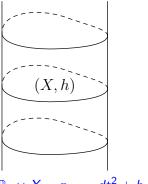
- 1. $\mathcal{L}_{q_1}^+ \cap \mathcal{U}
 eq \mathcal{L}_{q_2}^+ \cap \mathcal{U}$ for $q_1
 eq q_2 \in \bar{S}$
- 2. points in S and $\mathcal U$ are not (null-)conjugate

Theorem (Hintz-U, 2019)

The smooth manifold \mathcal{U} and the unlabelled collection $\mathscr{S} = \{\mathcal{L}_q^+ \cap \mathcal{U} : q \in S\} \subset 2^{\mathcal{U}}$ uniquely determine $(S, [g|_S])$ (topologically, differentiably, and conformally).

Example for (M, g)

(X, h) compact Riemannian manifold with boundary.

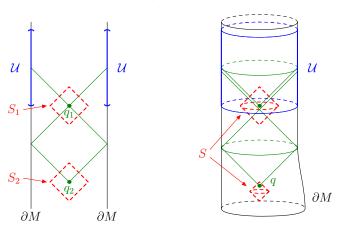


$$M = \mathbb{R}_t \times X, \quad g = -dt^2 + h.$$

(Strict) null-convexity of $\partial M \iff$ (strict) convexity of ∂X

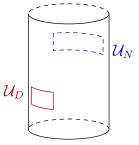
'Counterexamples'

Necessity of assumption 1. $(\mathcal{L}_{q_1}^+ \cap \mathcal{U} \neq \mathcal{L}_{q_2}^+ \cap \mathcal{U} \text{ for } q_1 \neq q_2 \in \bar{S})$



 S_1 and $S_1 \cup S_2$ are indistinguishable from \mathcal{U} .

Active Measurements for Boundary Value Problems



(Special case: $U_N = U_D$.)

Propagation of singularities: (strict) null-convexity assumption simplifies structure of null-geodesic flow. (Melrose 1975, Taylor 1975, Melrose–Sjöstrand 1978.)

Inverse Boundary Value Problem

Assume $M = \mathbb{R} \times N$ is a Lorentzian manifold of dimension (1+3) with time-like boundary.

$$\Box_g u(x) + a(x)u(x)^4 = 0, \quad \text{on } M,$$

$$u(x) = f(x), \quad \text{on } \partial M,$$

$$u(t, y) = 0, \quad t < 0,$$

Inverse Problem: determine the metric g and the coefficient a from the Dirichlet-to-Neumann map.

The Main Result

Theorem (Hintz-U-Zhai, 2022)

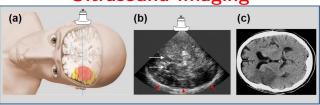
Consider the semilinear wave equations

$$\Box_{g^{(j)}} u(x) + a^{(j)} u(x)^4 = 0, \qquad j = 1, 2,$$

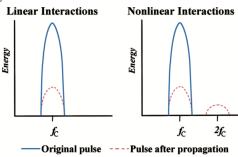
on Lorentzian manifold $M^{(j)}$ with the same boundary $\mathbb{R} \times \partial N$. If the Dirichlet-to-Neumann maps $\Lambda^{(j)}$ acting on $\mathcal{C}^5([0,T] \times \partial N)$ are equal, $\Lambda^{(1)} = \Lambda^{(2)}$, then there exist a diffeomorphism $\Psi \colon U_{g^{(1)}} \to U_{g^{(2)}}$ with $\Psi|_{(0,T) \times \partial N} = \mathcal{I}d$ and a smooth function $\beta \in C^\infty(M^{(1)})$, $\beta|_{(0,T) \times \partial N} = \partial_\nu \beta|_{(0,T) \times \partial N} = 0$, so that, in $U_{g^{(1)}}$,

$$\Psi^* g^{(2)} = e^{-2\beta} g^{(1)}, \quad \Psi^* a^{(2)} = e^{-\beta} a^{(1)}, \quad \Box_g e^{-\beta} = 0.$$

Ultrasound Imaging



Nonlinear interaction: waves at frequency f_C generate waves at frequency $2f_C$:



Inverse Boundary Value Problem

The acoustic waves are modeled by the Westervelt-type equation

$$\frac{1}{c^2(x)}\partial_t^2 p(t,x) - \beta(x)\partial_t^2 p^2(t,x) = \Delta p(t,x), \quad \text{in } (0,T) \times \Omega,$$
$$p(t,x) = f, \quad \text{on } (0,T) \times \partial \Omega,$$
$$p = \frac{\partial p}{\partial t} = 0, \quad \text{on } \{t = 0\},$$

- c: wavespeed
- $\triangleright \beta$: nonlinear parameter

Inverse problem: recover β from the Dirichlet-to-Neumann map Λ .

Second Order Linearization

Second order linearization and the resulted integral identity:

$$\int_{0}^{T} \int_{\partial\Omega} \frac{\partial^{2}}{\partial\epsilon_{1}\partial\epsilon_{2}} \Lambda(\epsilon_{1}f_{1} + \epsilon_{2}f_{2}) \Big|_{\epsilon_{1} = \epsilon_{2} = 0} f_{0} dS dt$$

$$= 2 \int_{0}^{T} \int_{\Omega} \beta(x) \partial_{t}(u_{1}u_{2}) \partial_{t}u_{0} dx dt.$$

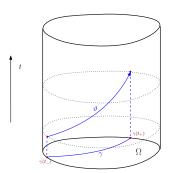
where u_i , j = 1, 2 are solutions to the linear wave equation

$$\frac{1}{c^2}\partial_t^2 u_i(t,x) - \Delta u_j(t,x) = 0$$

with $u_j|_{(0,T)\times\partial\Omega}=f_j$, and u_0 is the solution to the backward wave equation with $u_0|_{(0,T)\times\partial\Omega}=f_0$

Reduction to a Weighted Ray Transform

Construct Gaussian beam solutions u_0, u_1, u_2 traveling along the same null-geodesic $\vartheta(t)=(t,\gamma(t))$, where $\gamma(t), t\in(t_-,t_+)$ is the geodesic in (Ω,g) joining two boundary points $\gamma(t_-), \gamma(t_+)\in\partial\Omega$.



Insert into the integral identity, one can extract the Jacobi-weighted ray transform of $f=\beta c^{3/2} \Rightarrow$ invert this weighted ray transform (Paternain-Salo-U-Zhou, 2019; Feizmohammadi-Oksanen, 2020)

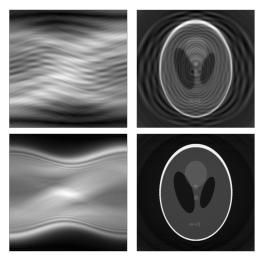


Figure: $L/\lambda=10$ (top row) and $L/\lambda=100$ (bottom row) where L is the size of the image and λ is the wavelength.

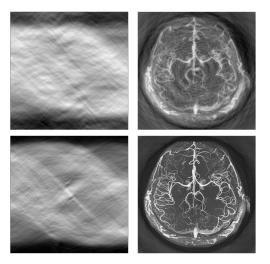


Figure: $L/\lambda=10$ (top row) and $L/\lambda=100$ (bottom row) where L is the size of the image and λ is the wavelength.

Happy Birthday, Maciej!

