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Nonlinear dispersive problems:

i0iu — A(Dyz)u = N(u), u(0) = ug

Characteristic set:
2= {7 +a(¢) = 0)
Group velocity:
ve = Vea(§)

Dispersive models:

Via(§) #0

Smooth nonlinearity:

Symmetries:
- Translation invariant

- (1D) phase rotation, u — ue.

Resonant /nonresonant interactions

Question: Are there global dispersive solutions for small initial data 7 J
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Examples of dispersion relations
o NLS: a(¢) = ¢2
o Klein-Gordon: a(¢) = (1 + £2)z
o KdV: a(€) = &3
o Deep gravity waves a(¢&) = |¢]2

e Capillary waves a(§) = |£|2

e Shallow gravity waves a(§) = \/ £| tanh |&|

o Shallow capillary waves: a(£) = /|¢|? tanh ||
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The nonlinearity
a) Classified by strength:

e semilinear (e.g. NLS3, KdV), Lipschitz dependence on data

@ quasilinear (e.g. water waves), continuous dependence on data

b) Classified by leading homogeneity:

@ quadratic,

N(u) = Q1(u,u) + Q2(u, u) + Qs(u, u)

@ cubic, e.g.
N(u) = C(u,u,u)

@ higher order

c¢) Classified by leading order nonlinear effect (cubic case):
@ defocusing

@ focusing
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Long-time/global dynamics

Linear effects: dispersive decay
VS.

Nonlinear effects: ode growth /oscillation

Key concept: Nonlinear wave interactions
@ resonant

@ nonresonant
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What is linear dispersion ?
©@ Fundamental solution:

K(t,z) =~ — ! eitov), v =1/t
tz|det V2a(&,)|

a' (&) = v, ¢’ (v) =&, (Legendre)
A1: t72 decay (for localized or L' data)

© Translation invariant bounds:

N

e Auolls < |luol| 2 (Strichartz)

N

(n+2) _2n_
L%, ISL W) L'L®(LPLw)
1 o1
lwaup||rz < |va —vB|™ 2 ||uaoll 2 lupol| L2 (bilinear L*, 1D)

A2: Strichartz + transversal L? bounds (for L? data)
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Why cubic nonlinearity ?

Quick answer: higher order = more decay from dispersion

@ Quadratic case:
» three wave interactions
» Resonant vs. nonresonant or null interactions
» Algebraically,
+3 £+ =X

» Nonresonant/null = normal form reduction to cubic

© Cubic case: (with phase rotation symmetry)
» four wave interactions

(€1,£2,83) = & = &1 — &o + &3, 0=A% =& -G+ -&4

» Resonance: same for time frequencies,

(a(£1)7 CL(£2), a(‘fB)) — CL(€4), 0= A4CL(§)

» Resonant interactions:

(1D) : A4§ — 07 A4CL(€) = 0= {51753} — {52754}
Many resonant interactions in higher dimensions.
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Trilinear wave packet interactions

u — C(u,u,u)

Equal frequencies:

(£:6,8) = ¢

Amplitude equation: .
iA=c(&,€6)AIA]?,

always nonperturbative on large time scales, at least in 1D.
Here c¢(£,€,&) € R prevents blow-up (exponential growth).

Two assumptions on the symbol of C:

@ Comservative: c(£,&,£), Ve(,6,€) €R

— Wave packet interactions do not increase energy

© Focusing vs. defocusing:
— determined by the sign of ¢(&, &, €)
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Semilinear vs quasilinear

Semilinear example:
i0su + Au = Fulul?

e Can directly use dispersive decay (Strichartz)
@ Nonlinearity is perturbative
@ Lipschitz dependence of solutions on data

@ sign choice corresponds to focusing/defocusing
Quasilinear example:

i0pu + ¢7% (u)0;0u = 0, g(u) = I, + O(Jul?)

@ No access to dispersive decay (Strichartz)
@ Nonlinearity is nonperturbative

@ Continuous dependence of solutions on data
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A brief history of global solutions

@ Classical:
Conserved energy + LWP = GWP

» no dispersive decay information

© Modern (semilinear):

Strichartz = GWP + scattering (small data)
by b/,
6
ScI8 L5y
» requires quintic or higher nonlinearity in 1D |,
cubic and higher nonlinearity in 2D

© Contemporary:

nD Small and localized data = GWP with ¢~ 2 decay

» conservative cubic nonlinearity (1D)
» vector field methods
» 1D expository notes Ifrim-T. ’22
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Our set-up for the global problem

e Small data
» dispersion has time to kick in

@ Nonlocalized data

» nonlinear interactions at every location

@ Rough data

» nonlinear interactions at every scale

@ Cubic nonlinearity

» stronger than dispersion in 1D (semilinear, quasilinear)
» balances dispersion in 2D (quasilinear)

GWP conjectures

May 27, 2024 11 /39




The non-localized data defocusing global
well-posedness conjecture in 1D:

Assume:

e 1D dispersive problem

e cubic nonlinearity which is conservative and defocusing

Then:

Small data = global dispersive solutions.
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The non-localized data (focusing) long time
well-posedness conjecture 1D:

Assume:

e 1D dispersive problem

@ cubic nonlinearity which is conservative

Then:

e-small data = long time ¢~® dispersive solutions.
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The non-localized data global well-posedness
conjecture in 2D:

Assume:

e Dispersive quasilinear problem

e cubic nonlinearity

Then:

Small data = global scattering solutions.
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Scattering

Classical formulation: Given a nonlinear solution .., there exists a
linear solution wy;,, so that

t1i>11c;lo Hunonlin(t) — Ulin (t)HHS =0

1D cubic problem

@ No classical scattering can hold
@ Dispersive decay:

» L° Strichartz estimates, with loss of derivatives.
» bilinear L? estimates, without loss of derivatives

2D cubic problem

@ Classical scattering should hold
@ Dispersive decay:

» L* Strichartz estimates, with loss of derivatives.
» bilinear L? estimates, without loss of derivatives
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A semilinear result (1D defocusing)
Theorem (Ifrim-T. '22)

10w+ Au = C(u, u, u), u(0) = ug

Suppose the nonlinearity C is cubic, conservative and defocusing. Then

for small initial data luol|z2 < e <1

there exists a unique global solution u so that
lullperz S € (Energy)

lu(®)|| s < €3 (Strichartz)

|PauPpulz2 < d(vA,vB)_%e2 (bilinear L*)

@ First result of this type

@ Nno energy conservation is assumed

@ global dispersive bounds are obtained

@ work in progress: general dispersion relations
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A special case: defocusing NLS?(R)
i0y + Au = ulul?

e Globally well-posed in L?.

@ Completely integrable = Conserved energies

Theorem

L? solutions satisfy the Strichartz bound
lullzs < lluollr2
and the bilinear L? bound

|0z [ul”| _y Slluollzz,  e=lluollz:

cl24+H

Earlier dispersive bounds for H' solutions by Planchon-Vega.
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A semilinear result (focusing case)
Theorem (Ifrim-T. '22)

10w+ Au = C(u, u, u), u(0) = ug

Suppose the nonlinearity C is cubic and conservative. Then for small
initial data

luol|z2 < e < 1

there exists a solution u in [0, %] so that

HUHLOO[O,G_S;LQ] 5 ¢ (Energy)

and also on €9 time intervals we have:

wIN

|w(®)||re S € (Strichartz)

|PauPpul|z2 < d(va,vp) 22 (bilinear L*)

@ Sharp result, because of the existence of small solitons.
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A quasilinear Schrodinger model

(dug + ¢7F(u)0;0ku = N(u, Opu), u:RxR* —C
\ (QNLS)

\ u((),a;) — uo(x)

@ g = g(u,u) smooth, real valued, g(0) = 1.

@ N = N(u,u,0u,0u) is smooth, complex valued, at most quadratic
in Ou.

Cdug + ¢7% (u, Opu)0;0ku = N(u,0pu), u:R xR —C
< (DQNLS)
\ u(0, ) = up(z)
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Structural assumptions

1. Cubic nonlinearity:
@ g — I is at least quadratic

@ N is at least cubic

2. Phase rotation symmetry:

o u — ue.

10w + Au = C'(u, 4, u) + higher order

3. Conservative nonlinearity:

° c(£,£,6),Ve(£, 6,6 eR.

4. Defocusing:

° c(£,£,€) 2 (6)?
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Sharp local well-posedness 1D
Theorem (Ifrim-T. ’23)

a) The 1D cubic (QNLS) is locally well-posed for small data in H® for
s > 1, and the solutions satisfy

Q@ Uniform H?® bounds
© Loss-less Strichartz estimates
@ Transversal bilinear L? bounds.
b) The same result holds for the cubic (DQNLS) for s > 2.

o Scaling index s, = 3 (QNLS) (resp. s, = 3 (DQNLS))
@ Regular sols with localized data Kenig-Ponce-Vega 04

@ Rough sols with s > 2 (resp s > 3) Marzuola-Metcalfe-Tataru '14
e Should be generically ill-posed below H' (resp. H?):
» comparison with NLS? below L.

Other remarks:
o difference between quadratic and cubic problems (Mizohata, Doi)
o difference between small and large data [KPV], [MMT]
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Sharp local well-posedness 2D+
Theorem (Ifrim-T. '24)

a) The nD cubic (QNLS) s locally well-posed for small data in H® for
s > ”H, and the solutions satisfy

Q@ Uniform H?® bounds
@ L* Strichartz estimates with 1/6(no) derivative loss (2D) (3D+).

@ Transversal bilinear L? bounds.
b) The same result holds for the cubic (DQNLS) for s > 242

o Scaling index s, = £ (resp. s. = 242)

@ Regular sols with localized data Kenig-Ponce-Vega '04

o Rough sols s > 22 (resp s > 22) Marzuola-Metcalfe-Tataru 14
n+1 n+3
):

@ Should be genencally ill-posed below H 2 (resp. H 2

» failure of nontrapping requirement
Other remarks:

o difference between quadratic and cubic problems (Mizohata, Doi)

o difference between small and large data, nontrapping [KRV], IMMT]
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Quasilinear local well-posedness

[Enhanced| Hadamard local well-posedness in Sobolev spaces
u(0) € H?

@ existence of solutions w in the class C(0,T; H?)

@ uniqueness of solutions, either directly for regular solutions, or as
unique limits of smooth solutions

@ continuous dependence in H?, i.e. continuity of the data to

solution map
H’° > u(0) - ueC0,T; H)

@ weak Lipschitz dependence, i.e. for two H?® solutions v and v we
have the difference bound

lu —vlcorrzy) S |w0) —v(0)]| L2
o higher regularity, ug € HY = u € C(H")

GWP conjectures

May 27, 2024 23 / 39




Defocusing global well-posedness 1D

Theorem (Ifrim-T. ’23)

a) Consider the cubic (QNLS) with phase rotation symmetry,
conservative and defocusing. Let s > 1. Then for small initial data

Juol|rs < e<k1

there exists a unique global solution u which satisfies
Q@ Uniform H® bounds

@ LY Strichartz estimates with 1/6 derivative loss.

@ Transversal bilinear L? bounds (loss-less).

@ First proof of the defocusing GWP conjecture in a quasilinear
setting.

@ Sharp result in terms of regularity

e Global in time integrated decay bounds (“scattering” )
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Focusing long time well-posedness

Theorem (Ifrim-T. ’23)

a) Consider the cubic (QNLS) with phase rotation symmetry, and
conservative. Let s > 1. Then for small initial data

luollzrs < e <1

there exists a unique global solution u in [0, e8] which satisfies
Q@ Uniform H® bounds

@ Strichartz estimates with 1/6 derivative loss on € ° time scale

@ Transversal bilinear L? bounds (loss-less) on €9 timescale.

@ First quasilinear proof of the focusing long time WP conjecture.

@ Sharp result in terms of regularity.

@ Sharp result in terms of time scales (small solitons).
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Global well-posedness 2D+

Theorem (Ifrim-T. ’24)

a) Consider the 2+D cubic (QNLS) Let s > 2L (n>3) or
s> 1 (n=2). Then for small initial data

|uo||lgs < ekl

there exists a unique global solution u which satisfies
Q@ Uniform H?® bounds
@ L* Strichartz estimates with 1/2(no) derivative loss (2D) (3D+).
@ Transversal bilinear L? bounds (loss-less).
@ Scattering in H?.

@ First proof of the 2D GWP conjecture in a quasilinear setting.
@ Sharp result in terms of regularity, n > 3

e Global in time integrated decay bounds (“scattering” )
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Global well-posedness 2D, Take 2

Theorem (Ifrim-T. ’24)

a) Consider the 2D cubic (QNLS), conservative. Let s > ”H — %
Then for small initial data

|uo||rs < ekl

there exists a unique global solution u which satisfies
Q@ Uniform H?® bounds
@ L* Strichartz estimates with 1/2 derivative loss.

@ Transversal bilinear L? bounds (loss-less).
@ Scattering in H?.

@ First proof of the 2D GWP conjecture at sharp Sobolev regularity.

@ Sharp result in terms of regularity

@ Global in time integrated decay bounds
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Five key ideas

@ Bootstrap argument via frequency envelopes
» associated to a dyadic frequency decomposition

@ Energy estimates via density flux identities.

» carried out in a nonlocal setting, where both the densities and the
fluxes involve translation invariant multilinear forms.

© Modified energies, akin to the I-method.

» we implement this at the level of density-flux identities, rather than
for energy functionals

@ Interaction Morawetz bounds.
» extended to the setting and language of nonlocal multilinear forms.

@ Strichartz estimates.

» 1D: via wave packet parametrices, peeling off “perturbative” errors
» nD global: by comparison with flat metric, with derivative loss
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The Littlewood-Paley decomposition

Dichotomy for multilinear forms:
o parallel interactions — rely on L® Strichartz (L* if n > 2)

@ transverse interactions — rely on bilinear L?

Dyadic frequency decomposition:

U = § uy,

Ae2N

size of LP regions dictated by the Hamilton flow.
Goal:

@ estimate each wu) separately

@ estimate bilinear interactions
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A collection of related equations

Full equation: |
iug + 7% (1)0;0,u = N (u, Opu). (QNLS)

Linearized equation:
vy + g% (u)0;0,v = N (u)v. (QNLS-lin)
Paradifferential equation:
iwxe + 9;97% (uer)Opwy = fi (QNLS-para)
Full equation in paradifferential form,
iy + 0597 (uey)Opuy = Ny (u, Opu) (QNLS)
Linearized equation in paradifferential form

ivne + 0567 (uey)Opvn = N (u)v. (QNLS-lin)
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A collection of related equations

Full equation: |
iug + 7% (1)0;0,u = N (u, Opu). (QNLS)

Linearized equation:
vy + g% (u)0;0,v = N (u)v. (QNLS-lin)
Paradifferential equation:
iwxe + 9;97% (uer)Opwy = fi (QNLS-para)
Full equation in paradifferential form, long time analysis
e + 05977 (uey)Opuy = NV (u, Opus) + C(u, 4, u) (QNLS)
Linearized equation in paradifferential form

ivne + 0567 (uey)Opvn = N (u)v. (QNLS-lin)
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Frequency envelopes

-introduced by Tao to track the time evolution of dyadic energies
e Start with frequency envelope {cy} € £? for the initial data
luox||ms < e

@ Show that similar bounds carry over to solutions
e Key assumption on c: slowly varying, to control nonlinear leakage.

CA<(A+M)5.
Cu ~ \ M A

(energy) lurllpoorz S CeexA™

Bootstrap hypothesis 1D:

(unbalanced bilinear) Hu;ﬁhHLQ < 0262@\6”)\_5__# ° << A
(balanced bilinear) |0, (u>\u N2 S C*eeacy A st3 21 °(14Ah), A= u

(Strichartz) lua()|lre < CeexA ™5+ s

- bootstraping both Strichartz and bilinear: Ifrim-T., Benjamin-Ono
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GWP conjectures

Frequency envelopes

-introduced by Tao to track the time evolution of dyadic energies
e Start with frequency envelope {cy} € £? for the initial data
luox||ms < e

@ Show that similar bounds carry over to solutions
e Key assumption on c: slowly varying, to control nonlinear leakage.

CA<(A+M)5.
Cu ~ \ M A

(energy) lurllzoorz S CecnxA™

Bootstrap hypothesis nD:

(unbalanced bilinear) HuAﬂhHLz < CPefeacy A S_E,LL_S+”T_1 pn<< A
(balanced bi) |||Dy| 2" (ur@®)[| 2 S C2e2enc, A3~ (14Ah), pa A

(Strichartz) lua()| s < CecaxA ™t T

- bootstraping both Strichartz and bilinear: Ifrim-T., Benjamin-Ono
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Conservation laws in density flux form

e Integral laws in linear/nonlinear case:

d
M:/\u|2dx, EM:/Cﬁz(u,ﬂ,u,ﬂ) dx

@ Well chosen mass/momentum densities

M:/M(u,ﬂ)da:, P:/P(u,ﬂ)daﬁ
@ Density flux identities in linear /nonlinear case:

oM (u, 1) = Op[gP(u,w)] + C* (u, w, u, )

O P(u,u) = 0z |gF(u,u)| + C’;L(u, U, u, )
@ Frequency localized density-flux identities:

Ot My (u, ) = Op|gerPa(u,u)] + C’fmA(u, u, u, )

Ot Py (u, 1) = Oz[gexEx(u,u)] + 047>\(u, U, u, )
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Energy corrections for long time results 1D, 2D

& second generation I-method: correct energies for better conservation
(I-team:=Colliander-Keel-Stafillani- Takaoka-Tao)
O better strategy: correct densities and fluxes

@ (Quartic energy correction
Mﬁ( ) MA( )—I—Bim(u,ﬂ,u,ﬁ),

P)ﬁ\(uv ’L_L) — P)\(uvﬂ) + Bip(uﬂﬂv u, ’L_L),

@ Density-flux identities:

O M = 9,(Py + R}, + F4”"“+R

4 4, 6
O P; = 0.(Ex+ R} ,) + Fy" + RS,
» This requires solving a nontrivial division problem,
C4 _ A4€2 ) b4 i A4£ . ,r4 i (godd . geven)2q4,n’r

» Energy bounds follow by direct integration
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Bilinear L? estimates

- cannot use linear theory, as (i) problem is quasilinear and
(ii) nonlinearity is nonperturbative
- Nonlinear idea: Interaction Morawetz

@ introduced by I-team ’03 for 3D NLS
@ one dimensional version by Planchon-Vega

Baby version: u,v > 0 densities
Oru = 0 f, moves to the left f > 0

Oyv = 0,9, moves to the right g < 0

Interaction functional;

I(u,v) = /< u(x)v(y) dadt

dl
— = / fv—ugdx >0 (transversality bound)
R
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Dispersive Interaction Morawetz 1D

“momentum is moving to the right faster than the mass” )

@ Interaction Morawetz functional, diagonal case:
Hunan) = [ Mi(@)Piy) — Mi(0)Pi(x) dody
r<y

Time differentiation:

d
— I (ux,un) & [ 0u(uniia )| + [lualzs + Errors (6,8,10)

- used to prove the LY Strichartz and diagonal bilinear L?.

© Transversal Interaction Morawetz functional:
Iunu) = [ Mi(@)Piy) - M) Ph(e) dady
r<y

Time differentiation:

d
—T(ux, ) 2 || 0x (uiy)||7 + Errors (6,8,10)

- used to prove the off-diagonal bilinear L? bound.

GWP conjectures

May 27, 2024 35 /39




Dispersive Interaction Morawetz nD

@ Interaction Morawetz functional, diagonal case:

Iunu) = [ ajo — )M @)P ) - M) P (@) ddy

aj(2) = dja(z),  alz) = |z|.

Time differentiation:

d .
Sy up) / ajk(x — y)F FEdady + Frrors (6.8,10)

FI(z,y) = P ux(x)ux(y) + ur(x)d ur(y)
- used to prove the balanced bilinear L?.

© 'Transversal Interaction Morawetz functional:

Iun) = [ aj(e = (M) PR (y) ~ M) P (@) dady

» Time differentiation as above.
» used to prove the unbalanced bilinear L? bound.
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Lossless Strichartz estimates 1D
Established at the level of the paradifferential equation:

iwxt + 0pg(Ucr)Opwy = fi, w(0) = wo (QNLS-para)

Main challenge: variable coefficient problem

SE with derivative loss: from sharp SE on semiclassical time scales
(Staffilani-Tataru 02, Burq-Gerard-Tzvetkov ’06, etc.)

SE without loss on asymptotically flat spaces (Robbiano-Zuily 06,
Hassell-Tao-Wunsch ’06, Tataru 07 )

All the above require at least C? coefficients. Here, g —1 € L H!* |

Key ideas:

GWP conjectures

flatten metric with change of coordinates

use equation for u

allow for a large class of source terms f)

use bilinear L? estimates

use wave packet parametrix (Marzuola-Metcalfe-Tataru)
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Summary

@ new global well-posedness conjectures for

» 1D cubic defocusing problems with nonlocalized data
» 2D+ cubic quasilinear problems with nonlocalized data

@ first 1D global well-posedness results

» semilinear NLS
» quasilinear NLS

@ first 2D quasilinear global well-posedness result
» quasilinear NLS

@ new, sharp local well-posedness results in all dimensions

@ global well-posedness holds at optimal regularity (same as in the
local result)
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Happy birthday Maciej !




