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Nonlinear dispersive problems:

i@tu�A(Dx)u = N(u), u(0) = u0

Characteristic set:

⌃ = {⌧ + a(⇠) = 0}

Group velocity:

v⇠ = r⇠a(⇠)

Dispersive models:

r2
⇠
a(⇠) 6= 0

Smooth nonlinearity:

N(u) = N(u, ū)

Symmetries:

- Translation invariant

- (1D) phase rotation, u ! uei✓.

Resonant/nonresonant interactions

Question: Are there global dispersive solutions for small initial data ?
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Examples of dispersion relations

NLS: a(⇠) = ⇠2

Klein-Gordon: a(⇠) = (1 + ⇠2)
1
2

KdV: a(⇠) = ⇠3

Deep gravity waves a(⇠) = |⇠|
1
2

Capillary waves a(⇠) = |⇠|
3
2

Shallow gravity waves a(⇠) =
p

|⇠| tanh |⇠|

Shallow capillary waves: a(⇠) =
p

|⇠|3 tanh |⇠|
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The nonlinearity

a) Classified by strength:

semilinear (e.g. NLS3, KdV), Lipschitz dependence on data

quasilinear (e.g. water waves), continuous dependence on data

b) Classified by leading homogeneity:

quadratic,

N(u) = Q1(u, u) +Q2(u, ū) +Q3(ū, ū)

cubic, e.g.
N(u) = C(u, ū, u)

higher order

c) Classified by leading order nonlinear e↵ect (cubic case):

defocusing

focusing
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Long-time/global dynamics

Linear e↵ects: dispersive decay

vs.

Nonlinear e↵ects: ode growth /oscillation

Key concept: Nonlinear wave interactions

resonant

nonresonant
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What is linear dispersion ?

1 Fundamental solution:

K(t, x) ⇡ 1

t
n
2 | detr2a(⇠v)|

1
2

eit�(v), v = x/t

a0(⇠v) = v, �0(v) = ⇠v (Legendre)

A1: t�
n
2 decay (for localized or L1 data)

2 Translation invariant bounds:

keitAu0kS . ku0kL2 (Strichartz)
.#&

L1L2 L6(L
2(n+2)

n ) L4L1(L2L
2n
n�2 )

kuAuBkL2 . |vA � vB|�
1
2 kuA0kL2kuB0kL2 (bilinear L2, 1D)

A2: Strichartz + transversal L2 bounds (for L2 data)
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Why cubic nonlinearity ?

Quick answer: higher order ) more decay from dispersion

1 Quadratic case:
I three wave interactions
I Resonant vs. nonresonant or null interactions
I Algebraically,

±⌃± ⌃ ! ⌃

I Nonresonant/null ) normal form reduction to cubic

2 Cubic case: (with phase rotation symmetry)
I four wave interactions

(⇠1, ⇠2, ⇠3) ! ⇠4 = ⇠1 � ⇠2 + ⇠3, 0 = �4⇠ := ⇠1 � ⇠2 + ⇠3 � ⇠4

I Resonance: same for time frequencies,

(a(⇠1), a(⇠2), a(⇠3)) ! a(⇠4), 0 = �4a(⇠)

I Resonant interactions:

(1D) : �4⇠ = 0, �4a(⇠) = 0 ) {⇠1, ⇠3} = {⇠2, ⇠4}

Many resonant interactions in higher dimensions.
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Trilinear wave packet interactions

u ! C(u, ū, u)

Equal frequencies:
(⇠, ⇠, ⇠) ! ⇠

Amplitude equation:
iȦ = c(⇠, ⇠, ⇠)A|A|2,

always nonperturbative on large time scales, at least in 1D.
Here c(⇠, ⇠, ⇠) 2 R prevents blow-up (exponential growth).

Two assumptions on the symbol of C:

1 Conservative: c(⇠, ⇠, ⇠),rc(⇠, ⇠, ⇠) 2 R
! Wave packet interactions do not increase energy

2 Focusing vs. defocusing:
! determined by the sign of c(⇠, ⇠, ⇠)
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Semilinear vs quasilinear

Semilinear example:
i@tu+�u = ±u|u|2

Can directly use dispersive decay (Strichartz)

Nonlinearity is perturbative

Lipschitz dependence of solutions on data

sign choice corresponds to focusing/defocusing

Quasilinear example:

i@tu+ gjk(u)@j@ku = 0, g(u) = In +O(|u|2)

No access to dispersive decay (Strichartz)

Nonlinearity is nonperturbative

Continuous dependence of solutions on data
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A brief history of global solutions

1 Classical:
Conserved energy + LWP ) GWP

I no dispersive decay information

2 Modern (semilinear):

Strichartz ) GWP+ scattering (small data)

S ⇢ L6 N�! L
6
5 ⇢ S0

I requires quintic or higher nonlinearity in 1D ,
cubic and higher nonlinearity in 2D

3 Contemporary:

nD Small and localized data ) GWP with t�
n
2 decay

I conservative cubic nonlinearity (1D)
I vector field methods
I 1D expository notes Ifrim-T. ’22
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Our set-up for the global problem

Small data
I dispersion has time to kick in

Nonlocalized data
I nonlinear interactions at every location

Rough data
I nonlinear interactions at every scale

Cubic nonlinearity
I stronger than dispersion in 1D (semilinear, quasilinear)
I balances dispersion in 2D (quasilinear)
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The non-localized data defocusing global

well-posedness conjecture in 1D:

Assume:

1D dispersive problem

cubic nonlinearity which is conservative and defocusing

Then:

Small data =) global dispersive solutions.
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The non-localized data (focusing) long time

well-posedness conjecture 1D:

Assume:

1D dispersive problem

cubic nonlinearity which is conservative

Then:

✏-small data =) long time ✏�8
dispersive solutions.
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The non-localized data global well-posedness

conjecture in 2D:

Assume:

Dispersive quasilinear problem

cubic nonlinearity

Then:

Small data =) global scattering solutions.
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Scattering

Classical formulation: Given a nonlinear solution unonlin there exists a
linear solution ũlin so that

lim
t!1

kunonlin(t)� ũlin(t)kHs = 0

1D cubic problem

No classical scattering can hold

Dispersive decay:
I L6 Strichartz estimates, with loss of derivatives.
I bilinear L2 estimates, without loss of derivatives

2D cubic problem

Classical scattering should hold

Dispersive decay:
I L4 Strichartz estimates, with loss of derivatives.
I bilinear L2 estimates, without loss of derivatives

GWP conjectures May 27, 2024 15 / 39



A semilinear result (1D defocusing)

Theorem (Ifrim-T. ’22)

i@tu+�u = C(u, ū, u), u(0) = u0

Suppose the nonlinearity C is cubic, conservative and defocusing. Then
for small initial data ku0kL2  ✏ ⌧ 1

there exists a unique global solution u so that

kukL1L2 . ✏ (Energy)

ku(t)kL6 . ✏
2
3 (Strichartz)

kPAuPBukL2 . d(vA, vB)
� 1

2 ✏2 (bilinear L2)

First result of this type
no energy conservation is assumed
global dispersive bounds are obtained
work in progress: general dispersion relations
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A special case: defocusing NLS3
(R)

i@t +�u = u|u|2

Globally well-posed in L2.

Completely integrable ) Conserved energies

Theorem

L2 solutions satisfy the Strichartz bound

kukL6 . ku0kL2

and the bilinear L2 bound

k@x|u|2k
cL2+Ḣ

� 1
2
. ku0k2L2 , c = ku0kL2

Earlier dispersive bounds for H1 solutions by Planchon-Vega.
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A semilinear result (focusing case)

Theorem (Ifrim-T. ’22)

i@tu+�u = C(u, ū, u), u(0) = u0

Suppose the nonlinearity C is cubic and conservative. Then for small
initial data

ku0kL2  ✏ ⌧ 1

there exists a solution u in [0, ✏�8] so that

kukL1[0,✏�8;L2] . ✏ (Energy)

and also on ✏�6 time intervals we have:

ku(t)kL6 . ✏
2
3 (Strichartz)

kPAuPBukL2 . d(vA, vB)
� 1

2 ✏2 (bilinear L2)

Sharp result, because of the existence of small solitons.
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A quasilinear Schrödinger model

8
<

:

iut + gjk(u)@j@ku = N(u, @xu), u : R⇥ Rn ! C

u(0, x) = u0(x)
(QNLS)

g = g(u, ū) smooth, real valued, g(0) = 1.

N = N(u, ū, @u, @ū) is smooth, complex valued, at most quadratic
in @u.

8
<

:

iut + gjk(u, @xu)@j@ku = N(u, @xu), u : R⇥ Rn ! C

u(0, x) = u0(x)
(DQNLS)
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Structural assumptions

1. Cubic nonlinearity:

g � I is at least quadratic

N is at least cubic

2. Phase rotation symmetry:

u ! uei✓.

i@tu+�u = C(u, ū, u) + higher order

3. Conservative nonlinearity:

c(⇠, ⇠, ⇠),rc(⇠, ⇠, ⇠) 2 R.

4. Defocusing:

c(⇠, ⇠, ⇠) & h⇠i2
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Sharp local well-posedness 1D

Theorem (Ifrim-T. ’23)

a) The 1D cubic (QNLS) is locally well-posed for small data in Hs for
s > 1, and the solutions satisfy

1 Uniform Hs bounds

2 Loss-less Strichartz estimates

3 Transversal bilinear L2 bounds.

b) The same result holds for the cubic (DQNLS) for s > 2.

Scaling index sc =
1
2 (QNLS) (resp. sc =

3
2 (DQNLS))

Regular sols with localized data Kenig-Ponce-Vega ’04
Rough sols with s > 2 (resp s > 3) Marzuola-Metcalfe-Tataru ’14
Should be generically ill-posed below H1 (resp. H2):

I comparison with NLS3 below L2.

Other remarks:
di↵erence between quadratic and cubic problems (Mizohata, Doi)
di↵erence between small and large data [KPV], [MMT]
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Sharp local well-posedness 2D+

Theorem (Ifrim-T. ’24)

a) The nD cubic (QNLS) is locally well-posed for small data in Hs for
s > n+1

2 , and the solutions satisfy

1 Uniform Hs bounds

2 L4 Strichartz estimates with 1/6(no) derivative loss (2D) (3D+).

3 Transversal bilinear L2 bounds.

b) The same result holds for the cubic (DQNLS) for s > n+3
2 .

Scaling index sc =
n

2 (resp. sc =
n+2
2 )

Regular sols with localized data Kenig-Ponce-Vega ’04
Rough sols s > n+3

2 (resp s > n+5
2 ) Marzuola-Metcalfe-Tataru ’14

Should be generically ill-posed below H
n+1
2 (resp. H

n+3
2 ):

I failure of nontrapping requirement

Other remarks:
di↵erence between quadratic and cubic problems (Mizohata, Doi)
di↵erence between small and large data, nontrapping [KPV], [MMT]
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Quasilinear local well-posedness

[Enhanced] Hadamard local well-posedness in Sobolev spaces

u(0) 2 Hs

existence of solutions u in the class C(0, T ;Hs)

uniqueness of solutions, either directly for regular solutions, or as
unique limits of smooth solutions

continuous dependence in Hs, i.e. continuity of the data to
solution map

Hs 3 u(0) ! u 2 C(0, T ;Hs)

weak Lipschitz dependence, i.e. for two Hs solutions u and v we
have the di↵erence bound

ku� vkC(0,T ;L2) . ku(0)� v(0)kL2

higher regularity, u0 2 HN ) u 2 C(HN )
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Defocusing global well-posedness 1D

Theorem (Ifrim-T. ’23)

a) Consider the cubic (QNLS) with phase rotation symmetry,
conservative and defocusing. Let s > 1. Then for small initial data

ku0kHs  ✏ ⌧ 1

there exists a unique global solution u which satisfies

1 Uniform Hs bounds

2 L6 Strichartz estimates with 1/6 derivative loss.

3 Transversal bilinear L2 bounds (loss-less).

First proof of the defocusing GWP conjecture in a quasilinear
setting.

Sharp result in terms of regularity

Global in time integrated decay bounds (“scattering” )
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Focusing long time well-posedness

Theorem (Ifrim-T. ’23)

a) Consider the cubic (QNLS) with phase rotation symmetry, and
conservative. Let s > 1. Then for small initial data

ku0kHs  ✏ ⌧ 1

there exists a unique global solution u in [0, ✏�8] which satisfies

1 Uniform Hs bounds

2 Strichartz estimates with 1/6 derivative loss on ✏�6 time scale

3 Transversal bilinear L2 bounds (loss-less) on ✏�6 timescale.

First quasilinear proof of the focusing long time WP conjecture.

Sharp result in terms of regularity.

Sharp result in terms of time scales (small solitons).
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Global well-posedness 2D+

Theorem (Ifrim-T. ’24)

a) Consider the 2+D cubic (QNLS) Let s > n+1
2 (n � 3) or

s � 7
4 (n = 2). Then for small initial data

ku0kHs  ✏ ⌧ 1

there exists a unique global solution u which satisfies

1 Uniform Hs bounds

2 L4 Strichartz estimates with 1/2(no) derivative loss (2D) (3D+).

3 Transversal bilinear L2 bounds (loss-less).

4 Scattering in Hs.

First proof of the 2D GWP conjecture in a quasilinear setting.

Sharp result in terms of regularity, n � 3

Global in time integrated decay bounds (“scattering” )
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Global well-posedness 2D, Take 2

Theorem (Ifrim-T. ’24)

a) Consider the 2D cubic (QNLS), conservative. Let s > n+1
2 = 3

2 .
Then for small initial data

ku0kHs  ✏ ⌧ 1

there exists a unique global solution u which satisfies

1 Uniform Hs bounds

2 L4 Strichartz estimates with 1/2 derivative loss.

3 Transversal bilinear L2 bounds (loss-less).

4 Scattering in Hs.

First proof of the 2D GWP conjecture at sharp Sobolev regularity.

Sharp result in terms of regularity

Global in time integrated decay bounds
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Five key ideas

1 Bootstrap argument via frequency envelopes
I associated to a dyadic frequency decomposition

2 Energy estimates via density flux identities.
I carried out in a nonlocal setting, where both the densities and the

fluxes involve translation invariant multilinear forms.

3 Modified energies, akin to the I-method.
I we implement this at the level of density-flux identities, rather than

for energy functionals

4 Interaction Morawetz bounds.
I extended to the setting and language of nonlocal multilinear forms.

5 Strichartz estimates.
I 1D: via wave packet parametrices, peeling o↵ “perturbative” errors
I nD global: by comparison with flat metric, with derivative loss
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The Littlewood-Paley decomposition

Dichotomy for multilinear forms:

parallel interactions �! rely on L6 Strichartz (L4 if n � 2)

transverse interactions �! rely on bilinear L2

Dyadic frequency decomposition:

u =
X

�22N
u�,

size of LP regions dictated by the Hamilton flow.

Goal:

estimate each u� separately

estimate bilinear interactions
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A collection of related equations

Full equation:
iut + gjk(u)@j@ku = N(u, @xu). (QNLS)

Linearized equation:

ivt + gjk(u)@j@kv = N lin(u)v. (QNLS-lin)

Paradi↵erential equation:

iw�t + @jg
jk(u<�)@kw� = f� (QNLS-para)

Full equation in paradi↵erential form,

long time analysis

iu�t + @jg
jk(u<�)@ku� = N

nr

�
(u, @xu)

+ C�(u, ū, u)

(QNLS)

Linearized equation in paradi↵erential form

iv�t + @jg
jk(u<�)@kv� = N lin

�
(u)v. (QNLS-lin)
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Frequency envelopes

-introduced by Tao to track the time evolution of dyadic energies

Start with frequency envelope {c�} 2 `2 for the initial data

ku0�kHs . ✏c�

Show that similar bounds carry over to solutions

Key assumption on c: slowly varying, to control nonlinear leakage.

c�
cµ


✓
�

µ
+

µ

�

◆�

.

Bootstrap hypothesis 1D:

(energy) ku�kL1L2 . C✏c��
�s

(unbalanced bilinear) ku�ūhµkL2 . C2✏2c�cµ�
�s� 1

2µ�s µ ⌧ �

(balanced bilinear) k@x(u�ūhµ)kL2 . C2✏2c�cµ�
�s+ 1

2µ�s(1+�h), � ⇡ µ

(Strichartz) ku�(t)kL6 . C✏c��
�s+ 1

6

Bootstrap hypothesis nD:

(energy) ku�kL1L2 . C✏c��
�s

(unbalanced bilinear) ku�ūhµkL2 . C2✏2c�cµ�
�s� 1

2µ�s+n�1
2 µ ⌧ �

(balanced bi) k|Dx|
3�n
2 (u�ū

h

µ)kL2 . C2✏2c�cµ�
�s+ 1

2µ�s(1+�h), µ ⇡ �

(Strichartz) ku�(t)kL4 . C✏c��
�s+n�2

2

- bootstraping both Strichartz and bilinear: Ifrim-T., Benjamin-Ono
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Conservation laws in density flux form

Integral laws in linear/nonlinear case:

M =

Z
|u|2 dx, d

dt
M =

Z
C4
m(u, ū, u, ū) dx

Well chosen mass/momentum densities

M =

Z
M(u, ū) dx, P =

Z
P (u, ū) dx

Density flux identities in linear/nonlinear case:

@tM(u, ū) = @x[gP (u, ū)] + C4
m(u, ū, u, ū)

@tP (u, ū) = @x[gE(u, ū)] + C4
p(u, ū, u, ū)

Frequency localized density-flux identities:

@tM�(u, ū) = @x[g<�P�(u, ū)] + C4
m,�

(u, ū, u, ū)

@tP�(u, ū) = @x[g<�E�(u, ū)] + C4
p,�

(u, ū, u, ū)
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Energy corrections for long time results 1D, 2D

| second generation I-method: correct energies for better conservation
(I-team:=Colliander-Keel-Stafillani-Takaoka-Tao)
~ better strategy: correct densities and fluxes

Quartic energy correction

M ]

�
(u, ū) = M�(u, ū) +B4

�,m
(u, ū, u, ū),

P ]

�
(u, ū) = P�(u, ū) +B4

�,p
(u, ū, u, ū),

Density-flux identities:

@tM
]

�
= @x(P� +R4

�,m
) + F 4,nr

�,m
+R6

�,m

@tP
]

�
= @x(E� +R4

�,p
) + F 4,nr

�,p
+R6

�,p

I This requires solving a nontrivial division problem,

c4 = �4⇠2 · b4 +�4⇠ · r4 + (⇠odd � ⇠even)
2q4,nr

I Energy bounds follow by direct integration
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Bilinear L2
estimates

- cannot use linear theory, as (i) problem is quasilinear and
(ii) nonlinearity is nonperturbative
- Nonlinear idea: Interaction Morawetz

introduced by I-team ’03 for 3D NLS

one dimensional version by Planchon-Vega

Baby version: u, v � 0 densities

@tu = @xf, moves to the left f > 0

@tv = @xg, moves to the right g < 0

Interaction functional:

I(u, v) =

Z

x<y

u(x)v(y) dxdt

dI

dt
=

Z

R
fv � ug dx > 0 (transversality bound)
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Dispersive Interaction Morawetz 1D

“momentum is moving to the right faster than the mass”

1 Interaction Morawetz functional, diagonal case:

I(u�, u�) =

Z

x<y

M ]

�
(x)P ]

�
(y)�M ]

�
(y)P ]

�
(x) dxdy

Time di↵erentiation:
d

dt
I(u�, u�) ⇡ k@x(u�ū�)k2L2 + ku�k6L6 + Errors (6,8,10)

- used to prove the L6 Strichartz and diagonal bilinear L2.

2 Transversal Interaction Morawetz functional:

I(u�, uµ) =

Z

x<y

M ]

�
(x)P ]

µ(y)�M ]

µ(y)P
]

�
(x) dxdy

Time di↵erentiation:
d

dt
I(u�, uµ) ⇡ k@x(u�ūµ)k2L2 + Errors (6,8,10)

- used to prove the o↵-diagonal bilinear L2 bound.
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Dispersive Interaction Morawetz nD

1 Interaction Morawetz functional, diagonal case:

I(u�, u�) =

Z
aj(x� y)(M ]

�
(x)P ],j

�
(y)�M ]

�
(y)P ],j

�
(x)) dxdy

aj(x) = @ja(x), a(x) = |x|.
Time di↵erentiation:

d

dt
I(u�, u�) ⇡

Z
ajk(x� y)F jF̄ kdxdy + Errors (6,8,10)

F j(x, y) = @ju�(x)ū�(y) + u�(x)@
j ū�(y)

- used to prove the balanced bilinear L2.

2 Transversal Interaction Morawetz functional:

I(u�, uµ) =

Z
aj(x� y)(M ]

�
(x)P ],j

µ (y)�M ]

µ(y)P
],j

�
(x)) dxdy

I Time di↵erentiation as above.
I used to prove the unbalanced bilinear L2 bound.
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Lossless Strichartz estimates 1D

Established at the level of the paradi↵erential equation:

iw�t + @xg(u<�)@xw� = f�, w(0) = w0 (QNLS-para)

Main challenge: variable coe�cient problem

SE with derivative loss: from sharp SE on semiclassical time scales
(Sta�lani-Tataru ’02, Burq-Gerard-Tzvetkov ’06, etc.)

SE without loss on asymptotically flat spaces (Robbiano-Zuily ’06,
Hassell-Tao-Wunsch ’06, Tataru 07 )

All the above require at least C2 coe�cients. Here, g � 1 2 L1H1+ !

Key ideas:

flatten metric with change of coordinates

use equation for u

allow for a large class of source terms f�
use bilinear L2 estimates

use wave packet parametrix (Marzuola-Metcalfe-Tataru)
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Summary

1 new global well-posedness conjectures for
I 1D cubic defocusing problems with nonlocalized data
I 2D+ cubic quasilinear problems with nonlocalized data

2 first 1D global well-posedness results
I semilinear NLS
I quasilinear NLS

3 first 2D quasilinear global well-posedness result
I quasilinear NLS

4 new, sharp local well-posedness results in all dimensions

5 global well-posedness holds at optimal regularity (same as in the
local result)
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Happy birthday Maciej !
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