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The quantum Lorentz gas

2r

~h

1

~r1-d

2



The quantum Lorentz gas

• Schrödinger equation

i h2π ∂tf(t,x) = Hh,λf(t,x), f(0,x) = f0(x)

• quantum Hamiltonian

Hh,λ = −
h2

8π2
∆ + λV (x)

• potential

V (x) = Vr(x) =
∑
m∈P

W (r−1(x+m)), W ∈ S(Rd)

with P point set describing location of scatterers (e.g. P = Zd or random
point set)
• solution

f(t,x) = Uh,λ(t)f0(x), Uh,λ(t) = e−
2πi
h Hh,λ t

• note: classical mean free path length in this setting ∼ r1−d
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Observables

• time evolution of linear operators A(t) (“quantum observables”) given by
Heisenberg evolution A(t) = Uh,λ(t)AUh,λ(t)−1.

• L2 inner product on classical phase space

〈a, b〉 =

ˆ
Rd×Rd

a(x,y) b(x,y) dxdy,

• Hilbert-Schmidt inner product 〈A,B〉HS = TrAB†.
• semiclassical Boltzmann-Grad scaling

Dr,ha(x,y) = rd(d−1)/2hd/2 a(rd−1x, hy),

• standard Weyl quantisation of a ∈ S(Rd × Rd),

Op(a)f(x) =

ˆ
Rd×Rd

a(1
2(x+ x′),y) e((x− x′) · y) f(x′) dx′dy

• set Opr,h = Op ◦Dr,h and Oph = Op1,h.
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In the following assume h = r:
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>>>Semiclassical propagation with quantum scattering<<<
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A limiting transport process?

Pick your favourite scatterer configuration P (random or deterministic).

Recall h = r.

Questions:

(i) Does there exist a family of operators L(t) : L1(Rd×Rd)→ L1(Rd×Rd)
such that for all a, b ∈ S(Rd × Rd), A = Opr,h(a), B = Opr,h(b),

lim
r→0
〈A(tr−(d−1)), B〉HS = 〈L(t)a, b〉 ?

(ii) Is ft(x,y) = L(t)a(x,y) a solution of the linear Boltzmann equation?
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Random scatterer configurations

For random scatterer configurations Eng and Erdös (Rev Math Phys 2005)* have
proved convergence (in the annealed case) to a limit ft = L(t)a, which in fact is
a solution to the linear Boltzmann equation[

∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

ˆ
Sd−1

1

[
ft(Q,V

′)− ft(Q,V )
]
Σ(V ,V ′)dV ′

with the standard quantum mechanical collision kernel

Σ(y,y′) = 8π2 δ(‖y‖2 − ‖y′‖2) |T (y,y′)|2.

Here T (y,y′) is the (single scatterer) T -matrix.

>>>Semiclassical propagation with quantum scattering<<<

*for uniformly distributed scatterers in a large torus, building on work by Erdös and Yau
(Comm Pure Appl Math 2000) for the weak-coupling limit; see also Mikkelsen (preprint 2023,
arXiv:2303.05176) for a proof for Poisson scatterer configuration in R3 and general semiclassi-
cal Wigner measures
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Periodic scatterer configurations

Consider the periodic scatterer configuration P = Zd (or any other lattice in Rd

of full rank).

Theorem (Griffin & JM, J Stat Phys 2021).
For d ≥ 3, and conditional on a generalised Berry-Tabor conjecture:
(i) There exists a family of operators L(t) : L1(Rd × Rd) → L1(Rd × Rd)
such that for all a, b ∈ S(Rd × Rd), A = Opr,h(a), B = Opr,h(b), t > 0

and 0 < λ ≤ λ0 (λ0 sufficently small)

lim
r→0
〈A(tr−(d−1)), B〉HS = 〈L(t)a, b〉

(ii) f(t,x,y) = L(t)a(x,y) is NOT a solution of the linear Boltzmann equa-
tion.

Castella & Plagne (Indiana Math J 2001) showed that the low-density limit diverges for zero Bloch
vector (=small scatterer limit on a unit torus).
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Collision series for linear Boltzmann

Total scattering cross section Σtot(y) =

ˆ
Rd

Σ(y′,y) dy′

Collision series for solution of the linear Boltzmann equation

fLB(t,x,y) =
∞∑
k=1

f
(k)
LB (t,x,y)

with the zero-collision term

f
(1)
LB (t,x,y) = a(x− ty,y) e−tΣtot(y),

and the (k − 1)-collision term . . .
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Collision series for linear Boltzmann

. . . and the (k − 1)-collision term

f
(k)
LB (t,x,y) =

ˆ
(Rd)k

ˆ
Rk≥0

δ(y − y1) a

(
x−

k∑
j=1

ujyj,yk

)

× r(k)
LB(u,y1, . . . ,yk) δ

(
t−

k∑
j=1

uj

)
du dy1 · · · dyk

with

r
(k)
LB(u,y1, . . . ,yk) =

k∏
i=1

e−uiΣtot(yi)
k−1∏
j=1

Σ(yj,yj+1).

The product form of the density r(k)
LB shows that the corresponding random flight

process is Markovian, and describes a particle moving along a random piecewise
linear curve with momenta yi and exponentially distributed flight times ui.
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Collision series for our limit process

Collision series

f(t,x,y) =
∞∑
k=1

f(k)(t,x,y)

with the zero-collision term (as for LB)

f(1)(t,x,y) = f
(1)
LB (t,x,y) = a(x− ty,y) e−tΣtot(y),

and the (k − 1)-collision term . . .

f(k)(t,x,y) =
1

k!

k∑
`,m=1

ˆ
(Rd)k

ˆ
Rk≥0

δ(y − y`) a
(
x−

k∑
j=1

ujyj,ym

)

× r(k)
`m (u,y1, . . . ,yk) δ

(
t−

k∑
j=1

uj

)
du dy1 · · · dyk,

with the collision densities . . .
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Collision series for our limit process

. . . with the collision densities (positive!)

r
(k)
`m (u,y1, . . . ,yk) =

∣∣∣g(k)
`m (u,y1, . . . ,yk)

∣∣∣2 ωk(y1, . . . ,yk)
k∏
i=1

e−uiΣtot(yi).

Here

ωk(y1, . . . ,yk) =
k−1∏
j=1

δ
(

1
2‖yj‖

2 − 1
2‖yj+1‖2

)

and g(k)
`m are the coefficients of the matrix valued function

G(k)(u,y1, . . . ,yk) =
1

(2πi)k

‰
· · ·
‰ (

D(z)−W
)−1

exp(u · z) dz1 · · · dzk,

where D(z) = diag(z1, . . . , zk) and W = W(y1, . . . ,yk) with entries

wij =

0 (i = j)

−2πiT (yi,yj) (i 6= j).

>>>Strong correlation with past momenta<<<
12



Collision series for our limit process

Explicitly, for the one collision terms

r
(2)
11 (u,y1,y2) = r

(2)
LB(u,y1,y2)

∣∣∣∣∣u1T (y2,y1)

u2T (y1,y2)

∣∣∣∣∣
×
∣∣∣J1

(
4π[u1u2T (y1,y2)T (y2,y1)]1/2

)∣∣∣2.
and

r
(2)
12 (u,y1,y2) = r

(2)
LB(u,y1,y2)

∣∣∣J0

(
4π[u1u2T (y1,y2)T (y2,y1)]1/2

)∣∣∣2
with Jk the standard Bessel functions.

The remaining matrix elements can be computed via the identities

r
(2)
22 (u1, u2,y1,y2) = r

(2)
11 (u2, u1,y2,y1),

r
(2)
21 (u1, u2,y1,y2) = r

(2)
12 (u2, u1,y2,y1).

Above formulas strikingly similar to those for two-point spectral statistics in diffractive systems
(Bogomolny and Giraud, Nonlinearity 2002)
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Key steps in proof

• Use Floquet-Bloch decomposition to reduce problem to L2 subspaces of
functions

ψ(x+ k) = e(k ·α)ψ(x), ∀k ∈ Zd

with α ∈ [0,1)d

• Consider each α-subspace separately
• Use iterated application of Duhamel formula for quantum propagator,

Uλ,h(t) = U0,h(t)− 2πiλ

ˆ t

0
Uλ,h(t− s) Op(V )U0,h(s)ds,

to produce perturbation expansion
• The eigenphases of U0,h(t) restricted to α-subspace are of the form

π t ‖m+α‖2, m ∈ Zd
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Key steps in proof

• Set Pα = Zd +α

• The (n− 1) collision term can be expressed in the form

rd
∑

p1,...,pn=p0∈Pα
non-consec

Ht,`,n
(
r2−d(1

2‖p0‖2, . . . , 1
2‖pn‖

2), rp0, . . . , rpn
)

form some (not so well behaved) function Ht,`,n, which has translation in-
variance in the first coordinates so that it only depends on the differences
between the ‖pj‖2

• The above expression is thus the n-point correlation density of P tested
against Ht,`,n — measured on the scale of their mean separation
• Our key assumption in this work is that we can replace Pα, for typical

(or on average) α by a Poisson point process in Rd of intensity one

=⇒ Berry-Tabor conjecture, quantitative Oppenheim conjecture
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Key steps in proof

• Set Pα = Zd +α

• The (n− 1) collision term can be expressed in the form

rd
∑

p1,...,pn=p0∈Pα
non-consec

Ht,`,n
(
r2−d(1

2‖p0‖2, . . . , 1
2‖pn‖

2), rp0, . . . , rpn
)

form some (not so well behaved) function Ht,`,n, which has translation in-
variance in the first coordinates so that it only depends on the differences
between the ‖pj‖2

• The above expression is thus the n-point correlation density of P tested
against Ht,`,n — measured on the scale of their mean separation
• Our key assumption in this work is that we can replace Pα, for typical

(or random) α by a Poisson point process in Rd of intensity one

=⇒ Berry-Tabor conjecture, quantitative Oppenheim conjecture
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Moments of exponential sums

• The key task is to understand the distribution of exponential sums (quadratic
Weyl sums) of the form

Θ(t+ ir2) = rd/2
∞∑
j=1

ψ(rpj)e2πi‖pj‖2t

in the limit r → 0.
• In particular, second-order correlations follow from the asymptotics of the

second moment ˆ b

a

∣∣∣Θ(r2−dt+ ir2)
∣∣∣2 dt

which holds in the case of Diophantineα ∈ Rd (JM, Annals Math 2003, Duke
Math J 2002). This yields a proof of the Poisson nature of second-order cor-
relations. See also Eskin, Margulis & Mozes (Annals 2005) and Margulis &
Mohammadi (Duke Math J 2011) for general homogeneous/inhomogeneous
forms in 2D
• Gives rigorous expansion of quantum transport up to order λ2

(Griffin & JM, Pure & Applied Analysis 2019).
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How random is Pα = Zd +α ?

Illustrative example for d = 2:

• Fix α = (
√

2,
√

3)←− not even generic

• Consider the sequence (λi, θi)i∈N of elements of the set{(
π‖n+α‖2,

1

2π
arg(n+α)

)
∈ R≥0 × [0,1)

∣∣∣∣∣n ∈ Z2
}

arranged in increasing order according to the first component

• Our assumption is concerned with the distribution of points (λi, θi) restricted
to a strip [R−∆R,R)× [0,1) for ∆R > 0 fixed and R→∞
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Scatter plots of (λi, θi) in the strip [R−∆R,R)× [0,1) for R = π×1002, with
∆R = 104. For large R we expect the point set to be modelled by a Poisson
point process.
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Scatter plots of (λi, θi) in the strip [R−∆R,R)× [0,1) for R = π×5002, with
∆R = 104. For large R we expect the point set to be modelled by a Poisson
point process.
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Scatter plot for the sequence (λi+1− λi, θi) for R = π× 5002 and ∆R = 104
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Histogram for the sequence (λi+1 − λi, θi) for R = π × 5002 and ∆R = 104
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How random is Pα = Zd +α ?

• Previously we considered the distribution of points

(λi, θi)i∈N =

{(
π‖n+α‖2,

1

2π
arg(n+α)

)
∈ R≥0 × [0,1)

∣∣∣∣∣n ∈ Z2
}

restricted to a strip [R−∆R,R)× [0,1) for ∆R > 0 fixed and R→∞

• Let us now look at the fine-scale statistics of the angles θi ∈ [0,1) only, with
λi ∈ [0, R)

• In higher dimensions, this leads to the statistics of unit vectors vi given by

n+α

‖n+α‖
∈ Sd−1

1

where the vi are corresponding to the ordering of λi, i.e., ‖n+α‖2
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Nearest-neighbour distributions for directions on S2
1 vs. 2πse−πs

2

Fixed realisation of a Poisson point
process in R3

(JM & Strömbergsson, Mem. AMS 2024)

Affice lattice Z3 +α with
α = (21/4,31/4,51/4)

(JM & Strömbergsson, Annals 2010)

Numerics by Jory Griffin
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Pair correlation (Ripley’s K-function)

• Particularly popular fine-scale statistics

R2
N(s) =

#
{

(i, j) ∈ N2 : 0 < i 6= j ≤ N, cdN
1
d−1 distSd−1

(
vi, vj

)
≤ s

}
N

,

cd = volSd−1(Sd−1)−
1
d−1, distSd−1 = arc length

Theorem A.
Let P be a realization of a Poisson point process Ξ of unit intensity. Then
almost surely we have that, for all s > 0,

lim
T→∞

R2
T (s) =

π
d−1

2 sd−1

Γ(d+1
2 )
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Theorem B. (Wooyeon Kim & JM, ETDS 2024)

Let P = Zd + α, with α /∈ Qd (plus being (0,0,2)-vaguely Diophantine* if d = 2). Then, for
all s > 0,

lim
T→∞

R2
T (s) =

π
d−1

2 sd−1

Γ(d+1
2 )

• Previously known for d = 2 (El Baz, Vinogradov & JM, IMRN 2015)
• The key points in the proof are: (1) escape of mass estimates for embedded

SL(d,R)-horospheres in ASL(d,Z)\ASL(d,R), and (2) a Rogers type vol-
ume formula that shows that the limit variance is Poissonian.
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Pair correlation in 3d

Pair correlation numerics vs. π
d−1

2 sd−1

Γ(d+1
2 )

:

Fixed realisation of a Poisson point
process in R3

Kim & JM, ETDS 2024

Affice lattice Z3 +α with
α = (21/4,31/4,51/4),

Wooyeon Kim & JM, ETDS 2024

Numerics by Jory Griffin
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Fact sheet on Diophantine condition

For κ ≥ d, we say that α ∈ Rd is Diophantine of type κ if there exists Cκ > 0 such that

|α ·m|Z > Cκ|m|−κ

for any m ∈ Zd \ {0}, where | · | denotes the supremum norm of Rd, and | · |Z denotes the
supremum distance from 0 ∈ Td. We will in fact only require a milder Diophantine condition.
Define the function ζ : Rd × R>0 → N by

ζ(α, T ) := min

{
N ∈ N : min

m∈Zd\{0}
0<|m|≤N

|α ·m|Z ≤
1

T

}
.

In view of Dirichlet’s pigeon hole principle, we have that ζ(α, T ) ≤ T 1/d and, ifα is of Diophantine
type κ ≥ d, then ζ(α, T ) > (CκT )

1

κ .

We say α ∈ Rd is (r, µ, ν)-vaguely Diophantine, if
∞∑
l=1

lr 2µζ(α,2l−1)−ν <∞.

Thus, if α is Diophantine type κ, then it is also (r, µ, ν)-vaguely Diophantine for κµ < ν.

If α satisfies the generalised s-Brjuno Diophantine conditiona
∞∑
n=0

2−
n

s max
m∈Zd\{0}
0<|m|≤2n

log
1

|α ·m|Z
<∞

then it is (r,0, ν)-vaguely Diophantine for s > r+1
ν

.

aBounemoura & Féjoz, Ann Sc Norm Super Pisa Cl Sci (2019)
Lopes Dias & Gaivão, J Diff Equ 267 (2019)
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Gap distribution for directions in a 2d affine lattice

Gap distribution of directions in 2d affine lattice vs. Elkies-McMullen distribution:

0.2

s

0.8

6

0.6

0.4

42

0.0

0

Affice lattice Z2 +α with α = (
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(JM & Strömbergsson, Annals 2010)
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n mod 1, n = 1, . . . ,7765

Elkies & McMullen Duke 2005

Both proofs use Ratner’s measure classification theorem on the same space for same test func-
tion – but for different unipotent flows! Tail is ∼ 3

π2s
−3. Note that for α = 0 we would (taking only the

visible lattice points) recover the classical Hall distribution (Hall, J LMS 1970) for the gaps between
Farey points. Hall density has tail ∼ 36

π4 s
−3.
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Conclusion

• Complete understanding of the Boltzmann-Grad limit for the quantum Lorentz
gas remains major challenge; currently only annealed limit for random scat-
terer configuration fully understood

• Periodic setting leads to subtle lattice point problems and requires a major
hypothesis (Berry-Tabor conjecture)

• Is the long-time limit of the macroscopic process (super-) diffusive? Other
scalling limits: h� r or r � h? Extension to quasicrystals or other scatterer
configurations with long-range correlations?
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Happy Birthday, Maciej!
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