Paris-Saclay conference in Analysis and PDE, 27-31 May 2024 on the occasion of Maciej Zworski's 60th birthday

Quantum transport, exponential sums and lattice point statistics

Jens Marklof

School of Mathematics, University of Bristol http://www.maths.bristol.ac.uk

supported by EPSRC grant EP/S024948/1

The quantum Lorentz gas

The quantum Lorentz gas

• Schrödinger equation

$$i\frac{h}{2\pi}\partial_t f(t, \boldsymbol{x}) = H_{h,\lambda}f(t, \boldsymbol{x}), \qquad f(0, \boldsymbol{x}) = f_0(\boldsymbol{x})$$

• quantum Hamiltonian

$$H_{h,\lambda} = -\frac{h^2}{8\pi^2} \Delta + \lambda V(x)$$

• potential

$$V(x) = V_r(x) = \sum_{m \in \mathcal{P}} W(r^{-1}(x+m)), \qquad W \in \mathcal{S}(\mathbb{R}^d)$$

with \mathcal{P} point set describing location of scatterers (e.g. $\mathcal{P} = \mathbb{Z}^d$ or random point set)

• solution

$$f(t, \boldsymbol{x}) = U_{h,\lambda}(t) f_0(\boldsymbol{x}), \qquad U_{h,\lambda}(t) = e^{-\frac{2\pi i}{h} H_{h,\lambda} t}$$

• note: classical mean free path length in this setting $\sim r^{1-d}$

Observables

- time evolution of linear operators A(t) ("quantum observables") given by Heisenberg evolution $A(t) = U_{h,\lambda}(t) A U_{h,\lambda}(t)^{-1}$.
- L² inner product on classical phase space

$$\langle a,b\rangle = \int_{\mathbb{R}^d \times \mathbb{R}^d} a(\boldsymbol{x},\boldsymbol{y}) \,\overline{b(\boldsymbol{x},\boldsymbol{y})} \, d\boldsymbol{x} d\boldsymbol{y},$$

- Hilbert-Schmidt inner product $\langle A, B \rangle_{HS} = \operatorname{Tr} AB^{\dagger}$.
- semiclassical Boltzmann-Grad scaling

$$D_{r,h}a(x, y) = r^{d(d-1)/2} h^{d/2} a(r^{d-1}x, hy),$$

• standard Weyl quantisation of $a \in \mathcal{S}(\mathbb{R}^d \times \mathbb{R}^d)$,

$$Op(a)f(x) = \int_{\mathbb{R}^d \times \mathbb{R}^d} a(\frac{1}{2}(x + x'), y) e((x - x') \cdot y) f(x') dx' dy$$

• set $Op_{r,h} = Op \circ D_{r,h}$ and $Op_h = Op_{1,h}$.

In the following assume h = r:

>>>Semiclassical propagation with quantum scattering<<<<

A limiting transport process?

Pick your favourite scatterer configuration \mathcal{P} (random or deterministic).

Recall h = r.

Questions:

(i) Does there exist a family of operators L(t) : L¹(ℝ^d×ℝ^d) → L¹(ℝ^d×ℝ^d) such that for all a, b ∈ S(ℝ^d × ℝ^d), A = Op_{r,h}(a), B = Op_{r,h}(b), lim_{r→0} ⟨A(tr^{-(d-1)}), B⟩_{HS} = ⟨L(t)a, b⟩ ?
(ii) Is f_t(x, y) = L(t)a(x, y) a solution of the linear Boltzmann equation?

Random scatterer configurations

For random scatterer configurations Eng and Erdös (Rev Math Phys 2005)* have proved convergence (in the annealed case) to a limit $f_t = L(t)a$, which in fact is a solution to the linear Boltzmann equation

$$\left[\frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla_{\boldsymbol{Q}}\right] f_t(\boldsymbol{Q}, \boldsymbol{V}) = \int_{\mathsf{S}_1^{d-1}} \left[f_t(\boldsymbol{Q}, \boldsymbol{V}') - f_t(\boldsymbol{Q}, \boldsymbol{V}) \right] \boldsymbol{\Sigma}(\boldsymbol{V}, \boldsymbol{V}') d\boldsymbol{V}'$$

with the standard quantum mechanical collision kernel

$$\Sigma(y, y') = 8\pi^2 \,\delta(||y||^2 - ||y'||^2) \,|T(y, y')|^2.$$

Here T(y, y') is the (single scatterer) *T*-matrix.

>>>Semiclassical propagation with quantum scattering<<<<

*for uniformly distributed scatterers in a large torus, building on work by Erdös and Yau (Comm Pure Appl Math 2000) for the weak-coupling limit; see also Mikkelsen (preprint 2023, arXiv:2303.05176) for a proof for Poisson scatterer configuration in \mathbb{R}^3 and general semiclassical Wigner measures

Periodic scatterer configurations

Consider the periodic scatterer configuration $\mathcal{P} = \mathbb{Z}^d$ (or any other lattice in \mathbb{R}^d of full rank).

Theorem (Griffin & JM, J Stat Phys 2021).

For $d \geq 3$, and conditional on a generalised Berry-Tabor conjecture: (i) There exists a family of operators $L(t) : L^1(\mathbb{R}^d \times \mathbb{R}^d) \to L^1(\mathbb{R}^d \times \mathbb{R}^d)$ such that for all $a, b \in S(\mathbb{R}^d \times \mathbb{R}^d)$, $A = Op_{r,h}(a)$, $B = Op_{r,h}(b)$, t > 0and $0 < \lambda \leq \lambda_0$ (λ_0 sufficiently small)

$$\lim_{r \to 0} \langle A(tr^{-(d-1)}), B \rangle_{\mathsf{HS}} = \langle L(t)a, b \rangle$$

(ii) f(t, x, y) = L(t)a(x, y) is **NOT** a solution of the linear Boltzmann equation.

Castella & Plagne (Indiana Math J 2001) showed that the low-density limit diverges for zero Bloch vector (=small scatterer limit on a unit torus).

Collision series for linear Boltzmann

Total scattering cross section $\sum_{tot}(y) = \int_{\mathbb{R}^d} \sum(y', y) dy'$

Collision series for solution of the linear Boltzmann equation

$$f_{\mathsf{LB}}(t, \boldsymbol{x}, \boldsymbol{y}) = \sum_{k=1}^{\infty} f_{\mathsf{LB}}^{(k)}(t, \boldsymbol{x}, \boldsymbol{y})$$

with the zero-collision term

$$f_{\mathsf{LB}}^{(1)}(t, \boldsymbol{x}, \boldsymbol{y}) = a(\boldsymbol{x} - t\boldsymbol{y}, \boldsymbol{y}) \,\mathrm{e}^{-t\Sigma_{\mathsf{tot}}(\boldsymbol{y})},$$

and the (k-1)-collision term ...

Collision series for linear Boltzmann

... and the (k-1)-collision term

$$f_{\mathsf{LB}}^{(k)}(t, \boldsymbol{x}, \boldsymbol{y}) = \int_{(\mathbb{R}^d)^k} \int_{\mathbb{R}^k_{\geq 0}} \delta(\boldsymbol{y} - \boldsymbol{y}_1) \, a \left(\boldsymbol{x} - \sum_{j=1}^k u_j \boldsymbol{y}_j, \boldsymbol{y}_k \right) \\ \times r_{\mathsf{LB}}^{(k)}(\boldsymbol{u}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_k) \, \delta \left(t - \sum_{j=1}^k u_j \right) d\boldsymbol{u} \, d\boldsymbol{y}_1 \cdots d\boldsymbol{y}_k$$

with

$$r_{LB}^{(k)}(u, y_1, \dots, y_k) = \prod_{i=1}^k e^{-u_i \Sigma_{tot}(y_i)} \prod_{j=1}^{k-1} \Sigma(y_j, y_{j+1}).$$

The product form of the density $r_{LB}^{(k)}$ shows that the corresponding random flight process is Markovian, and describes a particle moving along a random piecewise linear curve with momenta y_i and exponentially distributed flight times u_i .

Collision series for our limit process

Collision series

$$f(t, \boldsymbol{x}, \boldsymbol{y}) = \sum_{k=1}^{\infty} f^{(k)}(t, \boldsymbol{x}, \boldsymbol{y})$$

with the zero-collision term (as for LB)

$$f^{(1)}(t, \boldsymbol{x}, \boldsymbol{y}) = f^{(1)}_{\mathsf{LB}}(t, \boldsymbol{x}, \boldsymbol{y}) = a(\boldsymbol{x} - t\boldsymbol{y}, \boldsymbol{y}) \,\mathrm{e}^{-t\boldsymbol{\Sigma}_{\mathsf{tot}}(\boldsymbol{y})},$$

and the (k-1)-collision term ...

$$f^{(k)}(t, \boldsymbol{x}, \boldsymbol{y}) = \frac{1}{k!} \sum_{\ell, m=1}^{k} \int_{(\mathbb{R}^d)^k} \int_{\mathbb{R}^k_{\geq 0}} \delta(\boldsymbol{y} - \boldsymbol{y}_\ell) a\left(\boldsymbol{x} - \sum_{j=1}^k u_j \boldsymbol{y}_j, \boldsymbol{y}_m\right) \\ \times r^{(k)}_{\ell m}(\boldsymbol{u}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_k) \delta\left(t - \sum_{j=1}^k u_j\right) d\boldsymbol{u} d\boldsymbol{y}_1 \cdots d\boldsymbol{y}_k,$$

with the collision densities ...

Collision series for our limit process

... with the collision densities (**positive!**)

$$r_{\ell m}^{(k)}(\boldsymbol{u}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_k) = \left| g_{\ell m}^{(k)}(\boldsymbol{u}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_k) \right|^2 \omega_k(\boldsymbol{y}_1, \dots, \boldsymbol{y}_k) \prod_{i=1}^k \mathrm{e}^{-u_i \Sigma_{\mathrm{tot}}(\boldsymbol{y}_i)}.$$

Here

$$\omega_k(y_1, \dots, y_k) = \prod_{j=1}^{k-1} \delta\left(\frac{1}{2} \|y_j\|^2 - \frac{1}{2} \|y_{j+1}\|^2\right)$$

and $g_{\ell m}^{(k)}$ are the coefficients of the matrix valued function

$$\mathbb{G}^{(k)}(\boldsymbol{u},\boldsymbol{y}_1,\ldots,\boldsymbol{y}_k) = \frac{1}{(2\pi i)^k} \oint \cdots \oint \left(\mathbb{D}(\boldsymbol{z}) - \mathbb{W} \right)^{-1} \exp(\boldsymbol{u} \cdot \boldsymbol{z}) \, dz_1 \cdots dz_k,$$

where $\mathbb{D}(z) = \text{diag}(z_1, \dots, z_k)$ and $\mathbb{W} = \mathbb{W}(y_1, \dots, y_k)$ with entries

$$w_{ij} = \begin{cases} 0 & (i=j) \\ -2\pi i T(\boldsymbol{y}_i, \boldsymbol{y}_j) & (i \neq j). \end{cases}$$

>>>Strong correlation with past momenta<<<<

Collision series for our limit process

Explicitly, for the one collision terms

$$r_{11}^{(2)}(\boldsymbol{u}, \boldsymbol{y}_1, \boldsymbol{y}_2) = r_{\mathsf{LB}}^{(2)}(\boldsymbol{u}, \boldsymbol{y}_1, \boldsymbol{y}_2) \left| \frac{u_1 T(\boldsymbol{y}_2, \boldsymbol{y}_1)}{u_2 T(\boldsymbol{y}_1, \boldsymbol{y}_2)} \right| \\ \times \left| J_1 \left(4\pi [u_1 u_2 T(\boldsymbol{y}_1, \boldsymbol{y}_2) T(\boldsymbol{y}_2, \boldsymbol{y}_1)]^{1/2} \right) \right|^2.$$

and

 $r_{12}^{(2)}(\boldsymbol{u}, \boldsymbol{y}_1, \boldsymbol{y}_2) = r_{\text{LB}}^{(2)}(\boldsymbol{u}, \boldsymbol{y}_1, \boldsymbol{y}_2) \left| J_0 \left(4\pi [u_1 u_2 T(\boldsymbol{y}_1, \boldsymbol{y}_2) T(\boldsymbol{y}_2, \boldsymbol{y}_1)]^{1/2} \right) \right|^2$ with J_k the standard Bessel functions.

The remaining matrix elements can be computed via the identities

$$r_{22}^{(2)}(u_1, u_2, \boldsymbol{y}_1, \boldsymbol{y}_2) = r_{11}^{(2)}(u_2, u_1, \boldsymbol{y}_2, \boldsymbol{y}_1),$$

$$r_{21}^{(2)}(u_1, u_2, \boldsymbol{y}_1, \boldsymbol{y}_2) = r_{12}^{(2)}(u_2, u_1, \boldsymbol{y}_2, \boldsymbol{y}_1).$$

Above formulas strikingly similar to those for two-point spectral statistics in diffractive systems (Bogomolny and Giraud, Nonlinearity 2002)

Key steps in proof

 Use Floquet-Bloch decomposition to reduce problem to L² subspaces of functions

$$\psi(\boldsymbol{x}+\boldsymbol{k}) = \mathrm{e}(\boldsymbol{k}\cdot\boldsymbol{lpha})\psi(\boldsymbol{x}), \quad \forall \boldsymbol{k}\in\mathbb{Z}^d$$

with $oldsymbol{lpha} \in [0,1)^d$

- Consider each α -subspace separately
- Use iterated application of Duhamel formula for quantum propagator,

$$U_{\lambda,h}(t) = U_{0,h}(t) - 2\pi i\lambda \int_0^t U_{\lambda,h}(t-s) \operatorname{Op}(V) U_{0,h}(s) ds,$$

to produce perturbation expansion

• The eigenphases of $U_{0,h}(t)$ restricted to α -subspace are of the form

 $\pi t \| \boldsymbol{m} + \boldsymbol{\alpha} \|^2, \quad \boldsymbol{m} \in \mathbb{Z}^d$

Key steps in proof

- Set $\mathcal{P}_{\alpha} = \mathbb{Z}^d + \alpha$
- The (n-1) collision term can be expressed in the form

$$r^{d} \sum_{\substack{p_{1},...,p_{n} = p_{0} \in \mathcal{P}_{\alpha} \\ \text{non-consec}}} H_{t,\ell,n} \left(r^{2-d} (\frac{1}{2} \| p_{0} \|^{2}, \dots, \frac{1}{2} \| p_{n} \|^{2}), rp_{0}, \dots, rp_{n} \right)$$

form some (not so well behaved) function $H_{t,\ell,n}$, which has translation invariance in the first coordinates so that it only depends on the differences between the $||p_j||^2$

- The above expression is thus the *n*-point correlation density of \mathcal{P} tested against $H_{t,\ell,n}$ measured on the scale of their mean separation
- Our key assumption in this work is that we can replace \mathcal{P}_{α} , for typical (or on average) α by a Poisson point process in \mathbb{R}^d of intensity one

=> Berry-Tabor conjecture, quantitative Oppenheim conjecture

=> Berry-Tabor conjecture, quantitative Oppennen conjecture

Moments of exponential sums

 The key task is to understand the distribution of exponential sums (quadratic Weyl sums) of the form

$$\Theta(t + ir^2) = r^{d/2} \sum_{j=1}^{\infty} \psi(r\mathbf{p}_j) e^{2\pi i ||\mathbf{p}_j||^2 t}$$

in the limit $r \rightarrow 0$.

 In particular, second-order correlations follow from the asymptotics of the second moment

$$\int_{a}^{b} \left| \Theta(r^{2-d}t + \mathrm{i}r^{2}) \right|^{2} dt$$

which holds in the case of Diophantine $\alpha \in \mathbb{R}^d$ (JM, Annals Math 2003, Duke Math J 2002). This yields a proof of the Poisson nature of second-order correlations. See also Eskin, Margulis & Mozes (Annals 2005) and Margulis & Mohammadi (Duke Math J 2011) for general homogeneous/inhomogeneous forms in 2D

• Gives rigorous expansion of quantum transport up to order λ^2 (Griffin & JM, Pure & Applied Analysis 2019).

How random is $\mathcal{P}_{\alpha} = \mathbb{Z}^d + \alpha$?

Illustrative example for d = 2:

- Consider the sequence $(\lambda_i, \theta_i)_{i \in \mathbb{N}}$ of elements of the set

$$\left\{ \left(\pi \| n + lpha \|^2, rac{1}{2\pi} rg(n + lpha)
ight) \in \mathbb{R}_{\geq 0} imes [0, 1) \ \middle| \ n \in \mathbb{Z}^2
ight\}$$

arranged in increasing order according to the first component

• Our assumption is concerned with the distribution of points (λ_i, θ_i) restricted to a strip $[R - \Delta R, R) \times [0, 1)$ for $\Delta R > 0$ fixed and $R \to \infty$

Scatter plots of (λ_i, θ_i) in the strip $[R - \Delta R, R) \times [0, 1)$ for $R = \pi \times 100^2$, with $\Delta R = 10^4$. For large *R* we expect the point set to be modelled by a Poisson point process.

Scatter plots of (λ_i, θ_i) in the strip $[R - \Delta R, R) \times [0, 1)$ for $R = \pi \times 500^2$, with $\Delta R = 10^4$. For large *R* we expect the point set to be modelled by a Poisson point process.

Scatter plot for the sequence $(\lambda_{i+1} - \lambda_i, \theta_i)$ for $R = \pi \times 500^2$ and $\Delta R = 10^4$

Histogram for the sequence $(\lambda_{i+1} - \lambda_i, \theta_i)$ for $R = \pi \times 500^2$ and $\Delta R = 10^4$

How random is $\mathcal{P}_{\alpha} = \mathbb{Z}^d + \alpha$?

• Previously we considered the distribution of points

$$(\lambda_i, \theta_i)_{i \in \mathbb{N}} = \left\{ \left(\pi \| n + \alpha \|^2, \frac{1}{2\pi} \arg(n + \alpha) \right) \in \mathbb{R}_{\geq 0} \times [0, 1) \ \middle| \ n \in \mathbb{Z}^2 \right\}$$

restricted to a strip $[R - \Delta R, R) \times [0, 1)$ for $\Delta R > 0$ fixed and $R \to \infty$

- Let us now look at the fine-scale statistics of the angles $\theta_i \in [0, 1)$ only, with $\lambda_i \in [0, R)$
- In higher dimensions, this leads to the statistics of unit vectors v_i given by

$$rac{n+lpha}{\|n+lpha\|}\in \mathsf{S}_1^{d-1}$$

where the v_i are corresponding to the ordering of λ_i , i.e., $||n + \alpha||^2$

Nearest-neighbour distributions for directions on S_1^2 vs. $2\pi s e^{-\pi s^2}$

Nearest Neighbour Distances for Poisson Process

Nearest Neighbour Distances for Normalised Shifted Lattice Points

Fixed realisation of a Poisson point process in ℝ³ (JM & Strömbergsson, Mem. AMS 2024) Affice lattice $\mathbb{Z}^3 + \alpha$ with $\alpha = (2^{1/4}, 3^{1/4}, 5^{1/4})$ (JM & Strömbergsson, Annals 2010)

Numerics by Jory Griffin

Pair correlation (Ripley's K-function)

• Particularly popular fine-scale statistics

$$R_N^2(s) = \frac{\#\left\{(i,j) \in \mathbb{N}^2 : 0 < i \neq j \le N, \ c_d N^{\frac{1}{d-1}} \operatorname{dist}_{\mathsf{S}^{d-1}}\left(v_i, v_j\right) \le s\right\}}{N},$$
$$c_d = \operatorname{vol}_{\mathsf{S}^{d-1}}(\mathsf{S}^{d-1})^{-\frac{1}{d-1}}, \quad \operatorname{dist}_{\mathsf{S}^{d-1}} = \operatorname{arc} \operatorname{length}$$

Let \mathcal{P} be a realization of a Poisson point process Ξ of unit intensity. Then almost surely we have that, for all s > 0,

$$\lim_{T \to \infty} R_T^2(s) = \frac{\pi^{\frac{d-1}{2}} s^{d-1}}{\Gamma(\frac{d+1}{2})}$$

- Previously known for d = 2 (El Baz, Vinogradov & JM, IMRN 2015)
- The key points in the proof are: (1) escape of mass estimates for embedded SL(d, ℝ)-horospheres in ASL(d, ℤ) \ ASL(d, ℝ), and (2) a Rogers type volume formula that shows that the limit variance is Poissonian.

Pair correlation in 3d

Pair correlation numerics vs. $\frac{\pi^{\frac{d-1}{2}s^{d-1}}}{\pi^{\frac{d-1}{2}s^{d-1}}}$:

Fixed realisation of a Poisson point process in \mathbb{R}^3

Affice lattice $\mathbb{Z}^3 + \alpha$ with $\alpha = (2^{1/4}, 3^{1/4}, 5^{1/4}),$ Wooyeon Kim & JM, ETDS 2024

Numerics by Jory Griffin

Fact sheet on Diophantine condition

For $\kappa \geq d$, we say that $\alpha \in \mathbb{R}^d$ is Diophantine of type κ if there exists $C_{\kappa} > 0$ such that

 $|\boldsymbol{\alpha} \cdot \boldsymbol{m}|_{\mathbb{Z}} > C_{\kappa} |\boldsymbol{m}|^{-\kappa}$

for any $m \in \mathbb{Z}^d \setminus \{0\}$, where $|\cdot|$ denotes the supremum norm of \mathbb{R}^d , and $|\cdot|_{\mathbb{Z}}$ denotes the supremum distance from $0 \in \mathbb{T}^d$. We will in fact only require a milder Diophantine condition. Define the function $\zeta : \mathbb{R}^d \times \mathbb{R}_{>0} \to \mathbb{N}$ by

$$\zeta(oldsymbol{lpha},T):=\min\left\{N\in\mathbb{N}:\min_{\substack{oldsymbol{m}\in\mathbb{Z}^d\setminus\{0\}\0<|oldsymbol{m}|\leq N}}|oldsymbol{lpha}\cdotoldsymbol{m}|_{\mathbb{Z}}\leqrac{1}{T}
ight\}.$$

In view of Dirichlet's pigeon hole principle, we have that $\zeta(\alpha, T) \leq T^{1/d}$ and, if α is of Diophantine type $\kappa \geq d$, then $\zeta(\alpha, T) > (C_{\kappa}T)^{\frac{1}{\kappa}}$.

We say
$$\alpha \in \mathbb{R}^d$$
 is (r, μ, ν) -vaguely Diophantine, if $\sum_{l=1}^{\infty} l^r 2^{\mu} \zeta(\alpha, 2^{l-1})^{-\nu} < \infty$.

Thus, if α is Diophantine type κ , then it is also (r, μ, ν) -vaguely Diophantine for $\kappa \mu < \nu$.

If α satisfies the generalised s-Brjuno Diophantine condition^a $\sum_{n=0}^{\infty} 2^{-\frac{n}{s}} \max_{\substack{m \in \mathbb{Z}^d \setminus \{0\}\\0 < |m| \le 2^n}} \log \frac{1}{|\alpha \cdot m|_{\mathbb{Z}}} < \infty$

then it is $(r, 0, \nu)$ -vaguely Diophantine for $s > \frac{r+1}{\nu}$.

^aBounemoura & Féjoz, Ann Sc Norm Super Pisa Cl Sci (2019) Lopes Dias & Gaivão, J Diff Equ 267 (2019)

Gap distribution for directions in a 2d affine lattice

Gap distribution of directions in 2d affine lattice vs. Elkies-McMullen distribution:

Both proofs use Ratner's measure classification theorem on the same space for same test function – but for different unipotent flows! Tail is $\sim \frac{3}{\pi^2}s^{-3}$. Note that for $\alpha = 0$ we would (taking only the visible lattice points) recover the classical Hall distribution (Hall, J LMS 1970) for the gaps between Farey points. Hall density has tail $\sim \frac{36}{\pi^4}s^{-3}$.

Conclusion

- Complete understanding of the Boltzmann-Grad limit for the quantum Lorentz gas remains major challenge; currently only annealed limit for random scatterer configuration fully understood
- Periodic setting leads to subtle lattice point problems and requires a major hypothesis (Berry-Tabor conjecture)
- Is the long-time limit of the macroscopic process (super-) diffusive? Other scalling limits: $h \ll r$ or $r \ll h$? Extension to quasicrystals or other scatterer configurations with long-range correlations?

Happy Birthday, Maciej!