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Electronic evolution

Equation for electrons moving through a 2D crystal:

i
∂ψ

∂t
= Hψ, ψ ∈ `2(Z2,Cd), where:

ψ is the wavefunction (|ψ(t, n)|2 is probability that electron at t is at n)
H is the Hamiltonian of the crystal (typically graph Laplacian weighted
accorded to tunnelling probabilities)

Assumption: H is selfadjoint and short-range (
∣∣H(n,m)

∣∣ ≤ e−ν|n−m|)

Example: Wallace’s model for graphene
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Conductors versus insulators

We say that a system with Hamiltonian H is:

conducting at energy E ⇔ E ∈ Σ(H) (Σ(H): spectrum of H)

insulating at energy E ⇔ E /∈ Σ(H) (Σ(H): spectrum of H)

Example: the Wallace model is conducting at energy 0 (easy to see using Fourier
transform)

Example: Haldane’s model (modified for simplicity)

Hs = H0 + s · D, Dψn = i

[
ψA
n+e1
− ψA

n−e1

ψB
n−e1
− ψB

n+e1

]
, s ∈ R

D: second-nearest neighbor coupling that breaks time-reversal invariance.
There is a spectral gap at energy 0: Hs is insulating at energy 0.
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Topology in insulators

Fact: The space of insulating Hamiltonians at a fixed energy E is disconnected.

Selfadjoint short-range Hamiltonians

insulating
Hamiltonians

σb = −1

σb = 1

σb = 0

Fact: Its connected components are indexed by the Hall conductance:

σb(H)
def
= Tr iP

[
[P, 1n1>0], [P, 1n2>0]

]
,

where P = 1(−∞,E ](H) is the spectral projection below energy E . This trace
is well-defined, the result is an integer [Thouless–Kohmoto–Nightingale–den Nijs
’82, ... Elgart–Graf–Schecker ’05].
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Topology in insulators

Fact: The space of insulating Hamiltonians at a fixed energy E is disconnected.

Selfadjoint short-range Hamiltonians

insulating
Hamiltonians

• H−1
H+1 •

σb = −1

σb = 1

σb = 0

Fact: Its connected components are indexed by the Hall conductance:

σb(H)
def
= Tr iP

[
[P, 1n1>0], [P, 1n2>0]

]
,

where P = 1(−∞,E ](H) is the spectral projection below energy E . This trace
is well-defined, the result is an integer [Thouless–Kohmoto–Nightingale–den Nijs
’82, ... Elgart–Graf–Schecker ’05].
This gives rise to topological phases of matter (insulators).

Example: for Haldane’s model σB(Hs) = sgn(s).
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Connecting topological insulators

We consider Hamiltonians H of the form:

H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2

where H−,H+ are insulators at E with distinct Hall conductances.
Precise assumption: H = 1ΩH+1Ω + 1ΩcH−1Ωc + E ,

E selfadjoint, short range and
∣∣E (n,m)

∣∣ ≤ e−νd(n,∂Ω).
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Connecting topological insulators

We consider Hamiltonians H of the form:

H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2

where H−,H+ are insulators at E with distinct Hall conductances.

σb(H+) = 1

Ω

σb(H−) = −1

Ωc

∂Ω
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Connecting topological insulators

We consider Hamiltonians H of the form:

H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2

where H−,H+ are insulators at E with distinct Hall conductances.

In an adiabatic regime where H+ is slowly deformed to H−, there is a topological
obstruction to H being an insulator. H should conduct along ∂Ω!

Selfadjoint short-range Hamiltonians

• H−
H+ •

σb = −1

σb = 1

σb = 0
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Connecting topological insulators

We consider Hamiltonians H of the form:

H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2

where H−,H+ are insulators at E with distinct Hall conductances.

In an adiabatic regime where H+ is slowly deformed to H−, there is a topological
obstruction to H being an insulator. H should conduct along ∂Ω!

Numerical evidence for H± = H±s and Ω the top-right corner:
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Connecting topological insulators

We consider Hamiltonians H of the form:

H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2

where H−,H+ are insulators at E with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ ’23]

If Ω and Ωc contain arbitrarily large balls and σb(H+) 6= σb(H−) then
E ∈ Σ(H): H is a conductor at energy E.

Interpretation: The interface between two “large” topological phases supports
currents: the famous edge states.

Related results: [Fröhlich–Graf–Walcher ’00, Thiang ’20, Ojito ’22] for quantum
Hall Hamiltonian in asymptotically sector-like regions; [Thiang–Ledewig ’22] for
periodic operators.
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Connecting topological insulators

We consider Hamiltonians H of the form:

H =
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In fact even regardless of adiabaticity:

Theorem [DZ ’23]

If Ω and Ωc contain arbitrarily large balls and σb(H+) 6= σb(H−) then
E ∈ Σ(H): H is a conductor at energy E.

A condition on Ω is necessary: for
instance if Ω fits in a strip we
constructed examples with
E ∈ Σ(H)!

X

Ω

Ωc

H+

H−
X
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Ideas of the proof

Theorem [DZ ’23]

If Ω and Ωc contain arbitrarily large balls and σb(H+) 6= σb(H−) then
E ∈ Σ(H): H is conductor at energy E.

Proposition [DZ ’23]

Let H1,H2 be two operators with E /∈ Σ(H1) ∪ Σ(H2). There exists R > 0,
ε > 0 such that if for some x,∥∥1B(x,R)(H1 − H2)1B(x,R)

∥∥ ≤ ε
then σb(H1) = σb(H2).

“The Hall conductance is locally determined.”
How could it be unambiguously defined? Thanks to the global assumption

E /∈ Σ(H)!
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Ideas of the proof
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Ω
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= σb(H+)
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Ideas of the proof

Theorem [DZ ’23]

If Ω and Ωc contain arbitrarily large balls and σb(H+) 6= σb(H−) then
E ∈ Σ(H): H is conductor at energy E.

Proposition [DZ ’23]

Let H1,H2 be two operators with E /∈ Σ(H1) ∪ Σ(H2). There exists R > 0,
ε > 0 such that if for some x,∥∥1B(x,R)(H1 − H2)1B(x,R)

∥∥ ≤ ε
then σb(H1) = σb(H2).

Proof of theorem: Assume E /∈ Σ(H). Then we can define σb(H). Now:

H = H+ on Ω, which contains arbitrarily
large balls, so σb(H) = σb(H+).

H = H− on Ωc , which contains arbitrarily
large balls, so σb(H) = σb(H−).

So σb(H+) = σb(H−), contradiction!

σb(H)
= σb(H+)

Ω

σb(H)
= σb(H−)

Ωc
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Ideas of the proof

Proposition [DZ ’23]

Let H1,H2 be two operators with E /∈ Σ(H1) ∪ Σ(H2). There exists R > 0,
ε > 0 such that if for some x,∥∥1B(x,R)(H1 − H2)1B(x,R)

∥∥ ≤ ε (1)

then σb(H1) = σb(H2).

Proof: 1. Observe: for all x = (x1, x2), for R large:

σb(H) = Tr iP
[
[P, 1n1>0], [P, 1n2>0]

]
= Tr

[
P1n1>0P,P1n2>0P

]
= Tr

[
P1n1>x1P,P1n2>0P

]
+ Tr

[
P1x1≥n1>0P,P1n2>0P

]
= Tr

[
P1n1>x1P,P1n2>x2P

]
= Tr iP

[
[P, 1n1>x1 ], [P, 1n2>x2 ]

]
' Tr iPx,R

[
[Px,R , 1n1>x1 ], [Px,R , 1n2>x2 ]

]
, Px,R def

= 1B(x,R)P1B(x,R).

2. Note (1) ⇒ P
Br (x)
1 ' Px,R

2 .

3. So σb(H1) ' σb(H2). But these are both integers, so equality holds for ε
small, R large. �
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What is next?

Theorem [DZ ’23]

If Ω and Ωc contain arbitrarily large balls and σb(H+) 6= σb(H−) then
E ∈ Σ(H): H is conductor at energy E.

How much is the conductance?
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Bulk-edge correspondence for half-spaces

Say Ω = {x2 > 0} so that: H =

{
H+ for n2 � +1
H− for n2 � −1

.

The conductance along ∂Ω = {n2 = 0} is:

σe(H) = Tr i [H, 1n1>0] g ′(H)

where g(λ) switches from 0 to 1 as λ crosses E . Hence:
i [H, 1n1>0]: charge moving left to right
Tr( • g ′(H)): density of states near energy E

H+

H−

x1 > 0

x2 = 0
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Bulk-edge correspondence for half-spaces

Say Ω = {x2 > 0} so that: H =

{
H+ for n2 � +1
H− for n2 � −1

.

The conductance along ∂Ω = {n2 = 0} is:

σe(H) = Tr i [H, 1n1>0] g ′(H)

where g(λ) switches from 0 to 1 as λ crosses E . Hence:
i [H, 1n1>0]: charge moving left to right
Tr( • g ′(H)): density of states near energy E

Theorem

If Ω = {x2 > 0} then σe(H) = σb(H+)− σb(H−).

Long history: [Hatsugai ’93, Kellendonk–Richter–Schulz-Baldes ’02, Elbau–Graf
’02], many extensions: disorder [Elgart–Graf–Schencker ’05], Floquet systems
[Graf–Tauber ’18], continuous models [Drouot ’20, Faure ’23], etc.
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What if the edge is curved?

Return to: H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2, E /∈ Σ(H±).

Conductance along ∂Ω, across ∂W :

σΩW
e (H) = Tr i [H, 1W ] g ′(H) [Ludewig–Thiang ’22]

Necessary condition for σΩW
e (H) to be well-defined:

lim
|x|→∞

ΨΩW (x)

ln |x | = +∞, ΨΩW (x)
def
= d(x , ∂Ω) + d(x , ∂W ).

“Non-tunneling condition between ∂Ω and ∂W near spatial infinity”

Define an intersection number χΩW between ∂Ω and ∂W :

Ω Ωc

W

−1

+1

Orient Ω according to outward-pointing
normal

χΩW counts (in a signed way) how many
times a particle traveling along ∂Ω, with
direction of the orientation, enters W .
Here χΩW = 1− 1 = 0.
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What if the edge is curved?

Return to: H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2, E /∈ Σ(H±).

Conductance along ∂Ω, across ∂W :

σΩW
e (H) = Tr i [H, 1W ] g ′(H) [Ludewig–Thiang ’22]

Theorem [DZ ’24]

Under the non-tunneling condition: σΩW
e (H) = χΩW ·

(
σb(H+)− σb(H−)

)
.

“The edge conductance is the difference of Hall conductivity times the
intersection number between ∂Ω and ∂W.”

This is an index theorem for condensed matter physics!
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What if the edge is curved?

Return to: H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2, E /∈ Σ(H±).

Conductance along ∂Ω, across ∂W :

σΩW
e (H) = Tr i [H, 1W ] g ′(H) [Ludewig–Thiang ’22]

Theorem [DZ ’24]

Under the non-tunneling condition: σΩW
e (H) = χΩW ·

(
σb(H+)− σb(H−)

)
.

Ω

Ωc

H+

H−

Some condition is necessary: the “tubed” Haldane
model remains insulating, so σe(H) = 0 but ∆σb 6= 0!

A. Drouot, X. Zhu, University of Washington Bulk edge correspondence for curved interfaces



What if the edge is curved?

Return to: H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2, E /∈ Σ(H±).

Conductance along ∂Ω, across ∂W :

σΩW
e (H) = Tr i [H, 1W ] g ′(H) [Ludewig–Thiang ’22]

Theorem [DZ ’24]

Under the non-tunneling condition: σΩW
e (H) = χΩW ·

(
σb(H+)− σb(H−)

)
.

Ω Ωc

W

−1

+1

In physical situations the support of the
material Ω is fixed. But there is flexibility
on W and this informs us on the
nature of edge currents!
Here χΩW = 0: there is as much current
entering W as there is leaving W .
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What if the edge is curved?

Return to: H =

{
H+ inside Ω
H− outside Ω

, Ω ⊂ Z2, E /∈ Σ(H±).

Conductance along ∂Ω, across ∂W :

σΩW
e (H) = Tr i [H, 1W ] g ′(H) [Ludewig–Thiang ’22]

Theorem [DZ ’24]

Under the non-tunneling condition: σΩW
e (H) = χΩW ·

(
σb(H+)− σb(H−)

)
.

Ω Ωc

W

+1

Here χΩW = 1: ∆σb edge states enter
W along the lower branch of ∂Ω – so
∆σb currents exit W along the upper
branch!

Each connected component of ∂Ω has conductance ±∆σb, with ± depending on
the side of ∂Ω that Ω lies on. Quantumly a bit counter-intuitive...
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Proof of σΩW
e (H) = χΩW

(
σb(H+)− σb(H−)

)
1. After some manipulations: ∂Ω, ∂W are connected. So χΩW ∈ {−1, 0,+1}.
Say χΩW = +1. So we need σΩW

e (H) = σb(H+)− σb(H−).

2. By adapting manipulations due to [Elgart–Graf–Schencker ’05]:

σΩW
e (H) = σΩW

b (H+)− σΩW
b (H−),

σΩW
b (H±) = TrK±ΩW , K±ΩW

def
= iP±

[
[P±, 1Ω], [P±, 1W ]

]
.

Lemma [DZ ’24]

We have the bound: (where ν is the short range rate)∣∣K±ΩW (x , y)
∣∣ ≤ e−νΨΩW (x)−νΨΩW (y).

In particular σΩW
b (H±) is well defined because

lim
|x|→∞

ΨΩW (x)

ln |x | =∞.

So we need σΩW
b (H+) = σb(H+).
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Proof of σΩW
b (H+) = σb(H+)

3. Given n, we deform Ω,W to Ωn,Wn in a compact set such that:
a. Ωn = {x1 > 0} and Wn = {x2 > 0} in Bn(0).
b. ΨΩnWn satisfies

lim
|x|→∞

ΨΩnWn(x)

ln |x | = +∞ uniformly in n.

Ω
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Proof of σΩW
b (H+) = σb(H+)

3. Given n, we deform Ω,W to Ωn,Wn in a compact set such that:
a. Ωn = {x1 > 0} and Wn = {x2 > 0} in Bn(0).
b. ΨΩnWn satisfies

lim
|x|→∞

ΨΩnWn(x)

ln |x | = +∞ uniformly in n.

This construction is the hard part!
Now:

σΩW
b (H+) = σΩnWn

b (H+) = lim
n→∞

σΩnWn

b (H+)

= lim
n→∞

∑
x∈Z2

KΩnWn(x , x)

=
∑
x∈Z2

lim
n→∞

KΩnWn(x , x)

=
∑
x∈Z2

K{x1>0}{x2>0}(x , x) = σb(H+).
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Proof summary

σΩW
e (H)︸ ︷︷ ︸

conductivity of ∂Ω across W

=
∑
j︸︷︷︸

surgery

σ
ΩjWj
e (H)

=
∑
j

χΩjWj︸ ︷︷ ︸
∈{0,±1}

·
(
σ

ΩjWj

b (H+)− σΩjWj

b (H−)
)︸ ︷︷ ︸

adapted from [Graf-Elgart-Schencker]

=
∑
j

χΩjWj ·
(
σb(H+)− σb(H−)

)︸ ︷︷ ︸
deformation

= χΩW︸︷︷︸
∩# ∂Ω, ∂W

·
(
σb(H+)− σb(H−)

)︸ ︷︷ ︸
difference of bulk indices

! �
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Conclusion

We investigated conduction between distinct topological phases.

If the topological phases fill large enough regions, edge spectrum fill the
bulk gap.

The conductance (number of edge modes for translation-invariant
settings) of each connected component of the interface is σb.

These are extensions of well-known results when the boundary is
straight.

Happy birthday, Maciej!
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