Bulk edge correspondence for curved interfaces

Alexis Drouot and Xiaowen Zhu, University of Washington

Orsay conference on Analysis and PDE In honor of Maciej Zworski

Electronic evolution

Equation for electrons moving through a 2D crystal:

$$i\frac{\partial\psi}{\partial t} = H\psi, \qquad \psi \in \ell^2(\mathbb{Z}^2, \mathbb{C}^d), \qquad \text{where:}$$

ψ is the wavefunction (|ψ(t, n)|² is probability that electron at t is at n)
H is the Hamiltonian of the crystal (typically graph Laplacian weighted accorded to tunnelling probabilities)

Assumption: *H* is selfadjoint and short-range $(|H(n,m)| \le e^{-\nu |n-m|})$

Electronic evolution

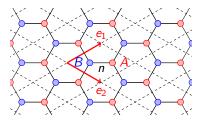
Equation for electrons moving through a 2D crystal:

$$i\frac{\partial\psi}{\partial t} = H\psi, \qquad \psi \in \ell^2(\mathbb{Z}^2, \mathbb{C}^d), \qquad \text{where:}$$

- ψ is the wavefunction $(|\psi(t, n)|^2$ is probability that electron at t is at n)
- *H* is the Hamiltonian of the crystal (typically graph Laplacian weighted accorded to tunnelling probabilities)

Assumption: *H* is selfadjoint and short-range $(|H(n,m)| \le e^{-\nu |n-m|})$

Example: Wallace's model for graphene



$$\psi = \begin{bmatrix} \psi^{A} \\ \psi^{B} \end{bmatrix}_{n} \in \ell^{2}(\mathbb{Z}^{2}, \mathbb{C}^{2}),$$
$$\begin{pmatrix} H_{0} \begin{bmatrix} \psi^{A} \\ \psi^{B} \end{bmatrix} \end{pmatrix}_{n} = \begin{bmatrix} \psi^{B}_{n+\nu_{1}} + \psi^{B}_{n+\nu_{2}} + \psi^{B}_{n} \\ \psi^{A}_{n-\nu_{1}} + \psi^{A}_{n-\nu_{2}} + \psi^{A}_{n} \end{bmatrix}.$$

Conductors versus insulators

We say that a system with Hamiltonian H is:

conducting at energy $E \Leftrightarrow E \in \Sigma(H)$ ($\Sigma(H)$: spectrum of H)

insulating at energy $E \Leftrightarrow E \notin \Sigma(H)$

Conductors versus insulators

We say that a system with Hamiltonian H is:

conducting at energy $E \Leftrightarrow E \in \Sigma(H)$ ($\Sigma(H)$: spectrum of H)

insulating at energy $E \Leftrightarrow E \notin \Sigma(H)$

Example: the Wallace model is conducting at energy 0 (easy to see using Fourier transform)

Conductors versus insulators

We say that a system with Hamiltonian H is:

conducting at energy $E \Leftrightarrow E \in \Sigma(H)$ ($\Sigma(H)$: spectrum of H) insulating at energy $E \Leftrightarrow E \notin \Sigma(H)$

Example: the Wallace model is conducting at energy 0 (easy to see using Fourier transform)

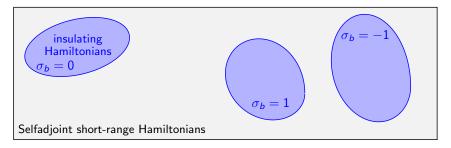
Example: Haldane's model (modified for simplicity)

$$H_{s} = H_{0} + s \cdot D, \qquad D\psi_{n} = i \begin{bmatrix} \psi_{n+e_{1}}^{A} - \psi_{n-e_{1}}^{A} \\ \psi_{n-e_{1}}^{B} - \psi_{n+e_{1}}^{B} \end{bmatrix}, \qquad s \in \mathbb{R}$$

D: second-nearest neighbor coupling that breaks time-reversal invariance. There is a spectral gap at energy 0: H_s is insulating at energy 0.

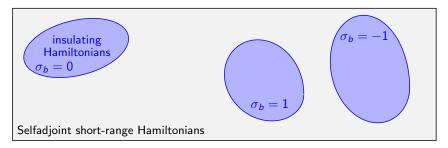
Topology in insulators

Fact: The space of insulating Hamiltonians at a fixed energy *E* is disconnected.



Topology in insulators

Fact: The space of insulating Hamiltonians at a fixed energy E is disconnected.



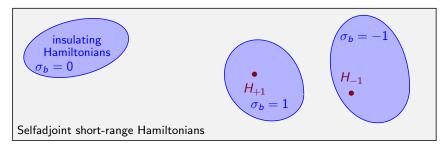
Fact: Its connected components are indexed by the Hall conductance:

$$\sigma_b(H) \stackrel{\text{\tiny def}}{=} \operatorname{Tr} iP[[P, \mathbf{1}_{n_1 > 0}], [P, \mathbf{1}_{n_2 > 0}]],$$

where $P = \mathbf{1}_{(-\infty,E]}(H)$ is the spectral projection below energy *E*. This trace is well-defined, the result is an integer [Thouless–Kohmoto–Nightingale–den Nijs '82, ... Elgart–Graf–Schecker '05].

Topology in insulators

Fact: The space of insulating Hamiltonians at a fixed energy E is disconnected.



Fact: Its connected components are indexed by the Hall conductance:

$$\sigma_b(H) \stackrel{\text{\tiny def}}{=} \operatorname{Tr} iP[[P, \mathbf{1}_{n_1 > 0}], [P, \mathbf{1}_{n_2 > 0}]],$$

where $P = \mathbf{1}_{(-\infty,E]}(H)$ is the spectral projection below energy E. This trace is well-defined, the result is an integer [Thouless–Kohmoto–Nightingale–den Nijs '82, ... Elgart–Graf–Schecker '05].

This gives rise to topological phases of matter (insulators).

Example: for Haldane's model $\sigma_B(H_s) = \operatorname{sgn}(s)$.

We consider Hamiltonians H of the form:

$$H = \left\{ egin{array}{ll} H_+ & ext{inside} & \Omega \ H_- & ext{outside} & \Omega \end{array}, \qquad \Omega \subset \mathbb{Z}^2
ight.$$

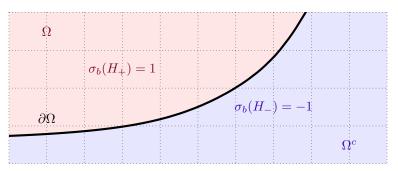
where H_- , H_+ are insulators at E with distinct Hall conductances. Precise assumption: $H = \mathbf{1}_{\Omega}H_+\mathbf{1}_{\Omega} + \mathbf{1}_{\Omega^c}H_-\mathbf{1}_{\Omega^c} + E$,

E selfadjoint, short range and $|E(n,m)| \le e^{-\nu d(n,\partial\Omega)}$.

We consider Hamiltonians H of the form:

$$H = \left\{ egin{array}{ll} H_+ & ext{inside} & \Omega \ H_- & ext{outside} & \Omega \end{array}, \qquad \Omega \subset \mathbb{Z}^2
ight.$$

where H_{-}, H_{+} are insulators at *E* with distinct Hall conductances.

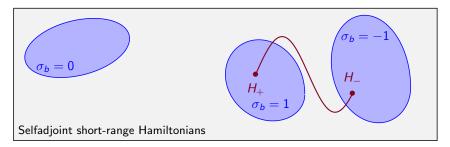


We consider Hamiltonians H of the form:

$$H = egin{cases} H_+ & ext{inside} \ \ \Omega \ H_- & ext{outside} \ \ \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_-, H_+ are insulators at *E* with distinct Hall conductances.

In an adiabatic regime where H_+ is slowly deformed to H_- , there is a **topological** obstruction to H being an insulator. H should conduct along $\partial \Omega$!



We consider Hamiltonians H of the form:

$$H = \left\{egin{array}{ll} H_+ & ext{inside} & \Omega\ H_- & ext{outside} & \Omega\ \end{array}
ight. \qquad \Omega \subset \mathbb{Z}^2$$

where H_-, H_+ are insulators at *E* with distinct Hall conductances.

In an adiabatic regime where H_+ is slowly deformed to H_- , there is a **topological** obstruction to H being an insulator. H should conduct along $\partial \Omega$!

Numerical evidence for $H_{\pm} = H_{\pm s}$ and Ω the top-right corner:

We consider Hamiltonians H of the form:

$$H = egin{cases} H_+ & ext{inside} \ \ \Omega \ H_- & ext{outside} \ \ \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_- , H_+ are insulators at E with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ '23]

If Ω and Ω^{c} contain arbitrarily large balls and $\sigma_{b}(H_{+}) \neq \sigma_{b}(H_{-})$ then $E \in \Sigma(H)$: H is a conductor at energy E.

Interpretation: The interface between two "large" topological phases supports currents: **the famous edge states.**

We consider Hamiltonians H of the form:

$$H = egin{cases} H_+ & ext{inside } \Omega \ H_- & ext{outside } \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_- , H_+ are insulators at E with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is a conductor at energy E.

Interpretation: The interface between two "large" topological phases supports currents: **the famous edge states.**

Related results: [Fröhlich–Graf–Walcher '00, Thiang '20, Ojito '22] for quantum Hall Hamiltonian in asymptotically sector-like regions; [Thiang–Ledewig '22] for periodic operators.

We consider Hamiltonians H of the form:

$$H = egin{cases} H_+ & ext{inside} \ \ \Omega \ H_- & ext{outside} \ \ \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_-, H_+ are insulators at *E* with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ '23]

If Ω and Ω^{c} contain arbitrarily large balls and $\sigma_{b}(H_{+}) \neq \sigma_{b}(H_{-})$ then $E \in \Sigma(H)$: H is a conductor at energy E.

We consider Hamiltonians H of the form:

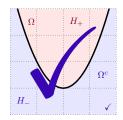
$$H = egin{cases} H_+ & ext{inside} \ \ \Omega \ H_- & ext{outside} \ \ \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_- , H_+ are insulators at E with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ '23]

If Ω and Ω^{c} contain arbitrarily large balls and $\sigma_{b}(H_{+}) \neq \sigma_{b}(H_{-})$ then $E \in \Sigma(H)$: H is a conductor at energy E.



We consider Hamiltonians H of the form:

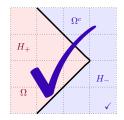
$$H = egin{cases} H_+ & ext{inside} \ \ \Omega \ H_- & ext{outside} \ \ \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_-, H_+ are insulators at *E* with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ '23]

If Ω and Ω^{c} contain arbitrarily large balls and $\sigma_{b}(H_{+}) \neq \sigma_{b}(H_{-})$ then $E \in \Sigma(H)$: H is a conductor at energy E.



We consider Hamiltonians H of the form:

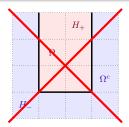
$$H = egin{cases} H_+ & ext{inside} \ \ \Omega \ H_- & ext{outside} \ \ \Omega \ \end{pmatrix}, \qquad \Omega \subset \mathbb{Z}^2$$

where H_-, H_+ are insulators at *E* with distinct Hall conductances.

In fact even regardless of adiabaticity:

Theorem [DZ '23]

If Ω and Ω^{c} contain arbitrarily large balls and $\sigma_{b}(H_{+}) \neq \sigma_{b}(H_{-})$ then $E \in \Sigma(H)$: H is a conductor at energy E.



Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

Proposition [DZ '23]

Let H_1, H_2 be two operators with $E \notin \Sigma(H_1) \cup \Sigma(H_2)$. There exists R > 0, $\varepsilon > 0$ such that if for some x,

$$\left\|\mathbf{1}_{B(x,R)}(H_1-H_2)\mathbf{1}_{B(x,R)}\right\| \leq \varepsilon$$

then $\sigma_b(H_1) = \sigma_b(H_2)$.

Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

Proposition [DZ '23]

Let H_1, H_2 be two operators with $E \notin \Sigma(H_1) \cup \Sigma(H_2)$. There exists R > 0, $\varepsilon > 0$ such that if for some x,

$$\left\|\mathbf{1}_{B(x,R)}(H_1-H_2)\mathbf{1}_{B(x,R)}\right\| \leq \varepsilon$$

then $\sigma_b(H_1) = \sigma_b(H_2)$.

"The Hall conductance is locally determined." How could it be unambiguously defined? Thanks to the **global assumption** $E \notin \Sigma(H)!$

Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

Proposition [DZ '23]

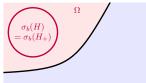
Let H_1, H_2 be two operators with $E \notin \Sigma(H_1) \cup \Sigma(H_2)$. There exists R > 0, $\varepsilon > 0$ such that if for some x,

$$\left\|\mathbf{1}_{B(x,R)}(H_1-H_2)\mathbf{1}_{B(x,R)}\right\| \leq \varepsilon$$

then $\sigma_b(H_1) = \sigma_b(H_2)$.

Proof of theorem: Assume $E \notin \Sigma(H)$. Then we can define $\sigma_b(H)$. Now:

• $H = H_+$ on Ω , which contains arbitrarily large balls, so $\sigma_b(H) = \sigma_b(H_+)$.



Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

Proposition [DZ '23]

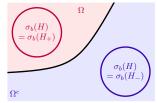
Let H_1, H_2 be two operators with $E \notin \Sigma(H_1) \cup \Sigma(H_2)$. There exists R > 0, $\varepsilon > 0$ such that if for some x,

$$\left\|\mathbf{1}_{B(x,R)}(H_1-H_2)\mathbf{1}_{B(x,R)}\right\|\leq \varepsilon$$

then $\sigma_b(H_1) = \sigma_b(H_2)$.

Proof of theorem: Assume $E \notin \Sigma(H)$. Then we can define $\sigma_b(H)$. Now:

- $H = H_+$ on Ω , which contains arbitrarily large balls, so $\sigma_b(H) = \sigma_b(H_+)$.
- $H = H_{-}$ on Ω^{c} , which contains arbitrarily large balls, so $\sigma_{b}(H) = \sigma_{b}(H_{-})$.



Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

Proposition [DZ '23]

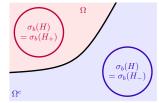
Let H_1, H_2 be two operators with $E \notin \Sigma(H_1) \cup \Sigma(H_2)$. There exists R > 0, $\varepsilon > 0$ such that if for some x,

$$\left|\mathbf{1}_{B(x,R)}(H_1-H_2)\mathbf{1}_{B(x,R)}\right| \leq \varepsilon$$

then $\sigma_b(H_1) = \sigma_b(H_2)$.

Proof of theorem: Assume $E \notin \Sigma(H)$. Then we can define $\sigma_b(H)$. Now:

- $H = H_+$ on Ω , which contains arbitrarily large balls, so $\sigma_b(H) = \sigma_b(H_+)$.
- $H = H_{-}$ on Ω^{c} , which contains arbitrarily large balls, so $\sigma_{b}(H) = \sigma_{b}(H_{-})$.
- So $\sigma_b(H_+) = \sigma_b(H_-)$, contradiction!



Proposition [DZ '23]

Let H_1, H_2 be two operators with $E \notin \Sigma(H_1) \cup \Sigma(H_2)$. There exists R > 0, $\varepsilon > 0$ such that if for some x,

$$\left\|\mathbf{1}_{B(x,R)}(H_1 - H_2)\mathbf{1}_{B(x,R)}\right\| \le \varepsilon \tag{1}$$

then $\sigma_b(H_1) = \sigma_b(H_2)$.

Proof: 1. Observe: for all $x = (x_1, x_2)$, for *R* large: $\sigma_b(H) = \operatorname{Tr} iP[[P, \mathbf{1}_{n_1>0}], [P, \mathbf{1}_{n_2>0}]] = \operatorname{Tr} [P\mathbf{1}_{n_1>0}P, P\mathbf{1}_{n_2>0}P]$ $= \operatorname{Tr} [P\mathbf{1}_{n_1>x_1}P, P\mathbf{1}_{n_2>0}P] + \operatorname{Tr} [P\mathbf{1}_{x_1\geq n_1>0}P, P\mathbf{1}_{n_2>0}P]$ $= \operatorname{Tr} [P\mathbf{1}_{n_1>x_1}P, P\mathbf{1}_{n_2>x_2}P] = \operatorname{Tr} iP[[P, \mathbf{1}_{n_1>x_1}], [P, \mathbf{1}_{n_2>x_2}]]$ $\simeq \operatorname{Tr} iP^{x,R}[[P^{x,R}, \mathbf{1}_{n_1>x_1}], [P^{x,R}, \mathbf{1}_{n_2>x_2}]], P^{x,R} \stackrel{\text{def}}{=} \mathbf{1}_{B(x,R)}P\mathbf{1}_{B(x,R)}.$

2. Note (1) $\Rightarrow P_1^{B_r(x)} \simeq P_2^{x,R}$.

3. So $\sigma_b(H_1) \simeq \sigma_b(H_2)$. But these are both integers, so equality holds for ε small, *R* large. \Box

Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

How much is the conductance?

Theorem [DZ '23]

If Ω and Ω^c contain arbitrarily large balls and $\sigma_b(H_+) \neq \sigma_b(H_-)$ then $E \in \Sigma(H)$: H is conductor at energy E.

How much is the conductance?

Bulk-edge correspondence for half-spaces

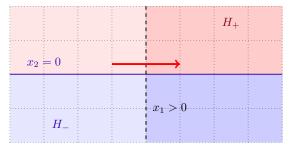
Say
$$\Omega = \{x_2 > 0\}$$
 so that: $H = \begin{cases} H_+ & \text{for } n_2 \gg +1 \\ H_- & \text{for } n_2 \ll -1 \end{cases}$

The **conductance** along $\partial \Omega = \{n_2 = 0\}$ is:

$$\sigma_e(H) = \operatorname{Tr} i[H, \mathbf{1}_{n_1 > 0}] g'(H)$$

where $g(\lambda)$ switches from 0 to 1 as λ crosses *E*. Hence:

- *i*[*H*, 1_{n1>0}]: charge moving left to right
 Tr(g'(*H*)): density of states near energy *E*
 - $\Gamma(\bullet g^{*}(H))$: density of states hear energy E



Bulk-edge correspondence for half-spaces

Say
$$\Omega = \{x_2 > 0\}$$
 so that: $H = \begin{cases} H_+ & \text{for } n_2 \gg +1 \\ H_- & \text{for } n_2 \ll -1 \end{cases}$

The **conductance** along $\partial \Omega = \{n_2 = 0\}$ is:

$$\sigma_e(H) = \operatorname{Tr} i[H, 1_{n_1 > 0}] g'(H)$$

where $g(\lambda)$ switches from 0 to 1 as λ crosses *E*. Hence:

- *i*[*H*, **1**_{*n*1>0}]: charge moving left to right
- Tr(g'(H)): density of states near energy E

Theorem

If
$$\Omega = \{x_2 > 0\}$$
 then $\sigma_e(H) = \sigma_b(H_+) - \sigma_b(H_-)$.

Long history: [Hatsugai '93, Kellendonk–Richter–Schulz-Baldes '02, Elbau–Graf '02], many extensions: disorder [Elgart–Graf–Schencker '05], Floquet systems [Graf–Tauber '18], continuous models [Drouot '20, Faure '23], etc.

$$\begin{array}{lll} \textbf{Return to:} & H = \begin{cases} H_+ & \text{inside } \Omega \\ H_- & \text{outside } \Omega \end{cases}, & \Omega \subset \mathbb{Z}^2, & E \notin \Sigma(H_\pm). \end{cases}$$

Conductance along $\partial \Omega$, across ∂W :

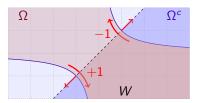
$$\sigma_e^{\Omega W}(H) = \operatorname{Tr} i[H, \mathbf{1}_W] g'(H) \qquad [Ludewig-Thiang '22]$$

Necessary condition for $\sigma_e^{\Omega W}(H)$ to be well-defined:

$$\lim_{|x|\to\infty}\frac{\Psi_{\Omega W}(x)}{\ln|x|}=+\infty,\qquad \Psi_{\Omega W}(x)\stackrel{\text{\tiny def}}{=} d(x,\partial\Omega)+d(x,\partial W).$$

"Non-tunneling condition between $\partial \Omega$ and ∂W near spatial infinity"

Define an **intersection number** $\chi_{\Omega W}$ between $\partial \Omega$ and ∂W :



- Orient Ω according to outward-pointing normal
- $\chi_{\Omega W}$ counts (in a signed way) how many times a particle traveling along $\partial \Omega$, with direction of the orientation, enters W. Here $\chi_{\Omega W} = 1 - 1 = 0$.

$$\begin{array}{lll} \textbf{Return to:} & H = \left\{ \begin{array}{ll} H_+ & \text{inside } \Omega \\ H_- & \text{outside } \Omega \end{array} \right, & \Omega \subset \mathbb{Z}^2, & E \notin \Sigma(H_\pm). \end{array} \right.$$

Conductance along $\partial \Omega$, across ∂W :

$$\sigma_e^{\Omega W}(H) = \operatorname{Tr} i[H, \mathbf{1}_W] g'(H)$$
 [Ludewig–Thiang '22]

Theorem [DZ '24]

Under the non-tunneling condition: $\sigma_e^{\Omega W}(H) = \chi_{\Omega W} \cdot (\sigma_b(H_+) - \sigma_b(H_-)).$

"The edge conductance is the difference of Hall conductivity times the intersection number between $\partial \Omega$ and ∂W ."

This is an index theorem for condensed matter physics!

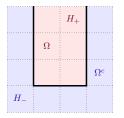
$$\begin{array}{lll} \textbf{Return to:} & H = \left\{ \begin{array}{ll} H_+ & \text{inside } \Omega \\ H_- & \text{outside } \Omega \end{array} \right., & \Omega \subset \mathbb{Z}^2, & E \notin \Sigma(H_\pm). \end{array}$$

Conductance along $\partial \Omega$, across ∂W :

$$\sigma_e^{\Omega W}(H) = \operatorname{Tr} i[H, \mathbf{1}_W] g'(H)$$
 [Ludewig–Thiang '22]

Theorem [DZ '24]

Under the non-tunneling condition: $\sigma_e^{\Omega W}(H) = \chi_{\Omega W} \cdot (\sigma_b(H_+) - \sigma_b(H_-)).$



Some condition is necessary: the "tubed" Haldane model remains insulating, so $\sigma_e(H) = 0$ but $\Delta \sigma_b \neq 0!$

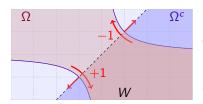
$$\begin{array}{lll} \textbf{Return to:} & H = \left\{ \begin{array}{ll} H_+ & \text{inside } \Omega \\ H_- & \text{outside } \Omega \end{array} \right., & \Omega \subset \mathbb{Z}^2, & E \notin \Sigma(H_\pm). \end{array}$$

Conductance along $\partial \Omega$, across ∂W :

$$\sigma_e^{\Omega W}(H) = \operatorname{Tr} i[H, \mathbf{1}_W] g'(H)$$
 [Ludewig–Thiang '22]

Theorem [DZ '24]

Under the non-tunneling condition: $\sigma_{e}^{\Omega W}(H) = \chi_{\Omega W} \cdot (\sigma_{b}(H_{+}) - \sigma_{b}(H_{-})).$



In physical situations the support of the material Ω is fixed. But there is flexibility on W and this informs us on the nature of edge currents! Here $\chi_{\Omega W} = 0$: there is as much current entering W as there is leaving W.

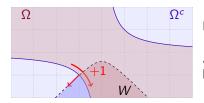
$$\begin{array}{lll} \textbf{Return to:} & H = \left\{ \begin{array}{ll} H_+ & \text{inside } \Omega \\ H_- & \text{outside } \Omega \end{array} \right., & \Omega \subset \mathbb{Z}^2, & E \notin \Sigma(H_\pm). \end{array}$$

Conductance along $\partial \Omega$, across ∂W :

$$\sigma_e^{\Omega W}(H) = \operatorname{Tr} i[H, \mathbf{1}_W] g'(H)$$
 [Ludewig–Thiang '22]

Theorem [DZ '24]

Under the non-tunneling condition: $\sigma_e^{\Omega W}(H) = \chi_{\Omega W} \cdot (\sigma_b(H_+) - \sigma_b(H_-)).$



Here $\chi_{\Omega W} = 1$: $\Delta \sigma_b$ edge states enter W along the lower branch of $\partial \Omega$ – so $\Delta \sigma_b$ currents exit W along the upper branch!

Each connected component of $\partial\Omega$ has conductance $\pm\Delta\sigma_b$, with \pm depending on the side of $\partial\Omega$ that Ω lies on. Quantumly a bit counter-intuitive...

Proof of $\sigma_e^{\Omega W}(H) = \chi_{\Omega W} (\sigma_b(H_+) - \sigma_b(H_-))$

1. After some manipulations: $\partial\Omega$, ∂W are connected. So $\chi_{\Omega W} \in \{-1, 0, +1\}$. Say $\chi_{\Omega W} = +1$. So we need $\sigma_e^{\Omega W}(H) = \sigma_b(H_+) - \sigma_b(H_-)$.

2. By adapting manipulations due to [Elgart-Graf-Schencker '05]:

$$\begin{split} \sigma_{e}^{\Omega W}(H) &= \sigma_{b}^{\Omega W}(H_{+}) - \sigma_{b}^{\Omega W}(H_{-}), \\ \sigma_{b}^{\Omega W}(H_{\pm}) &= \operatorname{Tr} K_{\Omega W}^{\pm}, \qquad K_{\Omega W}^{\pm} \stackrel{\text{def}}{=} i P_{\pm} \big[[P_{\pm}, \mathbf{1}_{\Omega}], [P_{\pm}, \mathbf{1}_{W}] \big]. \end{split}$$

Lemma [DZ '24]

We have the bound: (where ν is the short range rate)

$$\left| K^{\pm}_{\Omega W}(x,y) \right| \leq e^{-\nu \Psi_{\Omega W}(x) - \nu \Psi_{\Omega W}(y)}.$$

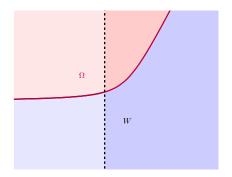
In particular $\sigma_b^{\Omega W}(H_{\pm})$ is well defined because

$$\lim_{|x|\to\infty}\frac{\Psi_{\Omega W}(x)}{\ln|x|}=\infty.$$

So we need $\sigma_b^{\Omega W}(H_+) = \sigma_b(H_+)$.

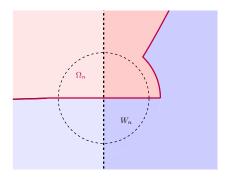
3. Given *n*, we deform Ω , *W* to Ω_n , W_n in a compact set such that: a. $\Omega_n = \{x_1 > 0\}$ and $W_n = \{x_2 > 0\}$ in $B_n(0)$. b. $\Psi_{\Omega_n W_n}$ satisfies

$$\lim_{|x|\to\infty}\frac{\Psi_{\Omega_n W_n}(x)}{\ln |x|} = +\infty \quad \text{uniformly in } n.$$



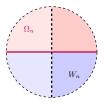
3. Given *n*, we deform Ω , *W* to Ω_n , W_n in a compact set such that: a. $\Omega_n = \{x_1 > 0\}$ and $W_n = \{x_2 > 0\}$ in $B_n(0)$. b. $\Psi_{\Omega_n W_n}$ satisfies

$$\lim_{|x|\to\infty}\frac{\Psi_{\Omega_n W_n}(x)}{\ln |x|} = +\infty \quad \text{uniformly in } n.$$



3. Given *n*, we deform Ω , *W* to Ω_n , W_n in a compact set such that: a. $\Omega_n = \{x_1 > 0\}$ and $W_n = \{x_2 > 0\}$ in $B_n(0)$. b. $\Psi_{\Omega_n W_n}$ satisfies

$$\lim_{|x|\to\infty}\frac{\Psi_{\Omega_n W_n}(x)}{\ln |x|} = +\infty \qquad \text{uniformly in } n.$$



3. Given *n*, we deform Ω , *W* to Ω_n , W_n in a compact set such that: a. $\Omega_n = \{x_1 > 0\}$ and $W_n = \{x_2 > 0\}$ in $B_n(0)$. b. $\Psi_{\Omega_n W_n}$ satisfies

$$\lim_{|x|\to\infty}\frac{\Psi_{\Omega_nW_n}(x)}{\ln|x|}=+\infty \qquad \text{uniformly in } n.$$

This construction is the hard part! Now:

$$\sigma_b^{\Omega W}(H_+) = \sigma_b^{\Omega_n W_n}(H_+) = \lim_{n \to \infty} \sigma_b^{\Omega_n W_n}(H_+)$$
$$= \lim_{n \to \infty} \sum_{x \in \mathbb{Z}^2} K_{\Omega_n W_n}(x, x)$$
$$= \sum_{x \in \mathbb{Z}^2} \lim_{n \to \infty} K_{\Omega_n W_n}(x, x)$$
$$= \sum_{x \in \mathbb{Z}^2} K_{\{x_1 > 0\}\{x_2 > 0\}}(x, x) = \sigma_b(H_+).$$

Proof summary

$$\begin{split} \underbrace{\sigma_{e}^{\Omega W}(H)}_{\text{conductivity of }\partial\Omega \text{ across }W} &= \sum_{j} \sigma_{e}^{\Omega_{j}W_{j}}(H) \\ &= \sum_{j} \underbrace{\chi_{\Omega_{j}W_{j}}}_{\in \{0,\pm 1\}} \cdot \underbrace{\left(\sigma_{b}^{\Omega_{j}W_{j}}(H_{+}) - \sigma_{b}^{\Omega_{j}W_{j}}(H_{-})\right)}_{\text{adapted from [Graf-Elgart-Schencker]}} \\ &= \sum_{j} \chi_{\Omega_{j}W_{j}} \cdot \underbrace{\left(\sigma_{b}(H_{+}) - \sigma_{b}(H_{-})\right)}_{\text{deformation}} \\ &= \underbrace{\chi_{\Omega W}}_{\cap \# \ \partial\Omega, \ \partialW} \cdot \underbrace{\left(\sigma_{b}(H_{+}) - \sigma_{b}(H_{-})\right)}_{\text{difference of bulk indices}} \end{split}$$

Conclusion

- We investigated conduction between distinct topological phases.
- If the topological phases fill large enough regions, edge spectrum fill the bulk gap.
- The conductance (number of edge modes for translation-invariant settings) of each connected component of the interface is *σ*_b.
- These are extensions of well-known results when the boundary is straight.

Happy birthday, Maciej!