

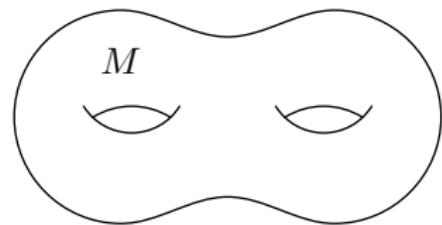
Control of eigenfunctions on negatively curved manifolds

Semyon Dyatlov (MIT)

Jan 5, 2026

Control of eigenfunctions on surfaces

- (M, g) negatively curved surface
- Geodesic flow $\varphi^t : SM \rightarrow SM$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos



$$(-\Delta_g - \lambda^2)u = 0, \quad \|u\|_{L^2} = 1$$

Theorem 1

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$\|u\|_{L^2(\Omega)} \geq c > 0$$

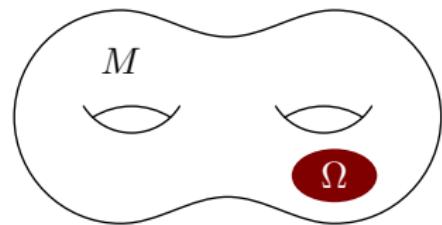
where c depends on M, Ω but not on λ

Constant curvature: D-Jin '18, using D-Zahl '16 and Bourgain-D '18

Variable curvature: D-Jin–Nonnenmacher '22, using Bourgain-D '18

Control of eigenfunctions on surfaces

- (M, g) negatively curved surface
- Geodesic flow $\varphi^t : SM \rightarrow SM$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos



$$(-\Delta_g - \lambda^2)u = 0, \quad \|u\|_{L^2} = 1$$

Theorem 1

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$\|u\|_{L^2(\Omega)} \geq c > 0$$

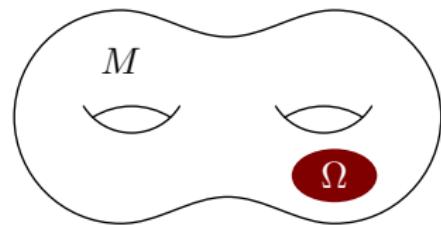
where c depends on M, Ω but not on λ

Constant curvature: D-Jin '18, using D-Zahl '16 and Bourgain-D '18

Variable curvature: D-Jin-Nonnenmacher '22, using Bourgain-D '18

Control of eigenfunctions on surfaces

- (M, g) negatively curved surface
- Geodesic flow $\varphi^t : SM \rightarrow SM$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos



$$(-\Delta_g - \lambda^2)u = 0, \quad \|u\|_{L^2} = 1$$

Theorem 1

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$\|u\|_{L^2(\Omega)} \geq c > 0$$

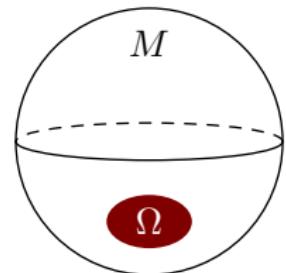
where c depends on M, Ω but not on λ

Logunov–Malinnikova '18: $c = c(\lambda, \Omega) \sim (\text{vol}(\Omega)/C)^\lambda$ for any (M, g)

Our result is interesting for fixed Ω in the high frequency limit $\lambda \rightarrow \infty$

Control of eigenfunctions on surfaces

- (M, g) negatively curved surface
- Geodesic flow $\varphi^t : SM \rightarrow SM$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos



$$(-\Delta_g - \lambda^2)u = 0, \quad \|u\|_{L^2} = 1$$

Theorem 1

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$\|u\|_{L^2(\Omega)} \geq c > 0$$

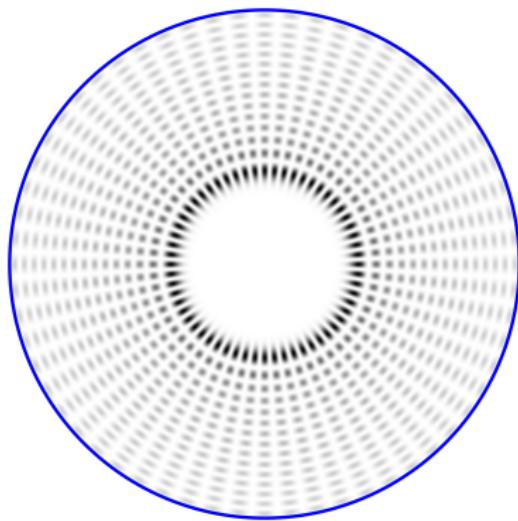
where c depends on M, Ω but not on λ

The chaotic nature of geodesic flow is important

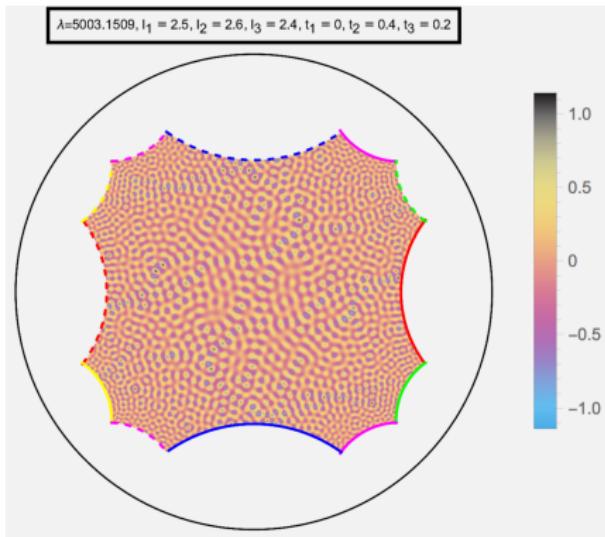
For example, Theorem 1 is false if M is the round sphere

An illustration

Picture on the right courtesy of Alex Strohmaier, using [Strohmaier–Uski '12](#)



Disk (Dirichlet b.c.)
Whitespace in the middle



Hyperbolic surface
No whitespace

Microlocal analysis

Localization in **position** and **frequency** using **semiclassical quantization**

$$a(\textcolor{blue}{x}, \xi) \in C^\infty(T^*M) \mapsto \text{Op}_h(a) = a\left(\textcolor{blue}{x}, \frac{\hbar}{i} \partial_{\textcolor{blue}{x}}\right) : C^\infty(M) \rightarrow C^\infty(M)$$

Examples (on \mathbb{R}^n): $\text{Op}_h(x_j)u = x_j u$, $\text{Op}_h(\xi_j)u = \frac{\hbar}{i} \partial_{x_j} u$

We put $\hbar := \lambda^{-1} \ll 1$ where λ^2 is the Laplace eigenvalue

Properties of quantization in the **semiclassical limit** $\hbar \rightarrow 0$

- Product Rule: $\text{Op}_h(a) \text{Op}_h(b) = \text{Op}_h(ab) + \mathcal{O}(\hbar)$
- Adjoint Rule: $\text{Op}_h(a)^* = \text{Op}_h(\bar{a}) + \mathcal{O}(\hbar)$
- L^2 boundedness: $\sup |a| < \infty \implies \|\text{Op}_h(a)\|_{L^2 \rightarrow L^2} = \mathcal{O}(1)$
- Egorov's Theorem: $U(-t) \text{Op}_h(a) U(t) = \text{Op}_h(a \circ \varphi^t) + \mathcal{O}(\hbar)$
where $U(t) = e^{-it\sqrt{-\Delta}}$ is the half-wave propagator
and $\varphi^t : T^*M \rightarrow T^*M$ is the homogeneous geodesic flow

Microlocal analysis

Localization in **position** and **frequency** using **semiclassical quantization**

$$a(\textcolor{blue}{x}, \xi) \in C^\infty(T^*M) \mapsto \text{Op}_h(a) = a\left(\textcolor{blue}{x}, \frac{\hbar}{i} \partial_{\textcolor{blue}{x}}\right) : C^\infty(M) \rightarrow C^\infty(M)$$

Examples (on \mathbb{R}^n): $\text{Op}_h(x_j)u = x_j u$, $\text{Op}_h(\xi_j)u = \frac{\hbar}{i} \partial_{x_j} u$

We put $\hbar := \lambda^{-1} \ll 1$ where λ^2 is the Laplace eigenvalue

Properties of quantization in the **semiclassical limit** $\hbar \rightarrow 0$

- Product Rule: $\text{Op}_h(a) \text{Op}_h(b) = \text{Op}_h(ab) + \mathcal{O}(\hbar)$
- Adjoint Rule: $\text{Op}_h(a)^* = \text{Op}_h(\bar{a}) + \mathcal{O}(\hbar)$
- L^2 boundedness: $\sup |a| < \infty \implies \|\text{Op}_h(a)\|_{L^2 \rightarrow L^2} = \mathcal{O}(1)$
- Egorov's Theorem: $U(-t) \text{Op}_h(a) U(t) = \text{Op}_h(a \circ \varphi^t) + \mathcal{O}(\hbar)$
where $U(t) = e^{-it\sqrt{-\Delta}}$ is the half-wave propagator
and $\varphi^t : T^*M \rightarrow T^*M$ is the homogeneous geodesic flow

Microlocal analysis

Localization in **position** and **frequency** using **semiclassical quantization**

$$a(x, \xi) \in C^\infty(T^*M) \mapsto \text{Op}_h(a) = a\left(x, \frac{\hbar}{i} \partial_x\right) : C^\infty(M) \rightarrow C^\infty(M)$$

Examples (on \mathbb{R}^n): $\text{Op}_h(x_j)u = x_j u$, $\text{Op}_h(\xi_j)u = \frac{\hbar}{i} \partial_{x_j} u$

We put $\hbar := \lambda^{-1} \ll 1$ where λ^2 is the Laplace eigenvalue

Properties of quantization in the **semiclassical limit** $\hbar \rightarrow 0$

- **Product Rule:** $\text{Op}_h(a) \text{Op}_h(b) = \text{Op}_h(ab) + \mathcal{O}(\hbar)$
- **Adjoint Rule:** $\text{Op}_h(a)^* = \text{Op}_h(\bar{a}) + \mathcal{O}(\hbar)$
- **L^2 boundedness:** $\sup |a| < \infty \implies \|\text{Op}_h(a)\|_{L^2 \rightarrow L^2} = \mathcal{O}(1)$
- **Egorov's Theorem:** $U(-t) \text{Op}_h(a) U(t) = \text{Op}_h(a \circ \varphi^t) + \mathcal{O}(\hbar)$
where $U(t) = e^{-it\sqrt{-\Delta}}$ is the half-wave propagator
and $\varphi^t : T^*M \rightarrow T^*M$ is the homogeneous geodesic flow

Microlocal analysis

Localization in **position** and **frequency** using **semiclassical quantization**

$$a(\textcolor{blue}{x}, \xi) \in C^\infty(T^*M) \mapsto \text{Op}_h(a) = a\left(\textcolor{blue}{x}, \frac{\hbar}{i} \partial_{\textcolor{blue}{x}}\right) : C^\infty(M) \rightarrow C^\infty(M)$$

Examples (on \mathbb{R}^n): $\text{Op}_h(x_j)u = x_j u$, $\text{Op}_h(\xi_j)u = \frac{\hbar}{i} \partial_{x_j} u$

We put $\hbar := \lambda^{-1} \ll 1$ where λ^2 is the Laplace eigenvalue

Properties of quantization in the **semiclassical limit** $\hbar \rightarrow 0$

- Product Rule: $\text{Op}_h(a) \text{Op}_h(b) = \text{Op}_h(ab) + \mathcal{O}(\hbar)$
- Adjoint Rule: $\text{Op}_h(a)^* = \text{Op}_h(\bar{a}) + \mathcal{O}(\hbar)$
- L^2 boundedness: $\sup |a| < \infty \implies \|\text{Op}_h(a)\|_{L^2 \rightarrow L^2} = \mathcal{O}(1)$
- Egorov's Theorem: $U(-t) \text{Op}_h(a) U(t) = \text{Op}_h(a \circ \varphi^t) + \mathcal{O}(\hbar)$
where $U(t) = e^{-it\sqrt{-\Delta}}$ is the half-wave propagator
and $\varphi^t : T^*M \rightarrow T^*M$ is the homogeneous geodesic flow

Semiclassical measures

Take a high frequency sequence of Laplace eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \|u_j\|_{L^2(M)} = 1, \quad \lambda_j \rightarrow \infty$$

We say u_j converges weakly to a measure μ on T^*M if, with $h_j := \lambda_j^{-1}$,

$$\forall a \in C_c^\infty(T^*M) : \quad \langle \text{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \rightarrow \int_{T^*M} a \, d\mu \quad \text{as } j \rightarrow \infty$$

Call such limits μ semiclassical measures

Basic properties

- μ is a probability measure, $\text{supp } \mu \subset S^*M$
- μ is invariant under the geodesic flow $\varphi^t : S^*M \rightarrow S^*M$
- The pushforward of μ to M is the weak limit of $|u_j(x)|^2 \, d\text{vol}_g$
- Natural candidate: Liouville measure $\mu_L \sim d\text{vol}$ (equidistribution)
- Natural enemy: delta measure δ_γ on a closed geodesic (scarring)

Semiclassical measures

Take a high frequency sequence of Laplace eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \|u_j\|_{L^2(M)} = 1, \quad \lambda_j \rightarrow \infty$$

We say u_j converges weakly to a measure μ on T^*M if, with $h_j := \lambda_j^{-1}$,

$$\forall a \in C_c^\infty(T^*M) : \quad \langle \text{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \rightarrow \int_{T^*M} a \, d\mu \quad \text{as } j \rightarrow \infty$$

Call such limits μ semiclassical measures

Basic properties

- μ is a probability measure, $\text{supp } \mu \subset S^*M$
- μ is invariant under the geodesic flow $\varphi^t : S^*M \rightarrow S^*M$
- The pushforward of μ to M is the weak limit of $|u_j(x)|^2 \, d\text{vol}_g$
- Natural candidate: Liouville measure $\mu_L \sim d\text{vol}$ (equidistribution)
- Natural enemy: delta measure δ_γ on a closed geodesic (scarring)

Semiclassical measures

Take a high frequency sequence of Laplace eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \|u_j\|_{L^2(M)} = 1, \quad \lambda_j \rightarrow \infty$$

We say u_j converges weakly to a measure μ on T^*M if, with $h_j := \lambda_j^{-1}$,

$$\forall a \in C_c^\infty(T^*M) : \quad \langle \text{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \rightarrow \int_{T^*M} a \, d\mu \quad \text{as } j \rightarrow \infty$$

Call such limits μ semiclassical measures

Basic properties

- μ is a probability measure, $\text{supp } \mu \subset S^*M$
- μ is invariant under the geodesic flow $\varphi^t : S^*M \rightarrow S^*M$
- The pushforward of μ to M is the weak limit of $|u_j(x)|^2 \, d\text{vol}_g$
- Natural candidate: Liouville measure $\mu_L \sim d\text{vol}$ (equidistribution)
- Natural enemy: delta measure δ_γ on a closed geodesic (scarring)

QE, QUE, and entropy bounds

- **Quantum Ergodicity:** if φ^t is ergodic with respect to μ_L then there exists a **density 1 sequence** of eigenfunctions u_j converging to μ_L [Shnirelman '74, Zelditch '87, Colin de Verdière '85, Zelditch–Zworski '96]

“Most eigenfunctions equidistribute”

- **Quantum Unique Ergodicity** conjecture: if φ^t is an Anosov flow (e.g. (M, g) is negatively curved) then the whole sequence of eigenfunctions converges to μ_L [Rudnick–Sarnak '94] Known for arithmetic hyperbolic surfaces [Lindenstrauss '06]

“All eigenfunctions equidistribute (maybe)”

- **Entropy bounds:** if φ^t is an Anosov flow then $h_{\text{KS}}(\mu) > 0$, in particular $h_{\text{KS}}(\mu) \geq \frac{d-1}{2}$ for hyperbolic d -manifolds [Anantharaman '08, Anantharaman–Nonnenmacher '07]

“Eigenfunctions cannot be too concentrated”

QE, QUE, and entropy bounds

- **Quantum Ergodicity**: if φ^t is ergodic with respect to μ_L then there exists a **density 1 sequence** of eigenfunctions u_j converging to μ_L [Shnirelman '74, Zelditch '87, Colin de Verdière '85, Zelditch–Zworski '96]

“Most eigenfunctions equidistribute”

- **Quantum Unique Ergodicity** conjecture: if φ^t is an Anosov flow (e.g. (M, g) is negatively curved) then the whole sequence of eigenfunctions converges to μ_L [Rudnick–Sarnak '94] Known for arithmetic hyperbolic surfaces [Lindenstrauss '06]

“All eigenfunctions equidistribute (maybe)”

- **Entropy bounds**: if φ^t is an Anosov flow then $h_{\text{KS}}(\mu) > 0$, in particular $h_{\text{KS}}(\mu) \geq \frac{d-1}{2}$ for hyperbolic d -manifolds [Anantharaman '08, Anantharaman–Nonnenmacher '07]

“Eigenfunctions cannot be too concentrated”

QE, QUE, and entropy bounds

- **Quantum Ergodicity**: if φ^t is ergodic with respect to μ_L then there exists a **density 1 sequence** of eigenfunctions u_j converging to μ_L [Shnirelman '74, Zelditch '87, Colin de Verdière '85, Zelditch–Zworski '96]

“Most eigenfunctions equidistribute”

- **Quantum Unique Ergodicity** conjecture: if φ^t is an Anosov flow (e.g. (M, g) is negatively curved) then the whole sequence of eigenfunctions converges to μ_L [Rudnick–Sarnak '94] Known for arithmetic hyperbolic surfaces [Lindenstrauss '06]

“All eigenfunctions equidistribute (maybe)”

- **Entropy bounds**: if φ^t is an Anosov flow then $h_{\text{KS}}(\mu) > 0$, in particular $h_{\text{KS}}(\mu) \geq \frac{d-1}{2}$ for hyperbolic d -manifolds [Anantharaman '08, Anantharaman–Nonnenmacher '07]

“Eigenfunctions cannot be too concentrated”

Support of semiclassical measures

Theorem 2 [D–Jin '18, D–Jin–Nonnenmacher '22]

Assume that (M, g) is a negatively curved surface. Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

*“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”*

- Implies Theorem 1: the weak limit of any $|u_j|^2 d \text{vol}_g$ is supported on the entire M and thus charges any nonempty open set
- Key tool: Fractal Uncertainty Principle [Bourgain–D '18]
 - If $X, Y \subset \mathbb{R}$ are porous up to scale h , then $\exists C, \beta > 0$:
$$f \in L^2(\mathbb{R}), \quad \text{supp } \widehat{f} \subset h^{-1}Y \quad \Rightarrow \quad \|\mathbb{1}_X f\|_{L^2(\mathbb{R})} \leq Ch^\beta \|f\|_{L^2(\mathbb{R})}$$

Support of semiclassical measures

Theorem 2 [D–Jin '18, D–Jin–Nonnenmacher '22]

Assume that (M, g) is a negatively curved surface. Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

*“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”*

- Implies Theorem 1: the weak limit of any $|u_j|^2 d \text{vol}_g$ is supported on the entire M and thus charges any nonempty open set
- Key tool: Fractal Uncertainty Principle [Bourgain–D '18]
 - If $X, Y \subset \mathbb{R}$ are porous up to scale h , then $\exists C, \beta > 0$:
$$f \in L^2(\mathbb{R}), \quad \text{supp } \widehat{f} \subset h^{-1}Y \quad \Rightarrow \quad \|\mathbb{1}_X f\|_{L^2(\mathbb{R})} \leq Ch^\beta \|f\|_{L^2(\mathbb{R})}$$

Support of semiclassical measures

Theorem 2 [D–Jin '18, D–Jin–Nonnenmacher '22]

Assume that (M, g) is a negatively curved surface. Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

*“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”*

- Implies Theorem 1: the weak limit of any $|u_j|^2 d \text{vol}_g$ is supported on the entire M and thus charges any nonempty open set
- Key tool: Fractal Uncertainty Principle [Bourgain–D '18]
 - If $X, Y \subset \mathbb{R}$ are porous up to scale h , then $\exists C, \beta > 0$:
$$f \in L^2(\mathbb{R}), \quad \text{supp } \widehat{f} \subset h^{-1}Y \quad \Rightarrow \quad \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq Ch^\beta \|f\|_{L^2(\mathbb{R})}$$

Sketch of the proof

- Assume (M, g) is a hyperbolic surface and $u = u_j$ is a sequence of eigenfunctions converging to a measure μ with $\text{supp } \mu \neq S^* M$
- Take nonempty open $\mathcal{U} \subset S^* M$ such that $\mu(\mathcal{U}) = 0$
- u is small on \mathcal{U} : $\text{supp } b \subset \mathcal{U} \implies \|\text{Op}_h(b)u\| = o(1)$
- By Egorov's Theorem, u is also small on $\varphi^t(\mathcal{U})$ for all $|t| \leq \log(1/h)$.
So $u = \text{Op}_h(a_+)u + o(1) = \text{Op}_h(a_-)u + o(1)$ where ($T = \log(1/h)$)

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^* M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

$\Gamma_{\pm}(T)$ consist of trajectories not intersecting the 'hole' \mathcal{U} for time T

- The sets $\Gamma_{\pm}(T)$ have fractal structure. Then Fractal Uncertainty Principle implies that $\|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, so $u = o(1)$, a contradiction!

Sketch of the proof

- Assume (M, g) is a hyperbolic surface and $u = u_j$ is a sequence of eigenfunctions converging to a measure μ with $\text{supp } \mu \neq S^* M$
- Take nonempty open $\mathcal{U} \subset S^* M$ such that $\mu(\mathcal{U}) = 0$
- u is small on \mathcal{U} : $\text{supp } b \subset \mathcal{U} \implies \|\text{Op}_h(b)u\| = o(1)$
- By Egorov's Theorem, u is also small on $\varphi^t(\mathcal{U})$ for all $|t| \leq \log(1/h)$.
So $u = \text{Op}_h(a_+)u + o(1) = \text{Op}_h(a_-)u + o(1)$ where ($T = \log(1/h)$)

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^* M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

$\Gamma_{\pm}(T)$ consist of trajectories not intersecting the 'hole' \mathcal{U} for time T

- The sets $\Gamma_{\pm}(T)$ have fractal structure. Then Fractal Uncertainty Principle implies that $\|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, so $u = o(1)$, a contradiction!

Sketch of the proof

- Assume (M, g) is a hyperbolic surface and $u = u_j$ is a sequence of eigenfunctions converging to a measure μ with $\text{supp } \mu \neq S^* M$
- Take nonempty open $\mathcal{U} \subset S^* M$ such that $\mu(\mathcal{U}) = 0$
- u is small on \mathcal{U} : $\text{supp } b \subset \mathcal{U} \implies \|\text{Op}_h(b)u\| = o(1)$
- By Egorov's Theorem, u is also small on $\varphi^t(\mathcal{U})$ for all $|t| \leq \log(1/h)$.
So $u = \text{Op}_h(a_+)u + o(1) = \text{Op}_h(a_-)u + o(1)$ where ($T = \log(1/h)$)

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^* M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

$\Gamma_{\pm}(T)$ consist of trajectories not intersecting the 'hole' \mathcal{U} for time T

- The sets $\Gamma_{\pm}(T)$ have fractal structure. Then Fractal Uncertainty Principle implies that $\|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, so $u = o(1)$, a contradiction!

Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

Here is a numerical illustration in the related case of cat maps:

$$\Gamma_-(T), \textcolor{red}{T=0}$$

$$\mathcal{U} \text{ (in white)}$$

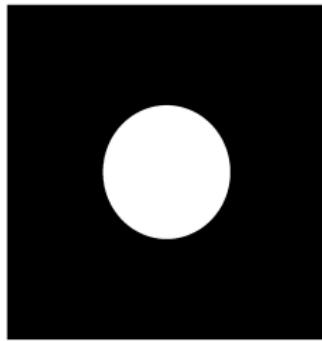
$$\Gamma_+(T), \textcolor{red}{T=0}$$

- Using the **unstable**/stable directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \| \text{Op}_h(a_+) \text{Op}_h(a_-) \| = o(1)$, finishing the proof

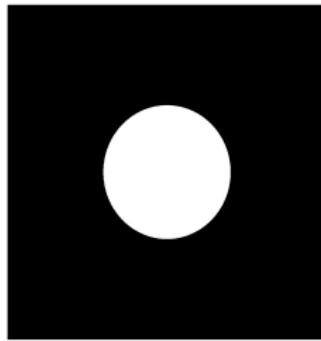
Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

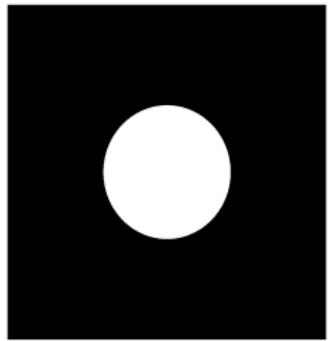
Here is a numerical illustration in the related case of cat maps:



$\Gamma_-(T), T = 0$



\mathcal{U} (in white)



$\Gamma_+(T), T = 0$

- Using the **unstable**/stable directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, finishing the proof

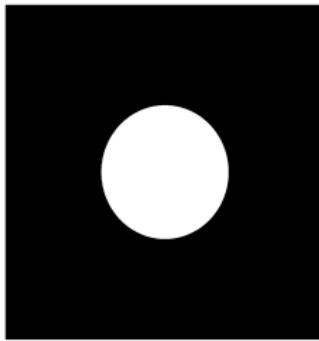
Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

Here is a numerical illustration in the related case of cat maps:



$\Gamma_-(T), T = 1$



\mathcal{U} (in white)

$\Gamma_+(T), T = 1$

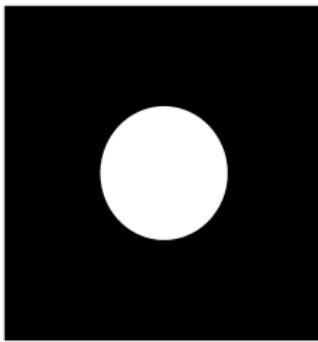
- Using the **unstable**/stable directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, finishing the proof

Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

Here is a numerical illustration in the related case of cat maps:

$\Gamma_-(T), T = 2$



\mathcal{U} (in white)

$\Gamma_+(T), T = 2$

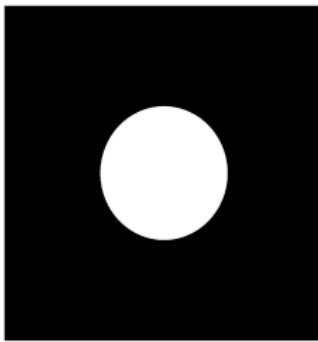
- Using the **unstable**/stable directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, finishing the proof

Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

Here is a numerical illustration in the related case of cat maps:

$\Gamma_-(T), T = 3$



\mathcal{U} (in white)

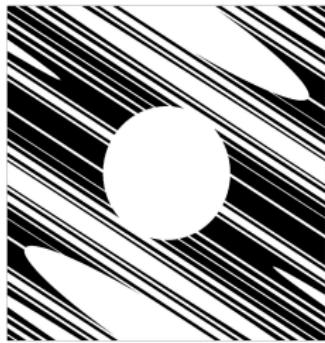
$\Gamma_+(T), T = 3$

- Using the **unstable**/stable directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, finishing the proof

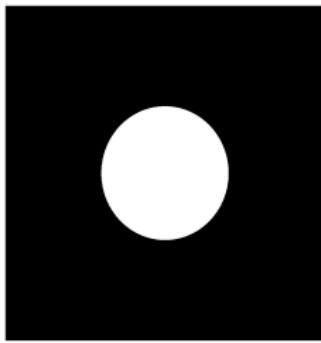
Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

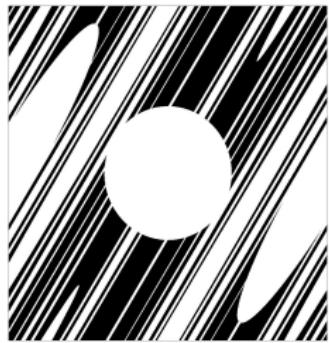
Here is a numerical illustration in the related case of cat maps:



$\Gamma_-(T), T = 4$



\mathcal{U} (in white)



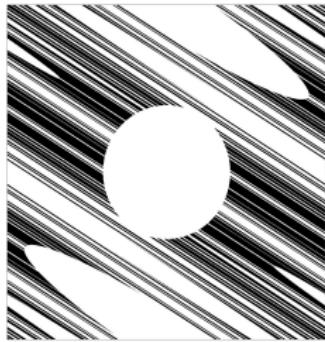
$\Gamma_+(T), T = 4$

- Using the **unstable**/stable directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, finishing the proof

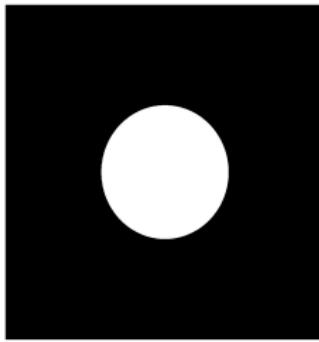
Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

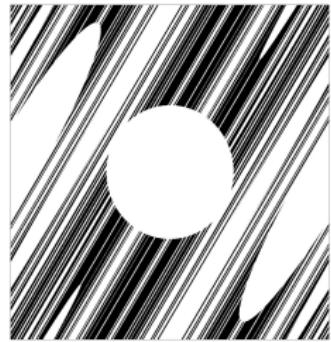
Here is a numerical illustration in the related case of cat maps:



$\Gamma_-(T), T = 5$



\mathcal{U} (in white)



$\Gamma_+(T), T = 5$

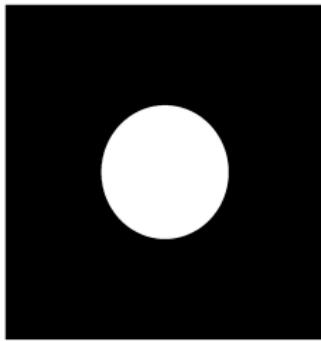
- Using the **unstable/stable** directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \|\text{Op}_h(a_+) \text{Op}_h(a_-)\| = o(1)$, finishing the proof

Sketch of the proof: applying FUP

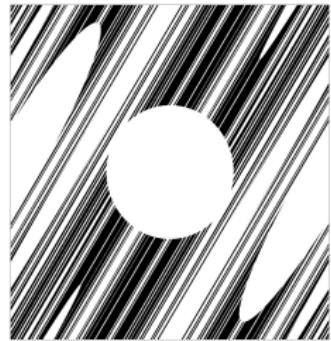
$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

Here is a numerical illustration in the related case of cat maps:

$\Gamma_-(T), T = 5$



\mathcal{U} (in white)



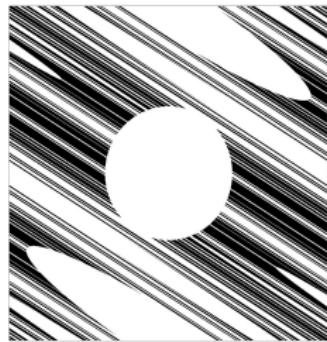
$\Gamma_+(T), T = 5$

- Using the **unstable/stable** directions of the geodesic flow φ^t on S^*M
- $\Gamma_+(T)$ smooth in **unstable** direction, porous in the **stable** direction
- $\Gamma_-(T)$ smooth in **stable** direction, porous in the **unstable** direction
- FUP $\implies \| \text{Op}_h(a_+) \text{Op}_h(a_-) \| = o(1)$, finishing the proof

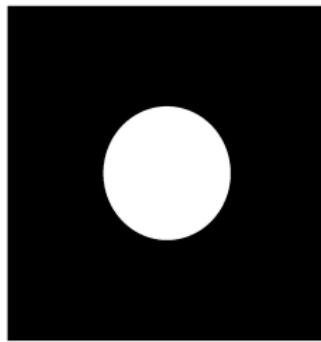
Sketch of the proof: applying FUP

$$\text{supp } a_{\pm} \subset \Gamma_{\pm}(T) := \{\rho \in S^*M \mid \forall t \in [0, T], \varphi^{\mp t}(\rho) \notin \mathcal{U}\}$$

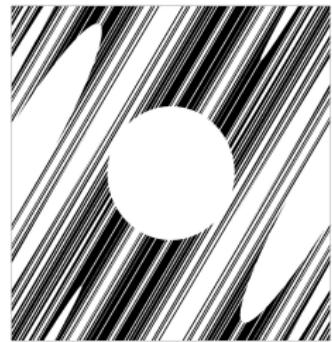
Here is a numerical illustration in the related case of cat maps:



$\Gamma_-(T), T = 5$



\mathcal{U} (in white)



$\Gamma_+(T), T = 5$

- The proof of porosity uses that each global stable/unstable flow line is dense and thus intersects the nonempty open set \mathcal{U}

Higher dimensions

Conjecture

Assume that (M, g) is a **negatively curved manifold** (of any dimension). Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

- Theorems 1–2 only applied to surfaces because the FUP of Bourgain–D '18 was only valid for subsets of \mathbb{R}
- Basic counterexample to FUP in \mathbb{R}^2 : $X = \mathbb{R} \times \{0\}$, $Y = \{0\} \times \mathbb{R}$ are porous on balls, and $\widehat{\delta_X} = \delta_Y$
- FUP in higher dimensions [Cohen '25]: if X is porous on balls and Y is porous **on lines** then

$$f \in L^2(\mathbb{R}^d), \quad \text{supp } \widehat{f} \subset h^{-1}Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R}^d)} \leq Ch^\beta \|f\|_{L^2(\mathbb{R}^d)}$$
- We are still very far from the conjecture but...

Higher dimensions

Conjecture

Assume that (M, g) is a **negatively curved manifold** (of any dimension). Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

- Theorems 1–2 only applied to surfaces because the FUP of Bourgain–D '18 was only valid for subsets of \mathbb{R}
- Basic counterexample to FUP in \mathbb{R}^2 : $X = \mathbb{R} \times \{0\}$, $Y = \{0\} \times \mathbb{R}$ are porous on balls, and $\widehat{\delta_X} = \delta_Y$
- FUP in higher dimensions [Cohen '25]: if X is porous on balls and Y is porous **on lines** then
$$f \in L^2(\mathbb{R}^d), \quad \text{supp } \widehat{f} \subset h^{-1}Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R}^d)} \leq Ch^\beta \|f\|_{L^2(\mathbb{R}^d)}$$
- We are still very far from the conjecture but...

Higher dimensions

Conjecture

Assume that (M, g) is a **negatively curved manifold** (of any dimension). Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

- Theorems 1–2 only applied to surfaces because the FUP of Bourgain–D '18 was only valid for subsets of \mathbb{R}
- Basic counterexample to FUP in \mathbb{R}^2 : $X = \mathbb{R} \times \{0\}$, $Y = \{0\} \times \mathbb{R}$ are porous on balls, and $\widehat{\delta_X} = \delta_Y$
- FUP in higher dimensions [Cohen '25]: if X is porous on balls and Y is porous **on lines** then
$$f \in L^2(\mathbb{R}^d), \quad \text{supp } \widehat{f} \subset h^{-1}Y \quad \implies \quad \|\mathbf{1}_X f\|_{L^2(\mathbb{R}^d)} \leq Ch^\beta \|f\|_{L^2(\mathbb{R}^d)}$$
- We are still very far from the conjecture but...

Higher dimensions

Conjecture

Assume that (M, g) is a **negatively curved manifold** (of any dimension). Then every semiclassical measure μ satisfies $\text{supp } \mu = S^* M$.

- Theorems 1–2 only applied to surfaces because the FUP of Bourgain–D '18 was only valid for subsets of \mathbb{R}
- Basic counterexample to FUP in \mathbb{R}^2 : $X = \mathbb{R} \times \{0\}$, $Y = \{0\} \times \mathbb{R}$ are porous on balls, and $\widehat{\delta_X} = \delta_Y$
- FUP in higher dimensions [Cohen '25]: if X is porous on balls and Y is porous **on lines** then
$$f \in L^2(\mathbb{R}^d), \quad \text{supp } \widehat{f} \subset h^{-1}Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R}^d)} \leq Ch^\beta \|f\|_{L^2(\mathbb{R}^d)}$$
- We are still very far from the conjecture but...

Higher dimensions: locally symmetric spaces

Theorem [Kim–Miller '25]

Assume that (M, g) is a compact **hyperbolic** manifold and μ a semiclassical measure on S^*M . Then $\text{supp } \mu \supset S^*\Sigma$ for some $\Sigma \subset M$ compact immersed **totally geodesic submanifold** of dimension ≥ 2 .

- Uses Cohen's FUP. To get porosity on lines, need \mathcal{U} to intersect each global (un)stable line.
- The closures of these lines are classified using Ratner's Theorem.

Theorem [Athreya–D–Miller '25]

Assume that (M, g) is a compact **complex hyperbolic** manifold and μ a semiclassical measure on S^*M . Then $\text{supp } \mu \supset S^*\Sigma$ for some $\Sigma \subset M$ compact immersed **totally geodesic complex submanifold**.

- Uses the 1D FUP but only in the fast stable/unstable directions.

Higher dimensions: locally symmetric spaces

Theorem [Kim–Miller '25]

Assume that (M, g) is a compact **hyperbolic** manifold and μ a semiclassical measure on S^*M . Then $\text{supp } \mu \supset S^*\Sigma$ for some $\Sigma \subset M$ compact immersed **totally geodesic submanifold** of dimension ≥ 2 .

- Uses Cohen's FUP. To get porosity on lines, need \mathcal{U} to intersect each global (un)stable line.
- The closures of these lines are classified using Ratner's Theorem.

Theorem [Athreya–D–Miller '25]

Assume that (M, g) is a compact **complex hyperbolic** manifold and μ a semiclassical measure on S^*M . Then $\text{supp } \mu \supset S^*\Sigma$ for some $\Sigma \subset M$ compact immersed **totally geodesic complex submanifold**.

- Uses the 1D FUP but only in the fast stable/unstable directions.

Higher dimensions: quantum cat maps

- Those are families of matrices quantizing hyperbolic toral automorphisms $A : \mathbb{T}^{2d} \rightarrow \mathbb{T}^{2d}$, $A \in \mathrm{Sp}(2d, \mathbb{Z})$.
- Have corresponding semiclassical measures on \mathbb{T}^{2d} .
- For $d = 1$, these measures have $\mathrm{supp} \mu = \mathbb{T}^2$ [Schwartz '24] but **QUE fails** [Faure–Nonnenmacher–De Bièvre '03]

More recent results in $d \geq 2$ by Kim–Anderson–Lemke Oliver '26 (see also D–Jézéquel '24):

- For a generic A , we have $\mathrm{supp} \mu = \mathbb{T}^{2d}$ (more precisely, need $p_k(z) = \det(A^k - zI)$ irreducible over \mathbb{Q} for all $k \geq 1$)
- **Can have** $\mathrm{supp} \mu \subset \Sigma$ where $\Sigma \subset \mathbb{T}^{2d}$ is a **Lagrangian** A -invariant subtorus [Kelmer '10]
- Cannot have $\mathrm{supp} \mu \subset \Sigma$ where Σ is a (proper) **symplectic** subtorus
- **Can have** $\mathrm{supp} \mu \subset \Sigma_1 \cup \Sigma_2$ where Σ_1, Σ_2 are **symplectic** subtori

Higher dimensions: quantum cat maps

- Those are families of matrices quantizing hyperbolic toral automorphisms $A : \mathbb{T}^{2d} \rightarrow \mathbb{T}^{2d}$, $A \in \mathrm{Sp}(2d, \mathbb{Z})$.
- Have corresponding semiclassical measures on \mathbb{T}^{2d} .
- For $d = 1$, these measures have $\mathrm{supp} \mu = \mathbb{T}^2$ [Schwartz '24] but **QUE fails** [Faure–Nonnenmacher–De Bièvre '03]

More recent results in $d \geq 2$ by Kim–Anderson–Lemke Oliver '26 (see also D–Jézéquel '24):

- For a generic A , we have $\mathrm{supp} \mu = \mathbb{T}^{2d}$ (more precisely, need $p_k(z) = \det(A^k - zI)$ irreducible over \mathbb{Q} for all $k \geq 1$)
- **Can have** $\mathrm{supp} \mu \subset \Sigma$ where $\Sigma \subset \mathbb{T}^{2d}$ is a **Lagrangian** A -invariant subtorus [Kelmer '10]
- Cannot have $\mathrm{supp} \mu \subset \Sigma$ where Σ is a (proper) **symplectic** subtorus
- **Can have** $\mathrm{supp} \mu \subset \Sigma_1 \cup \Sigma_2$ where Σ_1, Σ_2 are **symplectic** subtori

Thank you for your attention!