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Surfaces

Control of eigenfunctions on surfaces

(M, g) negatively curved surface
Geodesic flow φt : SM → SM is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

(−∆g − λ2)u = 0, ∥u∥L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

∥u∥L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

Constant curvature: D–Jin ’18, using D–Zahl ’16 and Bourgain–D ’18
Variable curvature: D–Jin–Nonnenmacher ’22, using Bourgain–D ’18

Semyon Dyatlov Control of eigenfunctions Jan 5, 2026 2 / 13



Surfaces

Control of eigenfunctions on surfaces

(M, g) negatively curved surface
Geodesic flow φt : SM → SM is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ∥u∥L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

∥u∥L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

Constant curvature: D–Jin ’18, using D–Zahl ’16 and Bourgain–D ’18
Variable curvature: D–Jin–Nonnenmacher ’22, using Bourgain–D ’18

Semyon Dyatlov Control of eigenfunctions Jan 5, 2026 2 / 13



Surfaces

Control of eigenfunctions on surfaces

(M, g) negatively curved surface
Geodesic flow φt : SM → SM is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ∥u∥L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

∥u∥L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

Logunov–Malinnikova ’18: c = c(λ,Ω) ∼ (vol(Ω)/C )λ for any (M, g)

Our result is interesting for fixed Ω in the high frequency limit λ → ∞
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(M, g) negatively curved surface
Geodesic flow φt : SM → SM is a
standard model of classical chaos
Eigenfunctions of the Laplacian −∆g

studied by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ∥u∥L2 = 1

Theorem 1
Let Ω ⊂ M be an arbitrary nonempty open set. Then

∥u∥L2(Ω) ≥ c > 0
where c depends on M,Ω but not on λ

The chaotic nature of geodesic flow is important
For example, Theorem 1 is false if M is the round sphere
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Surfaces

An illustration

Picture on the right courtesy of Alex Strohmaier, using Strohmaier–Uski ’12

Disk (Dirichlet b.c.) Hyperbolic surface
Whitespace in the middle No whitespace
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Surfaces

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x , ξ) ∈ C∞(T ∗M) 7→ Oph(a) = a
(
x ,

h

i
∂x

)
: C∞(M) → C∞(M)

Examples (on Rn): Oph(xj)u = xju, Oph(ξj)u = h
i ∂xju

We put h := λ−1 ≪ 1 where λ2 is the Laplace eigenvalue

Properties of quantization in the semiclassical limit h → 0

Product Rule: Oph(a)Oph(b) = Oph(ab) +O(h)

Adjoint Rule: Oph(a)
∗ = Oph(a) +O(h)

L2 boundedness: sup |a| < ∞ =⇒ ∥Oph(a)∥L2→L2 = O(1)

Egorov’s Theorem: U(−t)Oph(a)U(t) = Oph(a ◦ φt) +O(h)

where U(t) = e−it
√
−∆ is the half-wave propagator

and φt : T ∗M → T ∗M is the homogeneous geodesic flow
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Surfaces

Semiclassical measures

Take a high frequency sequence of Laplace eigenfunctions

(−∆g − λ2
j )uj = 0, ∥uj∥L2(M) = 1, λj → ∞

We say uj converges weakly to a measure µ on T ∗M if, with hj := λ−1
j ,

∀a ∈ C∞
c (T ∗M) : ⟨Ophj (a)uj , uj⟩L2 →

∫
T∗M

a dµ as j → ∞

Call such limits µ semiclassical measures

Basic properties
µ is a probability measure, suppµ ⊂ S∗M

µ is invariant under the geodesic flow φt : S∗M → S∗M

The pushforward of µ to M is the weak limit of |uj(x)|2 d volg

Natural candidate: Liouville measure µL ∼ d vol (equidistribution)
Natural enemy: delta measure δγ on a closed geodesic (scarring)
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Surfaces

QE, QUE, and entropy bounds

Quantum Ergodicity: if φt is ergodic with respect to µL then there
exists a density 1 sequence of eigenfunctions uj converging to µL

[ Shnirelman ’74, Zelditch ’87, Colin de Verdière ’85,
Zelditch–Zworski ’96 ]
“Most eigenfunctions equidistribute”

Quantum Unique Ergodicity conjecture: if φt is an Anosov flow
(e.g. (M, g) is negatively curved) then the whole sequence of
eigenfunctions converges to µL [ Rudnick–Sarnak ’94 ]
Known for arithmetic hyperbolic surfaces [ Lindenstrauss ’06 ]
“All eigenfunctions equidistribute (maybe)”

Entropy bounds: if φt is an Anosov flow then hKS(µ) > 0,
in particular hKS(µ) ≥ d−1

2 for hyperbolic d-manifolds
[ Anantharaman ’08, Anantharaman–Nonnenmacher ’07 ]
”Eigenfunctions cannot be too concentrated”
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Surfaces

Support of semiclassical measures

Theorem 2 [D–Jin ’18, D–Jin–Nonnenmacher ’22]

Assume that (M, g) is a negatively curved surface. Then every
semiclassical measure µ satisfies suppµ = S∗M.

“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”

Implies Theorem 1: the weak limit of any |uj |2 d volg
is supported on the entire M and thus charges any nonempty open set

Key tool: Fractal Uncertainty Principle [ Bourgain–D ’18 ]
If X ,Y ⊂ R are porous up to scale h, then ∃C , β > 0:

f ∈ L2(R), supp f̂ ⊂ h−1Y =⇒ ∥ 1lX f ∥L2(R) ≤ Chβ∥f ∥L2(R)
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Surfaces

Sketch of the proof

Assume (M, g) is a hyperbolic surface and u = uj is a sequence of
eigenfunctions converging to a measure µ with suppµ ̸= S∗M

Take nonempty open U ⊂ S∗M such that µ(U) = 0
u is small on U : supp b ⊂ U =⇒ ∥Oph(b)u∥ = o(1)

By Egorov’s Theorem, u is also small on φt(U) for all |t| ≤ log(1/h).
So u = Oph(a+)u + o(1) = Oph(a−)u + o(1) where (T = log(1/h))

supp a± ⊂ Γ±(T ) := {ρ ∈ S∗M | ∀t ∈ [0,T ], φ∓t(ρ) /∈ U}

Γ±(T ) consist of trajectories not intersecting the ‘hole’ U for time T

The sets Γ±(T ) have fractal structure. Then Fractal Uncertainty
Principle implies that ∥Oph(a+)Oph(a−)∥ = o(1), so u = o(1),
a contradiction!
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Surfaces

Sketch of the proof: applying FUP

supp a± ⊂ Γ±(T ) := {ρ ∈ S∗M | ∀t ∈ [0,T ], φ∓t(ρ) /∈ U}
Here is a numerical illustration in the related case of cat maps:

Γ−(T ), T = 0 U (in white) Γ+(T ), T = 0

Using the unstable/stable directions of the geodesic flow φt on S∗M

Γ+(T ) smooth in unstable direction, porous in the stable direction
Γ−(T ) smooth in stable direction, porous in the unstable direction
FUP =⇒ ∥Oph(a+)Oph(a−)∥ = o(1), finishing the proof
Semyon Dyatlov Control of eigenfunctions Jan 5, 2026 9 / 13
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Surfaces

Sketch of the proof: applying FUP

supp a± ⊂ Γ±(T ) := {ρ ∈ S∗M | ∀t ∈ [0,T ], φ∓t(ρ) /∈ U}

Here is a numerical illustration in the related case of cat maps:

Γ−(T ), T = 5 U (in white) Γ+(T ), T = 5

The proof of porosity uses that each global stable/unstable flow line
is dense and thus intersects the nonempty open set U
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Higher dimensions

Higher dimensions

Conjecture

Assume that (M, g) is a negatively curved manifold (of any dimension).
Then every semiclassical measure µ satisfies suppµ = S∗M.

Theorems 1–2 only applied to surfaces because the FUP of
Bourgain–D ’18 was only valid for subsets of R
Basic counterexample to FUP in R2: X = R× {0}, Y = {0} × R
are porous on balls, and δ̂X = δY

FUP in higher dimensions [Cohen ’25]: if X is porous on balls
and Y is porous on lines then
f ∈ L2(Rd), supp f̂ ⊂ h−1Y =⇒ ∥ 1lX f ∥L2(Rd ) ≤ Chβ∥f ∥L2(Rd )

We are still very far from the conjecture but. . .
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Then every semiclassical measure µ satisfies suppµ = S∗M.

Theorems 1–2 only applied to surfaces because the FUP of
Bourgain–D ’18 was only valid for subsets of R
Basic counterexample to FUP in R2: X = R× {0}, Y = {0} × R
are porous on balls, and δ̂X = δY

FUP in higher dimensions [Cohen ’25]: if X is porous on balls
and Y is porous on lines then
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Higher dimensions

Higher dimensions: locally symmetric spaces

Theorem [Kim–Miller ’25]

Assume that (M, g) is a compact hyperbolic manifold and µ a semiclassical
measure on S∗M. Then suppµ ⊃ S∗Σ for some Σ ⊂ M compact
immersed totally geodesic submanifold of dimension ≥ 2.

Uses Cohen’s FUP. To get porosity on lines, need U to intersect each
global (un)stable line.
The closures of these lines are classified using Ratner’s Theorem.

Theorem [Athreya–D–Miller ’25]

Assume that (M, g) is a compact complex hyperbolic manifold and µ a
semiclassical measure on S∗M. Then suppµ ⊃ S∗Σ for some Σ ⊂ M
compact immersed totally geodesic complex submanifold.

Uses the 1D FUP but only in the fast stable/unstable directions.
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Higher dimensions

Higher dimensions: quantum cat maps

Those are families of matrices quantizing hyperbolic toral
automorphisms A : T2d → T2d , A ∈ Sp(2d ,Z).
Have corresponding semiclassical measures on T2d .
For d = 1, these measures have suppµ = T2 [Schwartz ’24]
but QUE fails [Faure–Nonnenmacher–De Bièvre ’03]

More recent results in d ≥ 2 by Kim–Anderson–Lemke Oliver ’26
(see also D–Jézéquel ’24):

For a generic A, we have suppµ = T2d (more precisely, need
pk(z) = det(Ak − zI ) irreducible over Q for all k ≥ 1)
Can have suppµ ⊂ Σ where Σ ⊂ T2d is a Lagrangian A-invariant
subtorus [Kelmer ’10]
Cannot have suppµ ⊂ Σ where Σ is a (proper) symplectic subtorus
Can have suppµ ⊂ Σ1 ∪ Σ2 where Σ1,Σ2 are symplectic subtori
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Thank you for your attention!
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