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Surfaces

Control of eigenfunctions on surfaces

e (M, g) negatively curved surface

e Geodesic flow ¢ : SM — SM is a
standard model of classical chaos

e Eigenfunctions of the Laplacian —A,
studied by quantum chaos

(g = X)u=0, |ul=1
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Surfaces

Control of eigenfunctions on surfaces

e (M, g) negatively curved surface

e Geodesic flow ¢ : SM — SM is a M
standard model of classical chaos <~ g
e Eigenfunctions of the Laplacian —A, @

studied by quantum chaos

(g = X)u=0, |ul=1

Theorem 1

Let Q2 C M be an arbitrary nonempty open set. Then
lulliz@@) =2 ¢ >0

where ¢ depends on M, Q but not on A

Constant curvature: D-Jin '18, using D—Zahl '16 and Bourgain—-D '18
Variable curvature: D—Jin—Nonnenmacher '22, using Bourgain-D '18
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Surfaces

Control of eigenfunctions on surfaces

e (M, g) negatively curved surface

e Geodesic flow ¢ : SM — SM is a M
standard model of classical chaos <~ g
e Eigenfunctions of the Laplacian —A, @

studied by quantum chaos

(g = X)u=0, |ul=1

Theorem 1

Let Q2 C M be an arbitrary nonempty open set. Then
lulliz@@) =2 ¢ >0

where ¢ depends on M, Q but not on A

Logunov—Malinnikova '18: ¢ = c(\, Q) ~ (vol(Q)/C)* for any (M, g)
Our result is interesting for fixed € in the high frequency limit A — oo
Jan 5, 2026 2/13



Surfaces

Control of eigenfunctions on surfaces

e (M, g) negatively curved surface
e Geodesic flow ¢ : SM — SM is a

standard model of classical chaos
e Eigenfunctions of the Laplacian —A,
studied by quantum chaos
(-8 = N)u =0, [lulz =1

Theorem 1

Let Q2 C M be an arbitrary nonempty open set. Then
lulliz@@) =2 ¢ >0

where ¢ depends on M, Q but not on A

The chaotic nature of geodesic flow is important
For example, Theorem 1 is false if M is the round sphere
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An illustration

Picture on the right courtesy of Alex Strohmaier, using Strohmaier—Uski '12

I A=5003.1500, I = 25,1 = 26,13 = 24,11 = 0,1 = 04, t3 = 02 I

Disk (Dirichlet b.c.) Hyperbolic surface
Whitespace in the middle No whitespace
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Microlocal analysis
Localization in position and frequency using semiclassical quantization
h
a(x,£) € C(T*M) s Opj(a) = a(x, 7@) L C®(M) = C®(M)

Examples (on R"):  Op,(xj)u = xju, Opp(§)u = 7'.’8Xju
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Microlocal analysis
Localization in position and frequency using semiclassical quantization
h
a(x,£) € C(T*M) s Opj(a) = a(x, 7@) L C®(M) = C®(M)

Examples (on R"):  Op,(xj)u = xju, Opp(§)u = 7'.’8Xju
We put h:= A~! < 1 where \? is the Laplace eigenvalue

Semyon Dyatlov Control of eigenfunctions Jan 5, 2026 4/13



Surfaces

Microlocal analysis

Localization in position and frequency using semiclassical quantization
h
a(x,£) € C°(T*M) > Opy(a) = a(x, 7@) L C(M) — C(M)

Examples (on R"):  Op,(xj)u = xju, Opp(§)u = 7’7[”))9.u
We put h:= A~! < 1 where \? is the Laplace eigenvalue
Properties of quantization in the semiclassical limit h — 0

e Product Rule: Opj(a) Op,(b) = Opy(ab) + O(h)

e Adjoint Rule: Opp(a)* = Op,(3a) + O(h)

@ [? boundedness: supla|] <oo = ||Opp(a)|l;2_2 = O(1)
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Surfaces

Microlocal analysis
Localization in position and frequency using semiclassical quantization
h
a(x. ) € C¥(T*M) = Opy(a) = a(x, =0x ) : C¥(M) — C(M)

Examples (on R"):  Opy(xj)u = xju, Opy(&j)u = 7’.78Xju
We put h:= A~! < 1 where \? is the Laplace eigenvalue
Properties of quantization in the semiclassical limit h — 0

e Product Rule: Opj(a) Op,(b) = Opy(ab) + O(h)

o Adjoint Rule: Opy(a)* = Op,(3) + O(h)

@ [? boundedness: supla|] <oo = ||Opp(a)|l;2_2 = O(1)
@ Egorov's Theorem: U(—t)Op,(a)U(t) = Opp(ac ')+ O(h)
where U(t) = e ®V~2 is the half-wave propagator

and ¢t : T*M — T*M is the homogeneous geodesic flow
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Semiclassical measures
Take a high frequency sequence of Laplace eigenfunctions
(—Bg = X)uj =0, ujllzmy =1, A — o0
We say uj converges weakly to a measure ;o on T*M if, with h; == /\;1,

Vae C(T*M):  (Opy(a)yj, uj) 2 —>/ adp asj— oo
M

Call such limits p semiclassical measures
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Semiclassical measures
Take a high frequency sequence of Laplace eigenfunctions
2
(=D = A)ui =0, |lullpmy=1 XN —o0
We say uj converges weakly to a measure ;o on T*M if, with h; = /\;1,
Vae C(T*M):  (Oppy(a)uj, uj)z — /T*Mad,u as j — 00
Call such limits p semiclassical measures
Basic properties
@ 4 is a probability measure, supppu C S*M

@ u is invariant under the geodesic flow ¢ : S*M — S*M
@ The pushforward of y1 to M is the weak limit of |u;(x)|? d volg
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Surfaces

Semiclassical measures
Take a high frequency sequence of Laplace eigenfunctions
(—Bg = X)uj =0, ujllzmy =1, A — o0
We say uj converges weakly to a measure ;o on T*M if, with h; = /\;1,
Vae C(T*M):  (Oppy(a)uj, uj)z — /T*Mad,u as j — 00
Call such limits p semiclassical measures

Basic properties

@ 4 is a probability measure, supppu C S*M
w is invariant under the geodesic flow ¢ : S*M — S*M
The pushforward of 1 to M is the weak limit of |u;(x)|? d volg

Natural candidate: Liouville measure i ~ dvol (equidistribution)

Natural enemy: delta measure J, on a closed geodesic (scarring)
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QE, QUE, and entropy bounds

@ Quantum Ergodicity: if ¢! is ergodic with respect to y; then there
exists a density 1 sequence of eigenfunctions u; converging to p
[ Shnirelman '74, Zelditch '87, Colin de Verdiére '85,
Zelditch—Zworski '96 |

“Most eigenfunctions equidistribute”
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QE, QUE, and entropy bounds

@ Quantum Ergodicity: if ¢! is ergodic with respect to y; then there
exists a density 1 sequence of eigenfunctions u; converging to p
[ Shnirelman '74, Zelditch '87, Colin de Verdiére '85,
Zelditch—Zworski '96 |

“Most eigenfunctions equidistribute”
@ Quantum Unique Ergodicity conjecture: if o is an Anosov flow
(e.g. (M, g) is negatively curved) then the whole sequence of

eigenfunctions converges to 1 [ Rudnick=Sarnak '94 |
Known for arithmetic hyperbolic surfaces [ Lindenstrauss '06 |

“All eigenfunctions equidistribute (maybe)”
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QE, QUE, and entropy bounds

@ Quantum Ergodicity: if ¢! is ergodic with respect to y; then there
exists a density 1 sequence of eigenfunctions u; converging to p
[ Shnirelman '74, Zelditch '87, Colin de Verdiére '85,
Zelditch—Zworski '96 |

“Most eigenfunctions equidistribute”
@ Quantum Unique Ergodicity conjecture: if o is an Anosov flow
(e.g. (M, g) is negatively curved) then the whole sequence of

eigenfunctions converges to 1 [ Rudnick=Sarnak '94 |
Known for arithmetic hyperbolic surfaces [ Lindenstrauss '06 |

“All eigenfunctions equidistribute (maybe)”
e Entropy bounds: if p* is an Anosov flow then hgs(i) > 0,

in particular hgg(p) > % for hyperbolic d-manifolds
[ Anantharaman '08, Anantharaman—Nonnenmacher '07 |

"Eigenfunctions cannot be too concentrated”
Jan 5, 2026
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Surfaces

Support of semiclassical measures

Theorem 2 [D-Jin '18, D—Jin—Nonnenmacher '22]

Assume that (M, g) is a negatively curved surface. Then every
semiclassical measure p satisfies supp u = S*M.

“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”
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Surfaces

Support of semiclassical measures

Theorem 2 [D-Jin '18, D—Jin—Nonnenmacher '22]

Assume that (M, g) is a negatively curved surface. Then every
semiclassical measure p satisfies supp u = S*M.

“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”

o Implies Theorem 1: the weak limit of any |uj|? d volg
is supported on the entire M and thus charges any nonempty open set
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Surfaces

Support of semiclassical measures

Theorem 2 [D-Jin '18, D—Jin—Nonnenmacher '22]

Assume that (M, g) is a negatively curved surface. Then every
semiclassical measure p satisfies supp u = S*M.

“Eigenfunctions cannot be too concentrated
(in a different way than entropy bounds)”

o Implies Theorem 1: the weak limit of any |uj|? d volg
is supported on the entire M and thus charges any nonempty open set
o Key tool: Fractal Uncertainty Principle [ Bourgain—-D '18 ]
If X,Y C R are porous up to scale h, then 3C, 3 > 0:
fel?R), suppfChlY = | 1Ixfllizm) < Ch°|fll2m)
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Sketch of the proof

e Assume (M, g) is a hyperbolic surface and u = u; is a sequence of
eigenfunctions converging to a measure p with supp pn # S*M

@ Take nonempty open U C S*M such that pu(U4) =0
e uissmallon U: suppb CU = || Op,(b)ul| = o(1)
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Sketch of the proof

e Assume (M, g) is a hyperbolic surface and u = u; is a sequence of
eigenfunctions converging to a measure p with supp pn # S*M

@ Take nonempty open U C S*M such that pu(U4) =0
e uissmall onU: suppb CU = || Op,(b)ul| = o(1)

e By Egorov's Theorem, u is also small on (i) for all |t| < log(1/h).
So u = Opp(at)u+ o(1) = Opp(a—)u + o(1) where (T = log(1/h))

suppar C T+(T):={pe STM|Vte[0,T], ¢T'(p) ¢ U}

[L(T) consist of trajectories not intersecting the ‘hole’ U for time T
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Sketch of the proof

e Assume (M, g) is a hyperbolic surface and u = u; is a sequence of
eigenfunctions converging to a measure p with supp pn # S*M

@ Take nonempty open U C S*M such that pu(U4) =0
e uissmall onU: suppb CU = || Op,(b)ul| = o(1)

@ By Egorov's Theorem, u is also small on (i) for all |t| < log(1/h).
So u = Opy(as)u+ o(1) = Opy(a-)u + o(1) where (T = log(1/h))
suppax C [(T):={pe S*M|Vt [0, T]. ¢T"(p) ¢ U}

[L(T) consist of trajectories not intersecting the ‘hole’ U for time T

@ The sets [1(T) have fractal structure. Then Fractal Uncertainty
Principle implies that || Op,(a+) Op,(a—)| = o(1), so u = o(1),
a contradiction!
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Sketch of the proof: applying FUP

suppar C [o(T):={peSM|Vte[0,T], o™ (p) ¢ U}
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Sketch of the proof: applying FUP

suppar C M(T):={pe S"M [Vt [0, T], ¢ (p) ¢ U}

Here is a numerical illustration in the related case of cat maps:

(in white)
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Sketch of the proof: applying FUP

suppar C M(T):={pe S"M [Vt [0, T], ¢ (p) ¢ U}
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Sketch of the proof: applying FUP

suppar C M(T):={pe S"M [Vt [0, T], ¢ (p) ¢ U}

Here is a numerical illustration in the related case of cat maps:

o o Y

(in white)
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Sketch of the proof: applying FUP

suppar C M(T):={pe S"M [Vt [0, T], ¢ (p) ¢ U}

Here is a numerical illustration in the related case of cat maps:

U (in white)
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of: applying FUP

Sketch of the pro

U}

(p) ¢

| vt € [0, T],

e related ¢
in white)

7
v

|



Surfaces

Sketch of the proof: applying FUP
suppar C [(T):={pe STM|Vte[0,T], ¢¥'(p) ¢ U}

Here is a numerical illustration in the related case of cat maps:

7

(T T=5 (in white)

, T =5

@ Using the unstable/stable directions of the geodesic flow ' on S*M
@ [ (T) smooth in unstable direction, porous in the stable direction
e [_(T) smooth in stable direction, porous in the unstable direction
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Sketch of the proof: applying FUP

suppar C M(T):={pe S"M [Vt [0, T], ¢ (p) ¢ U}

Here is a numerical illustration in the related case of cat maps:

N //

, T =5

(T T=5 (in white)

Using the unstable/stable directions of the geodesic flow ¢f on S*M

[_(T) smooth in stable direction, porous in the unstable direction
FUP = | Opy(a+)Opy(a-)|l = o(1), finishing the proof
Jan 5, 2026 9/13
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Sketch of the proof: applying FUP

suppar C M(T):={pe STM[Vt [0, T], ¢ (p) ¢ U}

Here is a numerical illustration in the related case of cat maps:

7y

/

r_(7), : 1 U (in white) r (7). T=5

@ The proof of porosity uses that each global stable/unstable flow line
is dense and thus intersects the nonempty open set U




Higher dimensions

Higher dimensions

Conjecture

Assume that (M, g) is a negatively curved manifold (of any dimension).
Then every semiclassical measure p satisfies supp = S*M.
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Higher dimensions

Higher dimensions

Conjecture

Assume that (M, g) is a negatively curved manifold (of any dimension).
Then every semiclassical measure p satisfies supp = S*M.

@ Theorems 1-2 only applied to surfaces because the FUP of
Bourgain—D '18 was only valid for subsets of R

e Basic counterexample to FUP in R?: X =R x {0}, Y = {0} xR
are porous on balls, and dx = dy
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Higher dimensions

Higher dimensions

Conjecture

Assume that (M, g) is a negatively curved manifold (of any dimension).
Then every semiclassical measure p satisfies supp = S*M.

@ Theorems 1-2 only applied to surfaces because the FUP of
Bourgain—D '18 was only valid for subsets of R

e Basic counterexample to FUP in R2: X =R x {0}, Y = {0} xR
are porous on balls, and dx = dy

e FUP in higher dimensions [Cohen '25]: if X is porous on balls
and Y is porous on lines then

fel?RY), suppfcChly = |Ix Fll 2oy < CHP|IF | 12 (e
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Higher dimensions

Higher dimensions

Conjecture

Assume that (M, g) is a negatively curved manifold (of any dimension).
Then every semiclassical measure p satisfies supp = S*M.

@ Theorems 1-2 only applied to surfaces because the FUP of
Bourgain—D '18 was only valid for subsets of R

e Basic counterexample to FUP in R2: X =R x {0}, Y = {0} xR
are porous on balls, and dx = dy

e FUP in higher dimensions [Cohen '25]: if X is porous on balls
and Y is porous on lines then

fel2(RY), suppf ChlY = |Ixf|my< Ch|fll2me
@ We are still very far from the conjecture but. ..
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Higher dimensions

Higher dimensions: locally symmetric spaces

Theorem [Kim—Miller '25]

Assume that (M, g) is a compact hyperbolic manifold and 1 a semiclassical
measure on S*M. Then supp u O S*X for some ¥ C M compact
immersed totally geodesic submanifold of dimension > 2.

@ Uses Cohen's FUP. To get porosity on lines, need U/ to intersect each
global (un)stable line.

@ The closures of these lines are classified using Ratner’s Theorem.
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Higher dimensions

Higher dimensions: locally symmetric spaces

Theorem [Kim—Miller '25]

Assume that (M, g) is a compact hyperbolic manifold and 1 a semiclassical
measure on S*M. Then supp u O S*X for some ¥ C M compact
immersed totally geodesic submanifold of dimension > 2.

@ Uses Cohen's FUP. To get porosity on lines, need U/ to intersect each
global (un)stable line.

@ The closures of these lines are classified using Ratner’s Theorem.

Theorem [Athreya—D—Miller '25]

Assume that (M, g) is a compact complex hyperbolic manifold and 4 a
semiclassical measure on S*M. Then supp u D S*X for some . C M
compact immersed totally geodesic complex submanifold.

@ Uses the 1D FUP but only in the fast stable/unstable directions.
Jan 5, 2026 11/13



Higher dimensions

Higher dimensions: quantum cat maps

@ Those are families of matrices quantizing hyperbolic toral
automorphisms A : T2 — T29, A ¢ Sp(2d, Z).

@ Have corresponding semiclassical measures on T29.

@ For d = 1, these measures have supp y = T? [Schwartz '24]
but QUE fails [Faure-Nonnenmacher-De Biévre '03]
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Higher dimensions

Higher dimensions: quantum cat maps

@ Those are families of matrices quantizing hyperbolic toral
automorphisms A : T?¢ — T29, A € Sp(2d, 7).

e Have corresponding semiclassical measures on T29.

@ For d = 1, these measures have supp y = T? [Schwartz '24]
but QUE fails [Faure-Nonnenmacher-De Biévre '03]

More recent results in d > 2 by Kim—Anderson—-Lemke Oliver 26
(see also D-Jézéquel '24):

e For a generic A, we have supp ;1 = T?? (more precisely, need
pi(z) = det(A¥ — zI) irreducible over Q for all k > 1)

o Can have supp t C ¥ where ¥ C T2 is a Lagrangian A-invariant
subtorus [Kelmer '10]

e Cannot have supp i C X where ¥ is a (proper) symplectic subtorus

@ Can have supppu C X1 U X, where X1, %5 are symplectic subtori
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Thank you for your attention!
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