Uncertainty Principles in Quantum Chaos

Semyon Dyatlov (MIT)

Jan 11, 2025

Laplace eigenfunctions

- The topic: high energy behavior of Laplace eigenfunctions
- \bullet 'Simplest' setting: bounded planar domain $\Omega \subset \mathbb{R}^2$
- Complete system of eigenfunctions of $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$, Dirichlet b.c.:

$$-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty$$

• Quantum mechanical interpretation:

 $u_j = pure quantum state of a particle constrained to <math>\Omega$ $u_j|^2 dx = probability distribution of the location of the particle$

- Study $|u_j|^2 dx$ in the high energy limit $\lambda_j \to \infty$ in the sense of weak convergence of measures on Ω
- Looking for equidistribution: weak limit = volume measure

$$\int_{\Omega} a|u_j|^2 \, dx \to \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} a \, dx \quad \text{for all } a \in C^0(\Omega)$$

Laplace eigenfunctions

- The topic: high energy behavior of Laplace eigenfunctions
- \bullet 'Simplest' setting: bounded planar domain $\Omega \subset \mathbb{R}^2$
- Complete system of eigenfunctions of $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$, Dirichlet b.c.:

$$-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty$$

• Quantum mechanical interpretation:

 $u_j =$ pure quantum state of a particle constrained to Ω $|u_j|^2 dx =$ probability distribution of the location of the particle

- Study $|u_j|^2 dx$ in the high energy limit $\lambda_j \to \infty$ in the sense of weak convergence of measures on Ω
- Looking for equidistribution: weak limit = volume measure

$$\int_{\Omega} a|u_j|^2 \, dx \to \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} a \, dx \quad \text{for all } a \in C^0(\Omega)$$

Laplace eigenfunctions

- The topic: high energy behavior of Laplace eigenfunctions
- \bullet 'Simplest' setting: bounded planar domain $\Omega \subset \mathbb{R}^2$
- Complete system of eigenfunctions of $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$, Dirichlet b.c.:

$$-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty$$

• Quantum mechanical interpretation:

 $u_j = pure$ quantum state of a particle constrained to Ω $|u_j|^2 dx =$ probability distribution of the location of the particle

- Study $|u_j|^2 dx$ in the high energy limit $\lambda_j \to \infty$ in the sense of weak convergence of measures on Ω
- Looking for equidistribution: weak limit = volume measure

$$\int_{\Omega} a |u_j|^2 \, dx \to \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} a \, dx \quad \text{for all } a \in C^0(\Omega)$$

Two examples: quantum side

Eigenfunction concentration (picture on the right by Alex Barnett)

No equidistribution

Equidistribution

What is the 'classical' difference between the domains?

Two examples: quantum side

Eigenfunction concentration

(picture on the right by Alex Barnett)

No equidistribution

Equidistribution

What is the 'classical' difference between the domains?

It is the long time behavior of billiard trajectories

Two examples: classical side

A long billiard trajectory

Completely integrable

Ergodic (by Bunimovich)

Ergodicity is a weak way to define chaotic behavior: almost every trajectory equidistributes as time $\rightarrow \infty$

Quantum chaos: chaotic classical flow \Rightarrow equidistribution of eigenfunctions

Two examples: classical side

A long billiard trajectory

Completely integrable

Ergodic (by Bunimovich)

Ergodicity is a weak way to define chaotic behavior: almost every trajectory equidistributes as time $\to\infty$

Quantum chaos: chaotic classical flow \Rightarrow equidistribution of eigenfunctions

Quantum Ergodicity

 $\Omega \subset \mathbb{R}^2$ a planar domain, u_j a complete system of eigenfunctions:

$$-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty$$

Theorem 1

Assume that Ω has ergodic billiard flow. Then there exists a density 1 subsequence λ_{j_k} such that u_{j_k} equidistribute: $\int_{\Omega} a|u_{j_k}|^2 dx \to \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} a dx \quad \text{for all } a \in C^0(\Omega).$

- Shnirelman '74, Zelditch '87, Colin de Verdière '85, Gérard–Leichtnam '93, Zelditch–Zworski '96
- Applies to general Riemannian manifolds (use the geodesic flow)
- Do we have equidistribution for all eigenfunctions?

Semyon Dyatlov

Quantum Ergodicity

 $\Omega \subset \mathbb{R}^2$ a planar domain, u_j a complete system of eigenfunctions:

$$-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty$$

Theorem 1

Assume that Ω has ergodic billiard flow. Then there exists a density 1 subsequence λ_{j_k} such that u_{j_k} equidistribute: $\int_{\Omega} a |u_{j_k}|^2 dx \to \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} a dx \quad \text{for all } a \in C^0(\Omega).$

- Shnirelman '74, Zelditch '87, Colin de Verdière '85, Gérard–Leichtnam '93, Zelditch–Zworski '96
- Applies to general Riemannian manifolds (use the geodesic flow)
- Do we have equidistribution for all eigenfunctions?

Quantum Ergodicity

 $\Omega \subset \mathbb{R}^2$ a planar domain, u_j a complete system of eigenfunctions:

$$-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad \|u_j\|_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty$$

Theorem 1

Assume that Ω has ergodic billiard flow. Then there exists a density 1 subsequence λ_{j_k} such that u_{j_k} equidistribute: $\int_{\Omega} a |u_{j_k}|^2 dx \to \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} a dx \quad \text{for all } a \in C^0(\Omega).$

- Shnirelman '74, Zelditch '87, Colin de Verdière '85, Gérard–Leichtnam '93, Zelditch–Zworski '96
- Applies to general Riemannian manifolds (use the geodesic flow)
- Do we have equidistribution for all eigenfunctions?

Eigenfunctions for the stadium

A selection of high energy eigenfunctions (by Alex Barnett):

- Most eigenfunctions equidistribute by Quantum Ergodicity
- Some eigenfunctions do not equidistribute: Hassell '10

Quantum Unique Ergodicity

Setting: boundaryless compact Riemannian manifold (M, g)Eigenfunctions of Laplace–Beltrami operator Δ_g on M:

$$-\Delta_g u_j = \lambda_j^2 u_j, \quad \|u_j\|_{L^2(M,d \operatorname{vol}_g)} = 1, \quad \lambda_j \to \infty$$

QUE conjecture [Rudnick-Sarnak '94]

Assume that g has negative sectional curvature. Then the entire sequence of eigenfunctions equidistributes:

$$\int_M a|u_j|^2\,d\operatorname{vol}_g\to \frac{1}{\operatorname{vol}_g(M)}\int_M a\,d\operatorname{vol}_g\quad\text{for all }a\in C^0(M).$$

Proved by Lindenstrauss '06 in the arithmetic case, open in general

Quantum Unique Ergodicity

Setting: boundaryless compact Riemannian manifold (M, g)Eigenfunctions of Laplace–Beltrami operator Δ_g on M:

$$-\Delta_g u_j = \lambda_j^2 u_j, \quad \|u_j\|_{L^2(M,d \operatorname{vol}_g)} = 1, \quad \lambda_j \to \infty$$

QUE conjecture [Rudnick-Sarnak '94]

Assume that g has negative sectional curvature. Then the entire sequence of eigenfunctions equidistributes:

$$\int_M a |u_j|^2 \, d\operatorname{vol}_g \to \frac{1}{\operatorname{vol}_g(M)} \int_M a \, d\operatorname{vol}_g \quad \text{ for all } a \in C^0(M).$$

Proved by Lindenstrauss '06 in the arithmetic case, open in general

Eigenfunctions on hyperbolic surfaces

Hyperbolic surfaces: dim M = 2 and g has curvature -1Pictures courtesy of Alex Strohmaier, using Strohmaier–Uski '12

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces Geodesic flow on the unit tangent bundle:

$$\varphi^t: SM \to SM, \quad SM = \left\{ (x, \xi) \colon x \in M, \ \xi \in T_xM, \ |\xi|_g = 1 \right\}$$

The flow φ^t is hyperbolic: there is a frame of 3 vector fields on SM

- Flow field V_0 , the generator of $\varphi^t = e^{tV_0}$
- Stable field V_s , with $d\varphi^t(\rho)V_s(\rho) = e^{-t}V_s(\varphi^t(\rho))$
- Unstable field V_u , with $d\varphi^t(\rho)V_u(\rho) = e^t V_u(\varphi^t(\rho))$

The strongly chaotic behavior of $arphi^t$ as $t o \infty$ is caused by

- exponential contraction in the stable direction,
- exponential expansion in the unstable direction,
- and wrapping around the compact manifold M

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces Geodesic flow on the unit tangent bundle:

$$\varphi^t : SM \to SM, \quad SM = \left\{ (x, \xi) \colon x \in M, \ \xi \in T_xM, \ |\xi|_g = 1 \right\}$$

The flow φ^t is hyperbolic: there is a frame of 3 vector fields on SM

- Flow field V_0 , the generator of $\varphi^t = e^{tV_0}$
- Stable field V_s , with $d\varphi^t(\rho)V_s(\rho) = e^{-t}V_s(\varphi^t(\rho))$
- Unstable field V_u , with $d\varphi^t(\rho)V_u(\rho) = e^t V_u(\varphi^t(\rho))$

The strongly chaotic behavior of $arphi^t$ as $t o \infty$ is caused by

- exponential contraction in the stable direction,
- exponential expansion in the unstable direction,
- and wrapping around the compact manifold M

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces Geodesic flow on the unit tangent bundle:

$$\varphi^t : SM \to SM, \quad SM = \left\{ (x, \xi) \colon x \in M, \ \xi \in T_xM, \ |\xi|_g = 1 \right\}$$

The flow φ^t is hyperbolic: there is a frame of 3 vector fields on SM

- Flow field V_0 , the generator of $\varphi^t = e^{tV_0}$
- Stable field V_s , with $d\varphi^t(\rho)V_s(\rho) = e^{-t}V_s(\varphi^t(\rho))$
- Unstable field V_u , with $d\varphi^t(\rho)V_u(\rho) = e^t V_u(\varphi^t(\rho))$

The strongly chaotic behavior of φ^t as $t \to \infty$ is caused by

- exponential contraction in the stable direction,
- exponential expansion in the unstable direction,
- and wrapping around the compact manifold M

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$\Phi: x \mapsto Ax \mod \mathbb{Z}^2,$$
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$:

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$
 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 0

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$
 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

$$n = 1$$

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$
 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 2

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$

 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 3

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 4

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 5

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$P: x \mapsto Ax \mod \mathbb{Z}^2,$$
 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 6

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$\Phi: x \mapsto Ax \mod \mathbb{Z}^2,$$

 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 7

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$\Phi: x \mapsto Ax \mod \mathbb{Z}^2,$$
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 8

To illustrate the geodesic flow φ^t on *SM*, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$\Phi: x \mapsto Ax \mod \mathbb{Z}^2,$$

 $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^n(x)$ to behave chaotically as $n \to \infty$: picture courtesy of Jeffrey Galkowski

n = 9

Microlocalization

• We studied localization of eigenfunctions u_j via the integrals

$$\int_{M} a|u_{j}|^{2} d \operatorname{vol}_{g} = \langle au_{j}, u_{j} \rangle_{L^{2}} \to \dots, \qquad a \in C^{0}(M)$$

• Now we study localization of u_j in position x and momentum ξ via semiclassical quantization $Op_h(a) = a(x, -ih\partial_x) : L^2(M) \to L^2(M)$

$$\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \to \dots, \qquad h_j = \lambda_j^{-1} \to 0, \quad a(x,\xi) \in C_{\mathrm{c}}^{\infty}(T^*M)$$

where $-\Delta_g u_j = \lambda_j^2 u_j$, $||u_j||_{L^2} = 1$, u_j oscillates at frequency $\sim h_j^{-1}$ • $a = a(x) \implies \operatorname{Op}_h(a)$ is the multiplication operator by a• $\operatorname{On} \mathbb{R}^n$, $a = a(\xi) \implies \operatorname{Op}_h(a)$ is a Fourier multiplier:

$$\widehat{\operatorname{Op}}_h(a)u(\eta) = a(h\eta)\widehat{u}(\eta)$$

That is: frequency $\eta = \xi/h$, momentum $= \xi$

11/22

Microlocalization

• We studied localization of eigenfunctions u_j via the integrals

$$\int_{M} a|u_{j}|^{2} d \operatorname{vol}_{g} = \langle au_{j}, u_{j} \rangle_{L^{2}} \to \dots, \qquad a \in C^{0}(M)$$

 Now we study localization of u_j in position x and momentum ξ via semiclassical quantization Op_h(a) = a(x, -ih∂_x) : L²(M) → L²(M)

$$\langle \mathsf{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \to \dots, \qquad h_j = \lambda_j^{-1} \to 0, \quad a(x,\xi) \in C^\infty_{\mathrm{c}}(T^*M)$$

where $-\Delta_g u_j = \lambda_j^2 u_j$, $||u_j||_{L^2} = 1$, u_j oscillates at frequency $\sim h_j^{-1}$ • $a = a(x) \implies \operatorname{Op}_h(a)$ is the multiplication operator by a• $\operatorname{On} \mathbb{R}^n$, $a = a(\xi) \implies \operatorname{Op}_h(a)$ is a Fourier multiplier:

$$\widehat{\operatorname{Op}_h(a)u}(\eta) = a(h\eta)\widehat{u}(\eta)$$

That is: frequency $\eta = \xi/h$, momentum = ξ

Semiclassical measures

$$-\Delta_g u_j = \lambda_j^2 u_j, \quad \|u_j\|_{L^2} = 1, \quad h_j = \lambda_j^{-1}, \quad \operatorname{Op}_h(a) = a(x, -ih\partial_x)$$

Definition

The sequence u_j converges microlocally to a measure μ on T^*M if $\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2(M)} \rightarrow \int_{T^*M} a \, d\mu$ for all $a \in C_c^{\infty}(T^*M)$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2 d \operatorname{vol}_g \to \pi_* \mu$ weakly where $\pi : T^*M \to M$

Properties of semiclassical measures

- μ probability measure
- supp μ contained in the unit cotangent bundle $S^*M\simeq SM$
- μ invariant under the geodesic flow $\varphi^t: S^*M \to S^*M$

Semiclassical measures

$$-\Delta_g u_j = \lambda_j^2 u_j, \quad \|u_j\|_{L^2} = 1, \quad h_j = \lambda_j^{-1}, \quad \operatorname{Op}_h(a) = a(x, -ih\partial_x)$$

Definition

The sequence u_j converges microlocally to a measure μ on T^*M if $\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2(M)} \rightarrow \int_{T^*M} a \, d\mu$ for all $a \in C_c^{\infty}(T^*M)$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2 d \operatorname{vol}_g \to \pi_* \mu$ weakly where $\pi : T^*M \to M$

Properties of semiclassical measures

- μ probability measure
- supp μ contained in the unit cotangent bundle $S^*M\simeq SM$
- μ invariant under the geodesic flow $\varphi^t: S^*M \to S^*M$

Main results

- A stronger equidistribution property: u_j converges microlocally to the Liouville measure μ_L = cd vol_g(x)dS(ξ) on S*M
- Implies equidistribution for $|u_j|^2 d \operatorname{vol}_g$
- QE and QUE actually feature microlocal equidistribution
- Plenty of φ^t -invariant measures, e.g. δ -measure on a closed geodesic
- QUE conjecture: Liouville measure is the only semiclassical measure
- I will present two restrictions on what φ^t -invariant measures can appear as semiclassical measures for negatively curved manifolds

Main results

- A stronger equidistribution property: u_j converges microlocally to the Liouville measure μ_L = cd vol_g(x)dS(ξ) on S*M
- Implies equidistribution for $|u_j|^2 d \operatorname{vol}_g$
- QE and QUE actually feature microlocal equidistribution
- $\bullet\,$ Plenty of $\varphi^t\text{-invariant}$ measures, e.g. $\delta\text{-measure}$ on a closed geodesic
- QUE conjecture: Liouville measure is the only semiclassical measure
- I will present two restrictions on what φ^t-invariant measures can appear as semiclassical measures for negatively curved manifolds

Main results

- A stronger equidistribution property: u_j converges microlocally to the Liouville measure μ_L = cd vol_g(x)dS(ξ) on S*M
- Implies equidistribution for $|u_j|^2 d \operatorname{vol}_g$
- QE and QUE actually feature microlocal equidistribution
- Plenty of φ^t -invariant measures, e.g. δ -measure on a closed geodesic
- QUE conjecture: Liouville measure is the only semiclassical measure
- I will present two restrictions on what φ^t-invariant measures can appear as semiclassical measures for negatively curved manifolds

Main results: full support property

Theorem 2 [D-Jin '18, D-Jin-Nonnenmacher '21]

If μ is a semiclassical measure on a negatively curved surface, then

 $\operatorname{supp} \mu = S^*M.$

That is, $\mu(\mathcal{U}) > 0$ for any open nonempty $\mathcal{U} \subset S^*M$.

Corollary: $||u_j||_{L^2(\Omega)} \ge c_{\Omega} > 0$ for any open nonempty $\Omega \subset M$ where c_{Ω} depends on M, Ω but not on λ_j

Theorem 2 is only known for surfaces because the main new tool, Fractal Uncertainty Principle, was only known for subsets of ℝ. Recent work: Han–Schlag '20, Jaye–Mitkovski '22, D–Jézéquel '24, Athreya–D–Miller '24, Cohen '23, Kim '24

Main results: full support property

Theorem 2 [D-Jin '18, D-Jin-Nonnenmacher '21]

If μ is a semiclassical measure on a negatively curved surface, then

 $\operatorname{supp} \mu = S^* M.$

That is, $\mu(\mathcal{U}) > 0$ for any open nonempty $\mathcal{U} \subset S^*M$.

Corollary: $\|u_j\|_{L^2(\Omega)} \ge c_{\Omega} > 0$ for any open nonempty $\Omega \subset M$ where c_{Ω} depends on M, Ω but not on λ_j

Theorem 2 is only known for surfaces because the main new tool, Fractal Uncertainty Principle, was only known for subsets of ℝ. Recent work: Han–Schlag '20, Jaye–Mitkovski '22, D–Jézéquel '24, Athreya–D–Miller '24, Cohen '23, Kim '24

Main results: full support property

Theorem 2 [D-Jin '18, D-Jin-Nonnenmacher '21]

If μ is a semiclassical measure on a negatively curved surface, then

 $\operatorname{supp} \mu = S^* M.$

That is, $\mu(\mathcal{U}) > 0$ for any open nonempty $\mathcal{U} \subset S^*M$.

Corollary: $\|u_j\|_{L^2(\Omega)} \ge c_{\Omega} > 0$ for any open nonempty $\Omega \subset M$ where c_{Ω} depends on M, Ω but not on λ_j

Theorem 2 is only known for surfaces because the main new tool, Fractal Uncertainty Principle, was only known for subsets of \mathbb{R} . Recent work: Han–Schlag '20, Jaye–Mitkovski '22, D–Jézéquel '24, Athreya–D–Miller '24, Cohen '23, Kim '24

Main results: entropy bound

Theorem 3 [Anantharaman-Nonnenmacher '07]

On a hyperbolic surface, each semiclassical measure μ has entropy

 $h_{KS}(\mu) \geq \frac{1}{2}.$

Holds for any negatively curved manifold with some constant > 0Anantharaman '08, Rivière '10, Anantharaman–Silberman '13

- Liouville measure μ_L has entropy 1, delta-measure has entropy 0
- Counterexample of Faure–Nonnenmacher–de Bièvre '03: in the toy model of quantum cat maps, can have semiclassical measure $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\mu_L$ of entropy $= \frac{1}{2}$

Main results: entropy bound

Theorem 3 [Anantharaman–Nonnenmacher '07]

On a hyperbolic surface, each semiclassical measure μ has entropy

 $h_{KS}(\mu) \geq \frac{1}{2}.$

Holds for any negatively curved manifold with some constant > 0Anantharaman '08, Rivière '10, Anantharaman–Silberman '13

- Liouville measure μ_L has entropy 1, delta-measure has entropy 0
- Counterexample of Faure–Nonnenmacher–de Bièvre '03: in the toy model of quantum cat maps, can have semiclassical measure $\mu = \frac{1}{2}\delta_0 + \frac{1}{2}\mu_L$ of entropy $= \frac{1}{2}$

Definition of Kolmogorov-Sinai entropy

How to define the entropy $h_{KS}(\mu)$ of a φ^t -invariant measure μ on S^*M :

- Start with a fixed fine partition of S^*M
- Refine it using the flow φ^t for times $t = 0, 1, \dots, N-1$
- Take a μ -random point $\rho \in S^*M$ and let \mathcal{A} be the element of the refined partition containing ρ . Then

 $\mathbb{E} \log \mu(\mathcal{A}) pprox - \mathsf{h}_{\mathsf{KS}}(\mu) {m N}$ as ${m N} o \infty$

N = 1

(using Arnold cat map model for the figures)

Semyon Dyatlov

Definition of Kolmogorov-Sinai entropy

How to define the entropy $h_{KS}(\mu)$ of a φ^t -invariant measure μ on S^*M :

- Start with a fixed fine partition of S*M
- Refine it using the flow φ^t for times $t=0,1,\ldots,N-1$
- Take a μ -random point $\rho \in S^*M$ and let \mathcal{A} be the element of the refined partition containing ρ . Then

 $\mathbb{E} \log \mu(\mathcal{A}) pprox - \mathsf{h}_{\mathsf{KS}}(\mu) \mathsf{N} \quad ext{as} \ \mathsf{N} o \infty$

(using Arnold cat map model for the figures)

Definition of Kolmogorov-Sinai entropy

How to define the entropy $h_{KS}(\mu)$ of a φ^t -invariant measure μ on S^*M :

- Start with a fixed fine partition of S*M
- Refine it using the flow φ^t for times $t = 0, 1, \dots, N-1$
- Take a μ -random point $\rho \in S^*M$ and let \mathcal{A} be the element of the refined partition containing ρ . Then

 $\mathbb{E} \log \mu(\mathcal{A}) pprox - \mathsf{h}_{\mathsf{KS}}(\mu) \mathsf{N}$ as $\mathsf{N} o \infty$

Semyon Dyatlov

Proofs and uncertainty principles

We now briefly discuss the proofs of Theorems 2 and 3:

- Relate macroscopic information (semiclassical measure) to microscopic information (microlocalization in *h*-dependent sets)
- This uses that microlocalization of Laplace eigenfunctions u_j is invariant under the geodesic flow φ^t
- If the semiclassical measure is 'too concentrated' then u_j has microlocalization inconsistent with an uncertainty principle

Semiclassical measures: three examples

Example 1:

$$u_h(x) = \pi^{-\frac{1}{4}} h^{-\frac{1}{2}} \exp\left(-\frac{x^2}{2h^2}\right)$$
$$\hat{u}_h(\eta) = \sqrt{2}\pi^{\frac{1}{4}} h^{\frac{1}{2}} \exp\left(-\frac{h^2 \eta^2}{2}\right)$$

Microlocalized at position $\sim h$ and frequency $\sim h^{-1}$, i.e. momentum ~ 1

Converges microlocally to the measure

$$\mu = \pi^{-\frac{1}{2}} \exp(-\xi^2) \delta_0(\mathbf{x}) \times d\xi$$

Semiclassical measures: three examples

Example 2:

$$u_{h}(x) = \pi^{-\frac{1}{4}} h^{-\frac{1}{4}} \exp\left(-\frac{x^{2}}{2h}\right)$$
$$\hat{u}_{h}(\eta) = \sqrt{2}\pi^{\frac{1}{4}} h^{\frac{1}{4}} \exp\left(-\frac{h\eta^{2}}{2}\right)$$

Microlocalized at position $\sim h^{\frac{1}{2}}$ and frequency $\sim h^{-\frac{1}{2}}$, i.e. momentum $\sim h^{\frac{1}{2}}$

Converges microlocally to the measure

$$\mu = \delta_0(x) \times \delta_0(\xi)$$

Semiclassical measures: three examples

Example 3:

$$u_h(x) = \pi^{-\frac{1}{4}} \exp\left(-\frac{x^2}{2}\right)$$
$$\widehat{u}_h(\eta) = \sqrt{2}\pi^{\frac{1}{4}} \exp\left(-\frac{\eta^2}{2}\right)$$

Microlocalized at position \sim 1 and frequency \sim 1, i.e. momentum \sim h

Converges microlocally to the measure

$$\mu = \pi^{-\frac{1}{2}} \exp(-x^2) \, dx \times \delta_0(\xi)$$

Basic Uncertainty Principle

Uncertainty Principle

If $u \in L^2(\mathbb{R})$ is microlocalized in an interval of size Δx in position and an interval of size $\Delta \xi$ in momentum (= frequency $\times h$) then

 $\Delta x \cdot \Delta \xi \gtrsim h.$

Key ingredient: Fractal Uncertainty Principle [Bourgain-D '18]

No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from φ^t(U) for all t. Use for |t| ≤ log(1/h), get microlocalization incompatible with FUP

$\Gamma_{-}(N), N=0$

using Arnold cat map model for the figure

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

(using Arnold cat map model for the figures)

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_{-}(N), N = 0$ \mathcal{U} (in white) $\Gamma_{(using Arnold cat map model for the figures)}$

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_{-}(N), N = 1$ \mathcal{U} (in white) (using Arnold cat map model for the figures)

Uncertainty Principles, Quantum Chaos

 $\Gamma_+(N), N = 1$

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 \mathcal{U} (in white) (using Arnold cat map model for the figures)

 $\Gamma_{-}(N), N = 2$

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_+(N), N = 3$

 ${\cal U}$ (in white) (using Arnold cat map model for the figures)

 $\Gamma_{-}(N), N = 3$

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_+(N), N = 4$

(using Arnold cat map model for the figures) Uncertainty Principles, Quantum Chaos

 \mathcal{U} (in white)

Key ingredient: Fractal Uncertainty Principle [Bourgain-D '18] No $u \in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U} \subset S^*M$, then u_i is microlocalized away from \mathcal{U}
- Then u_i also microlocalized away from $\varphi^t(\mathcal{U})$ for all t. Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_+(N), N = 5$

 $\Gamma_{-}(N), N = 5$

(using Arnold cat map model for the figures) Uncertainty Principles, Quantum Chaos

 \mathcal{U} (in white)

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman '57, Maassen–Uffink '88] Assume that $f \in L^2(\mathbb{R})$, $||f||_{L^2} = 1$, and define the Shannon entropy

$$H(|f|^2) = -\int_{\mathbb{R}} |f(x)|^2 \log(|f(x)|^2) dx.$$

Then, defining $\widehat{f}(y) = \int_{\mathbb{R}} e^{-2\pi i x y} f(x) dx$,

 $H(|f|^2) + H(|\hat{f}|^2) \ge 0.$

- Write u_j as a superposition of stable wave packets and also unstable wave packets, with coefficients expressed as 2 functions $v_u, v_s \in L^2(\mathbb{R})$
- Using that u_j is an eigenfunction, show that v_u and v_s have roughly the same entropy and relate it to the entropy of μ
- Relate \hat{v}_u to v_s and use the Entropic Uncertainty Principle to get a lower bound on entropy of v_u , v_s and thus the entropy of μ

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman '57, Maassen–Uffink '88] Assume that $f \in L^2(\mathbb{R})$, $||f||_{L^2} = 1$, and define the Shannon entropy

$$H(|f|^2) = -\int_{\mathbb{R}} |f(x)|^2 \log(|f(x)|^2) dx.$$

Then, defining $\hat{f}(y) = \int_{\mathbb{R}} e^{-2\pi i x y} f(x) dx$,

$$H(|f|^2) + H(|\hat{f}|^2) \ge 0.$$

- Write u_j as a superposition of stable wave packets and also unstable wave packets, with coefficients expressed as 2 functions v_u, v_s ∈ L²(ℝ)
- Using that u_j is an eigenfunction, show that v_u and v_s have roughly the same entropy and relate it to the entropy of μ
- Relate \hat{v}_u to v_s and use the Entropic Uncertainty Principle to get a lower bound on entropy of v_u , v_s and thus the entropy of μ

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman '57, Maassen–Uffink '88] Assume that $f \in L^2(\mathbb{R})$, $||f||_{L^2} = 1$, and define the Shannon entropy

$$H(|f|^2) = -\int_{\mathbb{R}} |f(x)|^2 \log(|f(x)|^2) dx.$$

Then, defining $\hat{f}(y) = \int_{\mathbb{R}} e^{-2\pi i x y} f(x) dx$,

$$H(|f|^2) + H(|\hat{f}|^2) \ge 0.$$

- Write u_j as a superposition of stable wave packets and also unstable wave packets, with coefficients expressed as 2 functions v_u, v_s ∈ L²(ℝ)
- Using that u_j is an eigenfunction, show that v_u and v_s have roughly the same entropy and relate it to the entropy of μ
- Relate ν
 _u to v_s and use the Entropic Uncertainty Principle to get a lower bound on entropy of v_u, v_s and thus the entropy of μ

Thank you for your attention!

Fractal uncertainty principle

Definition A set $X \subset [0,1]$ is ν -porous ($\nu > 0$) on scales h to 1 if for each interval I of size $h \leq |I| \leq 1$, there is an interval $J \subset I$ with $|J| = \nu |I|$ and $J \cap X = \emptyset$ Example: mid-third Cantor set $C \subset [0,1]$ is $\frac{1}{6}$ -porous on scales 0 to 1

Fractal uncertainty principle

Definition A set $X \subset [0,1]$ is ν -porous ($\nu > 0$) on scales h to 1 if for each interval I of size $h \leq |I| \leq 1$, there is an interval $J \subset I$ with $|J| = \nu |I|$ and $J \cap X = \emptyset$ Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous on scales 0 to 1 Fractal uncertainty principle [Bourgain-D '18] Assume that $X, Y \subset [0, 1]$ are ν -porous on scales h to 1. Then there exist $\beta > 0, C$ depending on ν but not on X, Y, h such that $f \in L^2(\mathbb{R}), \quad \operatorname{supp}(\mathcal{F}_h f) \subset X \implies \|f\|_{L^2(Y)} \leq Ch^{\beta} \|f\|_{L^2(\mathbb{R})}.$ Here $\mathcal{F}_h : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is the semiclassical Fourier transform: $\mathcal{F}_h f(\xi) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{T}} e^{-ix\xi/h} f(x) \, dx$

Fractal uncertainty principle [Bourgain-D '18]

Assume that $X, Y \subset [0, 1]$ are ν -porous on scales h to 1. Then there exist $\beta > 0, C$ depending on ν but not on X, Y, h such that

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp}(\mathcal{F}_h f) \subset X \implies \|f\|_{L^2(Y)} \leq Ch^{\beta} \|f\|_{L^2(\mathbb{R})}$$

Interpretation: no quantum state can be localized on a porous set in both position and frequency

Stable/unstable packet heuristic

 Write a Laplace eigenfunction u as a superposition of stable wave packets e^y_s, each of which is microlocalized h-close to a weak stable leaf indexed by y ∈ ℝ:

$$u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) \, dy$$
 for some $v_s \in L^2(\mathbb{R})$

Stable/unstable packet heuristic

 Write a Laplace eigenfunction u as a superposition of stable wave packets e^y_s, each of which is microlocalized h-close to a weak stable leaf indexed by y ∈ ℝ:

$$u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) \, dy$$
 for some $v_s \in L^2(\mathbb{R})$

• Write u as a superposition of unstable wave packets e_u^z :

$$u(x) = \int_{\mathbb{R}} e_u^z(x) v_u(z) \, dz$$
 for some $v_u \in L^2(\mathbb{R})$

Stable/unstable packet heuristic

 Write a Laplace eigenfunction u as a superposition of stable wave packets e^y_s, each of which is microlocalized h-close to a weak stable leaf indexed by y ∈ ℝ:

$$u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) \, dy$$
 for some $v_s \in L^2(\mathbb{R})$

• Write u as a superposition of unstable wave packets e_u^z :

$$u(x) = \int_{\mathbb{R}} e_u^z(x) v_u(z) \, dz$$
 for some $v_u \in L^2(\mathbb{R})$

• The coefficients v_s , v_u are related by semiclassical Fourier transform:

$$v_s(y) = \mathcal{F}_h v_u(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-iyz/h} v_u(z) dz$$

Proof of Theorem 2 and stable/unstable packets

• Write the eigenfunction *u* in stable and unstable bases:

$$u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) \, dy = \int_{\mathbb{R}} e_u^z(x) v_u(z) \, dz, \quad v_s = \mathcal{F}_h v_u$$

- Argue by contradiction: assume $\mathcal{U} \subset S^*M$ open nonempty and $\mu(\mathcal{U}) = 0$. Then *u* is microlocalized away from \mathcal{U} .
- Since u is a Laplace eigenfunction, its microlocalization is invariant under φ^t. So u is microlocalized on the sets

$$\Gamma_{\pm}(T) = \{
ho \in S^*M \mid \varphi^{\pm t}(
ho) \notin \mathcal{U}, \ t = 0, \dots, T \}$$

- Fix T = log(1/h). Then Γ₊ is foliated by stable leaves and porous in the unstable direction. Same for Γ₋, switching stable/unstable. So supp v_s ⊂ X, supp v_u ⊂ Y where X, Y ⊂ ℝ are porous.
- Fractal Uncertainty Principle: cannot have v_u and $\mathcal{F}_h v_u = v_s$ both localized on porous sets. Contradiction.

Proof of Theorem 2 and stable/unstable packets

• Write the eigenfunction *u* in stable and unstable bases:

$$u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) \, dy = \int_{\mathbb{R}} e_u^z(x) v_u(z) \, dz, \quad v_s = \mathcal{F}_h v_u$$

- Argue by contradiction: assume $\mathcal{U} \subset S^*M$ open nonempty and $\mu(\mathcal{U}) = 0$. Then *u* is microlocalized away from \mathcal{U} .
- Since u is a Laplace eigenfunction, its microlocalization is invariant under φ^t. So u is microlocalized on the sets

$$\Gamma_{\pm}(T) = \{
ho \in S^*M \mid \varphi^{\pm t}(
ho) \notin \mathcal{U}, \ t = 0, \dots, T \}$$

- Fix T = log(1/h). Then Γ₊ is foliated by stable leaves and porous in the unstable direction. Same for Γ₋, switching stable/unstable. So supp v_s ⊂ X, supp v_u ⊂ Y where X, Y ⊂ ℝ are porous.
- Fractal Uncertainty Principle: cannot have v_u and $\mathcal{F}_h v_u = v_s$ both localized on porous sets. Contradiction.

Semyon Dyatlov

Proof of Theorem 2 and stable/unstable packets

• Write the eigenfunction *u* in stable and unstable bases:

$$u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) \, dy = \int_{\mathbb{R}} e_u^z(x) v_u(z) \, dz, \quad v_s = \mathcal{F}_h v_u$$

- Argue by contradiction: assume $\mathcal{U} \subset S^*M$ open nonempty and $\mu(\mathcal{U}) = 0$. Then *u* is microlocalized away from \mathcal{U} .
- Since u is a Laplace eigenfunction, its microlocalization is invariant under φ^t. So u is microlocalized on the sets

$$\Gamma_{\pm}(T) = \{
ho \in S^*M \mid \varphi^{\pm t}(
ho) \notin \mathcal{U}, \ t = 0, \dots, T \}$$

- Fix T = log(1/h). Then Γ₊ is foliated by stable leaves and porous in the unstable direction. Same for Γ₋, switching stable/unstable. So supp v_s ⊂ X, supp v_u ⊂ Y where X, Y ⊂ ℝ are porous.
- Fractal Uncertainty Principle: cannot have v_u and $\mathcal{F}_h v_u = v_s$ both localized on porous sets. Contradiction.