Uncertainty Principles in Quantum Chaos

Semyon Dyatlov (MIT)

Jan 11, 2025

Laplace eigenfunctions

- The topic: high energy behavior of Laplace eigenfunctions
- 'Simplest' setting: bounded planar domain $\Omega \subset \mathbb{R}^2$
- Complete system of eigenfunctions of $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$, Dirichlet b.c.:

$$
-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial \Omega} = 0, \quad ||u_j||_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty
$$

Quantum mechanical interpretation:

 $u_i =$ pure quantum state of a particle constrained to Ω $|u_j|^2 dx =$ probability distribution of the location of the particle

- Study $|u_j|^2$ $d\mathrm{\mathsf{x}}$ in the high energy limit $\lambda_j\to\infty$ in the sense of weak convergence of measures on Ω
- \bullet Looking for equidistribution: weak limit $=$ volume measure

$$
\int_{\Omega} a|u_j|^2 dx \to \frac{1}{\text{vol}(\Omega)} \int_{\Omega} a\,dx \quad \text{for all } a \in C^0(\Omega)
$$

Laplace eigenfunctions

- The topic: high energy behavior of Laplace eigenfunctions
- 'Simplest' setting: bounded planar domain $\Omega \subset \mathbb{R}^2$
- Complete system of eigenfunctions of $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$, Dirichlet b.c.:

$$
-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial \Omega} = 0, \quad ||u_j||_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty
$$

Quantum mechanical interpretation:

 $u_i =$ pure quantum state of a particle constrained to Ω $|u_j|^2 dx =$ probability distribution of the location of the particle

- Study $|u_j|^2$ $d\mathrm{\mathsf{x}}$ in the high energy limit $\lambda_j\to\infty$ in the sense of weak convergence of measures on Ω
- \bullet Looking for equidistribution: weak limit $=$ volume measure

$$
\int_{\Omega} a|u_j|^2 dx \to \frac{1}{\text{vol}(\Omega)} \int_{\Omega} a\,dx \quad \text{for all } a \in C^0(\Omega)
$$

Laplace eigenfunctions

- The topic: high energy behavior of Laplace eigenfunctions
- 'Simplest' setting: bounded planar domain $\Omega \subset \mathbb{R}^2$
- Complete system of eigenfunctions of $\Delta = \partial_{x_1}^2 + \partial_{x_2}^2$, Dirichlet b.c.:

$$
-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial \Omega} = 0, \quad ||u_j||_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty
$$

Quantum mechanical interpretation:

 $u_i =$ pure quantum state of a particle constrained to Ω $|u_j|^2 dx =$ probability distribution of the location of the particle

- Study $|u_j|^2\,d\mathrm{x}$ in the high energy limit $\lambda_j\to\infty$ in the sense of weak convergence of measures on Ω
- Looking for equidistribution: weak limit $=$ volume measure

$$
\int_{\Omega} a|u_j|^2 dx \to \frac{1}{\text{vol}(\Omega)} \int_{\Omega} a dx \quad \text{for all } a \in C^0(\Omega)
$$

Two examples: quantum side

Eigenfunction concentration

No equidistribution **Equidistribution**

What is the 'classical' difference between the domains?

Two examples: quantum side

Eigenfunction concentration

No equidistribution **Equidistribution**

What is the 'classical' difference between the domains?

It is the long time behavior of billiard trajectories

Two examples: classical side

A long billiard trajectory

Completely integrable Ergodic (by Bunimovich)

Ergodicity is a weak way to define chaotic behavior: almost every trajectory equidistributes as time $\rightarrow \infty$

Two examples: classical side

A long billiard trajectory

Completely integrable Ergodic (by Bunimovich)

Ergodicity is a weak way to define chaotic behavior: almost every trajectory equidistributes as time $\rightarrow \infty$

Quantum chaos: chaotic classical flow \Rightarrow equidistribution of eigenfunctions

Quantum Ergodicity

 $\Omega \subset \mathbb{R}^2$ a planar domain, u_j a complete system of eigenfunctions:

$$
-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad ||u_j||_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty
$$

Theorem 1

Assume that Ω has ergodic billiard flow. Then there exists a density 1 subsequence λ_{j_k} such that u_{j_k} equidistribute: Z $\int_\Omega a |u_{j_k}|^2 \, d\mathsf x \to \frac{1}{\mathsf{vol}(\Omega)} \int_\Omega$ a dx for all $a \in C^0(\Omega)$.

- Shnirelman '74, Zelditch '87, Colin de Verdière '85, Gérard–Leichtnam '93, Zelditch–Zworski '96
- Applies to general Riemannian manifolds (use the geodesic flow)
- Do we have equidistribution for all eigenfunctions?

Quantum Ergodicity

 $\Omega \subset \mathbb{R}^2$ a planar domain, u_j a complete system of eigenfunctions:

$$
-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial\Omega} = 0, \quad ||u_j||_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty
$$

Theorem 1

Assume that Ω has ergodic billiard flow. Then there exists a density 1 subsequence λ_{j_k} such that u_{j_k} equidistribute: Z $\int_\Omega a |u_{j_k}|^2 \, d\mathsf x \to \frac{1}{\mathsf{vol}(\Omega)} \int_\Omega$ a dx for all $a \in C^0(\Omega)$.

- Shnirelman '74, Zelditch '87, Colin de Verdière '85, Gérard–Leichtnam '93, Zelditch–Zworski '96
- Applies to general Riemannian manifolds (use the geodesic flow)
- Do we have equidistribution for all eigenfunctions?

Quantum Ergodicity

 $\Omega \subset \mathbb{R}^2$ a planar domain, u_j a complete system of eigenfunctions:

$$
-\Delta u_j = \lambda_j^2 u_j, \quad u_j|_{\partial \Omega} = 0, \quad ||u_j||_{L^2(\Omega)} = 1, \quad \lambda_j \to \infty
$$

Theorem 1

Assume that Ω has ergodic billiard flow. Then there exists a density 1 subsequence λ_{j_k} such that u_{j_k} equidistribute: Z $\int_\Omega a |u_{j_k}|^2 \, d\mathsf x \to \frac{1}{\mathsf{vol}(\Omega)} \int_\Omega$ a dx for all $a \in C^0(\Omega)$.

- Shnirelman '74, Zelditch '87, Colin de Verdière '85, Gérard–Leichtnam '93, Zelditch–Zworski '96
- Applies to general Riemannian manifolds (use the geodesic flow)
- Do we have equidistribution for all eigenfunctions?

Eigenfunctions for the stadium

A selection of high energy eigenfunctions (by Alex Barnett):

- Most eigenfunctions equidistribute by Quantum Ergodicity
- Some eigenfunctions do not equidistribute: Hassell '10

Quantum Unique Ergodicity

Setting: boundaryless compact Riemannian manifold (M, g) Eigenfunctions of Laplace–Beltrami operator Δ_{g} on M:

$$
-\Delta_{g} u_{j} = \lambda_{j}^{2} u_{j}, \quad \|u_{j}\|_{L^{2}(M, d \text{ vol}_{g})} = 1, \quad \lambda_{j} \to \infty
$$

Assume that g has negative sectional curvature. Then the entire sequence of eigenfunctions equidistributes:

$$
\int_M a|u_j|^2\,d\operatorname{vol}_g\to \frac{1}{\operatorname{vol}_g(M)}\int_M a\,d\operatorname{vol}_g\quad\text{for all}\,\,a\in C^0(M).
$$

Proved by Lindenstrauss '06 in the arithmetic case, open in general

Quantum Unique Ergodicity

Setting: boundaryless compact Riemannian manifold (M, g) Eigenfunctions of Laplace–Beltrami operator Δ_{g} on M:

$$
-\Delta_{g} u_{j} = \lambda_{j}^{2} u_{j}, \quad \|u_{j}\|_{L^{2}(M, d \text{vol}_{g})} = 1, \quad \lambda_{j} \to \infty
$$

QUE conjecture [Rudnick–Sarnak '94]

Assume that g has negative sectional curvature. Then the entire sequence of eigenfunctions equidistributes:

$$
\int_M a|u_j|^2\,d\operatorname{vol}_g\to \frac{1}{\operatorname{vol}_g(M)}\int_M a\,d\operatorname{vol}_g\quad\text{for all }a\in C^0(M).
$$

Proved by Lindenstrauss '06 in the arithmetic case, open in general

Eigenfunctions on hyperbolic surfaces

Hyperbolic surfaces: dim $M = 2$ and g has curvature -1 Pictures courtesy of Alex Strohmaier, using Strohmaier-Uski '12

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces Geodesic flow on the unit tangent bundle:

$$
\varphi^t: \mathsf{S} M \to \mathsf{S} M, \quad \mathsf{S} M = \big\{(x,\xi) \colon x \in M, \ \xi \in \mathcal{T}_x M, \ |\xi|_{\mathsf{g}} = 1 \big\}
$$

The flow φ^t is hyperbolic: there is a frame of 3 vector fields on SM

- Flow field V_0 , the generator of $\varphi^t = e^{t V_0}$
- Stable field V_s , with $d\varphi^t(\rho)V_s(\rho) = e^{-t}V_s(\varphi^t(\rho))$
- Unstable field V_u , with $d\varphi^t(\rho)V_u(\rho) = e^tV_u(\varphi^t(\rho))$

The strongly chaotic behavior of φ^t as $t\to\infty$ is caused by

- exponential contraction in the stable direction,
- exponential expansion in the unstable direction,
- \bullet and wrapping around the compact manifold M

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces Geodesic flow on the unit tangent bundle:

$$
\varphi^t: \mathsf{S} M \to \mathsf{S} M, \quad \mathsf{S} M = \big\{(x,\xi) \colon x \in M, \ \xi \in \mathcal{T}_x M, \ |\xi|_{\mathsf{g}} = 1 \big\}
$$

The flow φ^t is hyperbolic: there is a frame of 3 vector fields on ${\mathcal{SM}}$

- Flow field V_0 , the generator of $\varphi^t = e^{tV_0}$
- Stable field V_s , with $d\varphi^t(\rho)V_s(\rho) = e^{-t}V_s(\varphi^t(\rho))$
- Unstable field V_u , with $d\varphi^t(\rho)V_u(\rho) = e^tV_u(\varphi^t(\rho))$

The strongly chaotic behavior of φ^t as $t\to\infty$ is caused by

- exponential contraction in the stable direction,
- exponential expansion in the unstable direction,
- \bullet and wrapping around the compact manifold M

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces Geodesic flow on the unit tangent bundle:

$$
\varphi^t: \mathsf{S} M \to \mathsf{S} M, \quad \mathsf{S} M = \big\{(x,\xi) \colon x \in M, \ \xi \in \mathcal{T}_x M, \ |\xi|_{\mathsf{g}} = 1 \big\}
$$

The flow φ^t is hyperbolic: there is a frame of 3 vector fields on ${\mathcal{SM}}$

- Flow field V_0 , the generator of $\varphi^t = e^{tV_0}$
- Stable field V_s , with $d\varphi^t(\rho)V_s(\rho) = e^{-t}V_s(\varphi^t(\rho))$
- Unstable field V_u , with $d\varphi^t(\rho)V_u(\rho) = e^tV_u(\varphi^t(\rho))$

The strongly chaotic behavior of φ^t as $t\to\infty$ is caused by

- exponential contraction in the stable direction,
- exponential expansion in the unstable direction,
- and wrapping around the compact manifold M

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

To illustrate the geodesic flow φ^t on SM, look instead at the following map on $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$:

$$
\Phi: x \mapsto Ax \bmod \mathbb{Z}^2,
$$

$$
A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}
$$

A has eigenvalues $\lambda^{-1} < 1 < \lambda$

Exponential expansion/contraction along the eigenspaces and wrapping around the torus cause the trajectories $\Phi^{n}(x)$ to behave chaotically as $n \to \infty$:

picture courtesy of Jeffrey Galkowski

Microlocalization

 \bullet We studied localization of eigenfunctions u_i via the integrals

$$
\int_M a|u_j|^2 dvol_g = \langle au_j, u_j \rangle_{L^2} \to \dots, \qquad a \in C^0(M)
$$

Now we study localization of u_j in position x and momentum ξ via semiclassical quantization ${\rm Op}_h(a)=$ ${\sf a}({\sf x},-i{\sf h} \partial_{\sf x})$: ${\sf L}^2(M)\rightarrow {\sf L}^2(M)$

$$
\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \to \ldots, \qquad h_j = \lambda_j^{-1} \to 0, \quad a(x, \xi) \in C_c^{\infty}(\mathcal{T}^*M)
$$

where $-\Delta_{\cal g} u_j = \lambda_j^2 u_j, \quad \|u_j\|_{L^2} = 1, \quad u_j$ oscillates at frequency $\sim h_j^{-1}$ j $\mathsf{a} = \mathsf{a}(x) \quad \Longrightarrow \quad \mathsf{Op}_\mathsf{h}(\mathsf{a})$ is the multiplication operator by a On \mathbb{R}^n , $a = a(\xi) \implies \text{Op}_h(a)$ is a Fourier multiplier:

$$
\widehat{\text{Op}_h(a)u}(\eta) = a(h\eta)\widehat{u}(\eta)
$$

$$
= \xi/h, \quad \text{momentum} = \xi
$$

certainty Principles, Quantum Chaos

That is: $\;$ frequency $\eta=\xi/h,\;$ momentum $=\xi$

Microlocalization

• We studied localization of eigenfunctions u_i via the integrals

$$
\int_M a|u_j|^2 dvol_g = \langle au_j, u_j \rangle_{L^2} \to \dots, \qquad a \in C^0(M)
$$

Now we study localization of u_j in position x and momentum ξ via semiclassical quantization ${\rm Op}_h(a)=$ ${\sf a}({\sf x},-i{\sf h} \partial_{\sf x})$: ${\sf L}^2(M)\rightarrow {\sf L}^2(M)$

$$
\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2} \to \ldots, \qquad h_j = \lambda_j^{-1} \to 0, \quad a(x, \xi) \in C_c^{\infty}(\mathcal{T}^*M)
$$

where $-\Delta_{\cal g} u_j = \lambda_j^2 u_j, \quad \|u_j\|_{L^2} = 1, \quad u_j$ oscillates at frequency $\sim h_j^{-1}$ j $a = a(x) \implies \mathsf{Op}_h(a)$ is the multiplication operator by a

On \mathbb{R}^n , $a = a(\xi) \implies \text{Op}_h(a)$ is a Fourier multiplier:

$$
\widehat{Op_h(a)u}(\eta) = a(h\eta)\widehat{u}(\eta)
$$
\n
$$
\eta = \xi/h, \quad \text{momentum} = \xi
$$
\nUncertainty Principles, Quantum Chaos

That is: $\;$ frequency $\eta=\xi/h,\;$ momentum $=\xi$

Semiclassical measures

$$
-\Delta_{g} u_{j} = \lambda_{j}^{2} u_{j}, \quad ||u_{j}||_{L^{2}} = 1, \quad h_{j} = \lambda_{j}^{-1}, \quad \text{Op}_{h}(a) = a(x, -ih\partial_{x})
$$

Definition

The sequence u_j converges microlocally to a measure μ on \mathcal{T}^*M if

$$
\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2(M)} \to \int_{\mathcal{T}^*M} a\,d\mu \quad \text{for all } a \in C_c^{\infty}(\mathcal{T}^*M)
$$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2\,d$ vol $_g\to \pi_\ast\mu$ weakly where π : $\mathcal{T}^\ast M\to M$

- \bullet μ probability measure
- supp μ contained in the unit cotangent bundle $\mathcal{S}^*M\simeq SM$
- μ invariant under the geodesic flow $\varphi^t: S^*M \to S^*M$

Semiclassical measures

$$
-\Delta_{\mathbf{g}} u_j = \lambda_j^2 u_j, \quad ||u_j||_{L^2} = 1, \quad h_j = \lambda_j^{-1}, \quad \mathrm{Op}_h(a) = a(x, -ih\partial_x)
$$

Definition

The sequence u_j converges microlocally to a measure μ on \mathcal{T}^*M if

$$
\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2(M)} \to \int_{\mathcal{T}^*M} a\,d\mu \quad \text{for all } a \in C_c^{\infty}(\mathcal{T}^*M)
$$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2\,d$ vol $_g\to \pi_\ast\mu$ weakly where π : $\mathcal{T}^\ast M\to M$

Properties of semiclassical measures

- \bullet μ probability measure
- supp μ contained in the unit cotangent bundle $\mathcal{S}^*M\simeq SM$
- μ invariant under the geodesic flow $\varphi^t: \mathcal{S}^*M \to \mathcal{S}^*M$

Main results

- \bullet A stronger equidistribution property: u_i converges microlocally to the Liouville measure $\mu_L = \varepsilon d \, \mathsf{vol}_\mathcal{g}(\mathsf{x}) dS(\xi)$ on \mathcal{S}^*M
- Implies equidistribution for $|u_j|^2$ d vol $_g$
- QE and QUE actually feature microlocal equidistribution
- Plenty of φ^t -invariant measures, e.g. δ -measure on a closed geodesic QUE conjecture: Liouville measure is the only semiclassical measure
- I will present two restrictions on what φ^t -invariant measures can appear as semiclassical measures for negatively curved manifolds

Main results

- \bullet A stronger equidistribution property: u_i converges microlocally to the Liouville measure $\mu_L = \varepsilon d \, \mathsf{vol}_\mathcal{g}(\mathsf{x}) dS(\xi)$ on \mathcal{S}^*M
- Implies equidistribution for $|u_j|^2$ d vol $_g$
- QE and QUE actually feature microlocal equidistribution
- Plenty of φ^t -invariant measures, e.g. δ -measure on a closed geodesic
- QUE conjecture: Liouville measure is the only semiclassical measure
- I will present two restrictions on what φ^t -invariant measures can appear as semiclassical measures for negatively curved manifolds

Main results

- \bullet A stronger equidistribution property: u_i converges microlocally to the Liouville measure $\mu_L = \varepsilon d \, \mathsf{vol}_\mathcal{g}(\mathsf{x}) dS(\xi)$ on \mathcal{S}^*M
- Implies equidistribution for $|u_j|^2$ d vol $_g$
- QE and QUE actually feature microlocal equidistribution
- Plenty of φ^t -invariant measures, e.g. δ -measure on a closed geodesic
- QUE conjecture: Liouville measure is the only semiclassical measure
- I will present two restrictions on what φ^t -invariant measures can appear as semiclassical measures for negatively curved manifolds

Main results: full support property

Theorem 2 [D–Jin '18, D–Jin–Nonnenmacher '21]

If μ is a semiclassical measure on a negatively curved surface, then

supp $\mu = S^*M$.

That is, $\mu(\mathcal{U}) > 0$ for any open nonempty $\mathcal{U} \subset \mathcal{S}^*M$.

Corollary: $||u_i||_{L^2(\Omega)} \geq c_{\Omega} > 0$ for any open nonempty $\Omega \subset M$ where c_{Ω} depends on M , Ω but not on λ_i

Theorem 2 is only known for surfaces because the main new tool, Fractal Uncertainty Principle, was only known for subsets of R. Recent work: Han–Schlag '20, Jaye–Mitkovski '22, D–Jézéquel '24, Athreya–D–Miller '24, Cohen '23, Kim '24

Main results: full support property

Theorem 2 [D–Jin '18, D–Jin–Nonnenmacher '21]

If μ is a semiclassical measure on a negatively curved surface, then

supp $\mu = S^*M$.

That is, $\mu(\mathcal{U}) > 0$ for any open nonempty $\mathcal{U} \subset \mathcal{S}^*M$.

Corollary: $||u_i||_{L^2(\Omega)} \geq c_{\Omega} > 0$ for any open nonempty $\Omega \subset M$ where c_{Ω} depends on M, Ω but not on λ_i

Theorem 2 is only known for surfaces because the main new tool, Fractal Uncertainty Principle, was only known for subsets of R. Recent work: Han–Schlag '20, Jaye–Mitkovski '22, D–Jézéquel '24, Athreya–D–Miller '24, Cohen '23, Kim '24

Main results: full support property

Theorem 2 [D–Jin '18, D–Jin–Nonnenmacher '21]

If μ is a semiclassical measure on a negatively curved surface, then

supp $\mu = S^*M$.

That is, $\mu(\mathcal{U}) > 0$ for any open nonempty $\mathcal{U} \subset \mathcal{S}^*M$.

Corollary: $||u_i||_{L^2(\Omega)} \geq c_{\Omega} > 0$ for any open nonempty $\Omega \subset M$ where c_{Ω} depends on M, Ω but not on λ_i

Theorem 2 is only known for surfaces because the main new tool, Fractal Uncertainty Principle, was only known for subsets of R. Recent work: Han–Schlag '20, Jaye–Mitkovski '22, D–Jézéquel '24, Athreya–D–Miller '24, Cohen '23, Kim '24

Main results: entropy bound

Theorem 3 [Anantharaman–Nonnenmacher '07]

On a hyperbolic surface, each semiclassical measure μ has entropy

 $\mathsf{h}_{\mathsf{KS}}(\mu) \geq \frac{1}{2}$ $\frac{1}{2}$.

Holds for any negatively curved manifold with some constant > 0 Anantharaman '08, Rivière '10, Anantharaman–Silberman '13

- Liouville measure μ_L has entropy 1, delta-measure has entropy 0
- Counterexample of Faure–Nonnenmacher–de Bièvre '03: in the toy model of quantum cat maps, can have semiclassical measure $\frac{1}{2}\delta_0 + \frac{1}{2}$ $\frac{1}{2}\mu$ _L of entropy $=\frac{1}{2}$

Main results: entropy bound

Theorem 3 [Anantharaman–Nonnenmacher '07]

On a hyperbolic surface, each semiclassical measure μ has entropy

 $\mathsf{h}_{\mathsf{KS}}(\mu) \geq \frac{1}{2}$ $\frac{1}{2}$.

Holds for any negatively curved manifold with some constant > 0 Anantharaman '08, Rivière '10, Anantharaman–Silberman '13

- Liouville measure μ_L has entropy 1, delta-measure has entropy 0
- Counterexample of Faure–Nonnenmacher–de Bièvre '03: in the toy model of quantum cat maps, can have semiclassical measure $\mu = \frac{1}{2}$ $\frac{1}{2}\delta_0 + \frac{1}{2}$ $\frac{1}{2}\mu$ _L of entropy $=\frac{1}{2}$ 2

Definition of Kolmogorov–Sinai entropy

How to define the entropy $\mathsf{h}_{\mathsf{KS}}(\mu)$ of a φ^t -invariant measure μ on $\mathcal{S}^*\mathsf{M}$:

- Start with a fixed fine partition of S^*M
- Refine it using the flow φ^t for times $t=0,1,\ldots,N-1$
- Take a μ -random point $\rho \in S^*M$ and let ${\mathcal A}$ be the element of the refined partition containing ρ . Then

 $\mathbb{E} \log \mu(\mathcal{A}) \approx -h_{\mathsf{KS}}(\mu)N$ as $N \to \infty$

(using Arnold cat map model for the figures)

Semyon Dyatlov [Uncertainty Principles, Quantum Chaos](#page-0-0) Jan 11, 2025 16 / 22

Definition of Kolmogorov–Sinai entropy

How to define the entropy $\mathsf{h}_{\mathsf{KS}}(\mu)$ of a φ^t -invariant measure μ on $\mathcal{S}^*\mathsf{M}$:

- Start with a fixed fine partition of S^*M
- Refine it using the flow φ^t for times $t=0,1,\ldots,N-1$
- Take a μ -random point $\rho \in S^*M$ and let ${\mathcal A}$ be the element of the refined partition containing ρ . Then

 $\mathbb{E} \log \mu(\mathcal{A}) \approx -h_{\rm KS}(\mu)N$ as $N \to \infty$

(using Arnold cat map model for the figures)

Semyon Dyatlov [Uncertainty Principles, Quantum Chaos](#page-0-0) Jan 11, 2025 16 / 22

Definition of Kolmogorov–Sinai entropy

How to define the entropy $\mathsf{h}_{\mathsf{KS}}(\mu)$ of a φ^t -invariant measure μ on $\mathcal{S}^*\mathsf{M}$:

- Start with a fixed fine partition of S^*M
- Refine it using the flow φ^t for times $t=0,1,\ldots,N-1$
- Take a μ -random point $\rho\in\mathcal{S}^*\mathcal{M}$ and let $\mathcal A$ be the element of the refined partition containing ρ . Then

 $\mathbb{E} \log \mu(\mathcal{A}) \approx -h_{\mathsf{KS}}(\mu)N$ as $N \to \infty$

(using Arnold cat map model for the figures)

Semyon Dyatlov [Uncertainty Principles, Quantum Chaos](#page-0-0) Jan 11, 2025 16 / 22

Proofs and uncertainty principles

We now briefly discuss the proofs of Theorems 2 and 3:

- Relate macroscopic information (semiclassical measure) to microscopic information (microlocalization in h-dependent sets)
- This uses that microlocalization of Laplace eigenfunctions u_j is invariant under the geodesic flow φ^t
- \bullet If the semiclassical measure is 'too concentrated' then u_i has microlocalization inconsistent with an uncertainty principle

Semiclassical measures: three examples

Example 1:

$$
u_h(x) = \pi^{-\frac{1}{4}}h^{-\frac{1}{2}}\exp\left(-\frac{x^2}{2h^2}\right)
$$

$$
\widehat{u}_h(\eta) = \sqrt{2}\pi^{\frac{1}{4}}h^{\frac{1}{2}}\exp\left(-\frac{h^2\eta^2}{2}\right)
$$

Microlocalized at position $\sim h$ and frequency $\sim h^{-1}$, i.e. momentum ~ 1

Converges microlocally to the measure

$$
\mu = \pi^{-\frac{1}{2}} \exp(-\xi^2) \delta_0(x) \times d\xi
$$

Semiclassical measures: three examples

Example 2:

$$
u_h(x) = \pi^{-\frac{1}{4}}h^{-\frac{1}{4}}\exp\left(-\frac{x^2}{2h}\right)
$$

$$
\widehat{u}_h(\eta) = \sqrt{2}\pi^{\frac{1}{4}}h^{\frac{1}{4}}\exp\left(-\frac{h\eta^2}{2}\right)
$$

Microlocalized at position $\sim h^{\frac{1}{2}}$ and frequency $\sim h^{-\frac{1}{2}}$, i.e. momentum $\sim h^{\frac{1}{2}}$

Converges microlocally to the measure

$$
\mu = \delta_0(x) \times \delta_0(\xi)
$$

Semiclassical measures: three examples

Example 3:

$$
u_h(x) = \pi^{-\frac{1}{4}} \exp\left(-\frac{x^2}{2}\right)
$$

$$
\widehat{u}_h(\eta) = \sqrt{2}\pi^{\frac{1}{4}} \exp\left(-\frac{\eta^2}{2}\right)
$$

Microlocalized at position ∼ 1 and frequency \sim 1, i.e. momentum \sim h

Converges microlocally to the measure

$$
\mu = \pi^{-\frac{1}{2}} \exp(-x^2) dx \times \delta_0(\xi)
$$

Basic Uncertainty Principle

Uncertainty Principle

If $u \in L^2(\mathbb{R})$ is microlocalized in an interval of size Δx in position and an interval of size $\Delta \xi$ in momentum (= frequency $\times h$) then

 $\Delta x \cdot \Delta \xi \gtrsim h$.

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18]

No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U}\subset\mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(U) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| < log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_-(N)$, $N = 0$ U (in white) $\Gamma_+(N)$, $N = 0$

(using Arnold cat map model for the figures)

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(U) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_-(N)$, $N=0$ $\mathcal U$ (in white) $\Gamma_+(N)$, $N=0$ (using Arnold cat map model for the figures)

Semyon Dyatlov **Van [Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 20 / 22

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_-(N)$, $N=1$ $\mathcal U$ (in white) $\Gamma_+(N)$, $N=1$ (using Arnold cat map model for the figures)

Semyon Dyatlov **[Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 20/22

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_-(N)$, $N=2$ U (in white) $\Gamma_+(N)$, $N=2$ (using Arnold cat map model for the figures)

Semyon Dyatlov **[Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 20/22

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18]

No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| \leq \log(1/h)$, get microlocalization incompatible with FUP

 $\Gamma_-(N)$, $N = 3$ U (in white) $\Gamma_+(N)$, $N = 3$ (using Arnold cat map model for the figures)

Semyon Dyatlov **Van [Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 20 / 22

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| < log(1/h)$, get microlocalization incompatible with FUP

Semyon Dyatlov **[Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 20/22

Key ingredient: Fractal Uncertainty Principle [Bourgain–D '18] No $u\in L^2(\mathbb{R})$ can be localized in position and frequency near a fractal set

- Argue by contradiction: assume $\mu(\mathcal{U}) = 0$ for some open nonempty $\mathcal{U}\subset \mathcal{S}^*\mathcal{M}$, then u_j is microlocalized away from \mathcal{U}
- Then u_j also microlocalized away from $\varphi^t(\mathcal{U})$ for all $t.$ Use for $|t| < log(1/h)$, get microlocalization incompatible with FUP

Semyon Dyatlov **[Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 20/22

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman '57, Maassen–Uffink '88] Assume that $f\in L^2(\mathbb{R}),\,\|f\|_{L^2}=1,$ and define the Shannon entropy

$$
H(|f|^2) = -\int_{\mathbb{R}} |f(x)|^2 \log(|f(x)|^2) dx.
$$

Then, defining $\widehat{f}(y) = \int_{\mathbb{R}} e^{-2\pi ixy} f(x) dx$,

 $H(|f|^2) + H(|\widehat{f}|^2) \ge 0.$

- \bullet Write u_i as a superposition of stable wave packets and also unstable wave packets, with coefficients expressed as 2 functions $v_u,v_s\in L^2(\mathbb{R})$
- Using that u_j is an eigenfunction, show that v_u and v_s have roughly the same entropy and relate it to the entropy of μ
- Relate \hat{v}_μ to v_s and use the Entropic Uncertainty Principle to get a lower bound on entropy of v_{μ}, v_{s} and thus the entropy of μ

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman '57, Maassen–Uffink '88] Assume that $f\in L^2(\mathbb{R}),\,\|f\|_{L^2}=1,$ and define the Shannon entropy

$$
H(|f|^2) = -\int_{\mathbb{R}} |f(x)|^2 \log(|f(x)|^2) dx.
$$

Then, defining $\widehat{f}(y) = \int_{\mathbb{R}} e^{-2\pi ixy} f(x) dx$,

$$
H(|f|^2)+H(|\widehat{f}|^2)\geq 0.
$$

- \bullet Write u_i as a superposition of stable wave packets and also unstable wave packets, with coefficients expressed as 2 functions $v_u,v_s\in L^2(\mathbb{R})$
- Using that u_j is an eigenfunction, show that v_u and v_s have roughly the same entropy and relate it to the entropy of μ
- Relate \hat{v}_μ to v_s and use the Entropic Uncertainty Principle to get a lower bound on entropy of v_{μ}, v_{s} and thus the entropy of μ

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman '57, Maassen–Uffink '88] Assume that $f\in L^2(\mathbb{R}),\,\|f\|_{L^2}=1,$ and define the Shannon entropy

$$
H(|f|^2) = -\int_{\mathbb{R}} |f(x)|^2 \log(|f(x)|^2) dx.
$$

Then, defining $\widehat{f}(y) = \int_{\mathbb{R}} e^{-2\pi ixy} f(x) dx$,

$$
H(|f|^2)+H(|\widehat{f}|^2)\geq 0.
$$

- \bullet Write u_i as a superposition of stable wave packets and also unstable wave packets, with coefficients expressed as 2 functions $v_u,v_s\in L^2(\mathbb{R})$
- Using that u_j is an eigenfunction, show that v_u and v_s have roughly the same entropy and relate it to the entropy of μ
- Relate \hat{v}_μ to v_s and use the Entropic Uncertainty Principle to get a lower bound on entropy of v_u , v_s and thus the entropy of μ

Thank you for your attention!

Fractal uncertainty principle

Definition

A set $X \subset [0,1]$ is ν -porous $(\nu > 0)$ on scales h to 1 if for each interval l of size $h \leq |I| \leq 1$, there is an interval $J \subset I$ with $|J| = \nu |I|$ and $J \cap X = \emptyset$

Assume that $X, Y \subset [0, 1]$ are ν -porous on scales h to 1. Then there exist $\beta > 0$. C depending on ν but not on X, Y, h such that

$$
f\in L^2(\mathbb{R}), \quad \text{supp}(\mathcal{F}_hf)\subset X \quad \Longrightarrow \quad \|f\|_{L^2(Y)}\leq Ch^{\beta}\|f\|_{L^2(\mathbb{R})}.
$$

Here $\mathcal{F}_h: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is the semiclassical Fourier transform:

$$
\mathcal{F}_h f(\xi) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-ix\xi/h} f(x) dx
$$

Fractal uncertainty principle

Definition

A set $X \subset [0,1]$ is ν -porous $(\nu > 0)$ on scales h to 1 if for each interval l of size $h \leq |I| \leq 1$, there is an interval $J \subset I$ with $|J| = \nu |I|$ and $J \cap X = \emptyset$

Fractal uncertainty principle [Bourgain–D '18]

Assume that $X, Y \subset [0, 1]$ are *v*-porous on scales h to 1. Then there exist $\beta > 0$, C depending on ν but not on X, Y, h such that

$$
f\in L^2(\mathbb{R}), \quad \text{supp}(\mathcal{F}_hf)\subset X \quad \Longrightarrow \quad \|f\|_{L^2(\mathcal{Y})}\leq Ch^{\beta}\|f\|_{L^2(\mathbb{R})}.
$$

Here $\mathcal{F}_h: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is the semiclassical Fourier transform:

$$
\mathcal{F}_h f(\xi) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-ix\xi/h} f(x) dx
$$

Fractal uncertainty principle [Bourgain–D '18]

Assume that $X, Y \subset [0, 1]$ are *v*-porous on scales h to 1. Then there exist $\beta > 0$, C depending on ν but not on X, Y, h such that

$$
f \in L^2(\mathbb{R}), \quad \text{supp}(\mathcal{F}_h f) \subset X \quad \Longrightarrow \quad \|f\|_{L^2(Y)} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}
$$

Interpretation: no quantum state can be localized on a porous set in both position and frequency

Stable/unstable packet heuristic

 \bullet Write a Laplace eigenfunction u as a superposition of stable wave packets e_s^{γ} , each of which is microlocalized h-close to a weak stable leaf indexed by $y \in \mathbb{R}$:

 $u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) dy$ for some $v_s \in L^2(\mathbb{R})$

Stable/unstable packet heuristic

 \bullet Write a Laplace eigenfunction u as a superposition of stable wave packets e_s^{γ} , each of which is microlocalized h-close to a weak stable leaf indexed by $y \in \mathbb{R}$:

$$
u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) dy \text{ for some } v_s \in L^2(\mathbb{R})
$$

Write u as a superposition of unstable wave packets e_u^z :

$$
u(x) = \int_{\mathbb{R}} e_u^z(x) v_u(z) dz \text{ for some } v_u \in L^2(\mathbb{R})
$$

Stable/unstable packet heuristic

 \bullet Write a Laplace eigenfunction u as a superposition of stable wave packets e_s^{γ} , each of which is microlocalized h-close to a weak stable leaf indexed by $y \in \mathbb{R}$:

$$
u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) dy \text{ for some } v_s \in L^2(\mathbb{R})
$$

Write u as a superposition of unstable wave packets e_u^z :

$$
u(x) = \int_{\mathbb{R}} e_u^z(x) v_u(z) dz \text{ for some } v_u \in L^2(\mathbb{R})
$$

The coefficients v_s , v_u are related by semiclassical Fourier transform:

$$
v_s(y) = \mathcal{F}_h v_u(y) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-iyz/h} v_u(z) dz
$$

Proof of Theorem 2 and stable/unstable packets

• Write the eigenfunction u in stable and unstable bases:

$$
u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) dy = \int_{\mathbb{R}} e_u^z(x) v_u(z) dz, \quad v_s = \mathcal{F}_h v_u
$$

- Argue by contradiction: assume $\mathcal{U}\subset \mathcal{S}^*\bar{\mathcal{M}}$ open nonempty and $\mu(\mathcal{U}) = 0$. Then u is microlocalized away from \mathcal{U} .
- Since *u* is a Laplace eigenfunction, its microlocalization is invariant under $\varphi^t.$ So u is microlocalized on the sets

$$
\Gamma_{\pm}(\mathcal{T}) = \{ \rho \in \mathcal{S}^* \mathcal{M} \mid \varphi^{\pm t}(\rho) \notin \mathcal{U}, \ t = 0, \ldots, \mathcal{T} \}
$$

- Fix $T = \log(1/h)$. Then Γ_{+} is foliated by stable leaves and porous in the unstable direction. Same for Γ_, switching stable/unstable. So supp $v_s \subset X$, supp $v_u \subset Y$ where $X, Y \subset \mathbb{R}$ are porous.
- Fractal Uncertainty Principle: cannot have v_{μ} and $\mathcal{F}_{h}v_{\mu} = v_{s}$ both localized on porous sets. Contradiction.

Proof of Theorem 2 and stable/unstable packets

• Write the eigenfunction u in stable and unstable bases:

$$
u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) dy = \int_{\mathbb{R}} e_u^z(x) v_u(z) dz, \quad v_s = \mathcal{F}_h v_u
$$

- Argue by contradiction: assume $\mathcal{U}\subset \mathcal{S}^*\bar{\mathcal{M}}$ open nonempty and $\mu(\mathcal{U}) = 0$. Then u is microlocalized away from \mathcal{U} .
- \bullet Since u is a Laplace eigenfunction, its microlocalization is invariant under $\varphi^t.$ So μ is microlocalized on the sets

$$
\Gamma_{\pm}(\mathcal{T}) = \{ \rho \in \mathcal{S}^* \mathcal{M} \mid \varphi^{\pm t}(\rho) \notin \mathcal{U}, t = 0, \ldots, \mathcal{T} \}
$$

- Fix $T = \log(1/h)$. Then Γ_+ is foliated by stable leaves and porous in the unstable direction. Same for Γ_, switching stable/unstable. So supp $v_s \subset X$, supp $v_u \subset Y$ where $X, Y \subset \mathbb{R}$ are porous.
- Fractal Uncertainty Principle: cannot have v_{μ} and $\mathcal{F}_{h}v_{\mu} = v_{s}$ both localized on porous sets. Contradiction.

Proof of Theorem 2 and stable/unstable packets

• Write the eigenfunction u in stable and unstable bases:

$$
u(x) = \int_{\mathbb{R}} e_s^y(x) v_s(y) dy = \int_{\mathbb{R}} e_u^z(x) v_u(z) dz, \quad v_s = \mathcal{F}_h v_u
$$

- Argue by contradiction: assume $\mathcal{U}\subset \mathcal{S}^*\bar{\mathcal{M}}$ open nonempty and $\mu(\mathcal{U}) = 0$. Then u is microlocalized away from \mathcal{U} .
- Since *u* is a Laplace eigenfunction, its microlocalization is invariant under $\varphi^t.$ So μ is microlocalized on the sets

$$
\Gamma_{\pm}(\mathcal{T}) = \{ \rho \in \mathcal{S}^* \mathcal{M} \mid \varphi^{\pm t}(\rho) \notin \mathcal{U}, t = 0, \ldots, \mathcal{T} \}
$$

- Fix $T = \log(1/h)$. Then Γ_+ is foliated by stable leaves and porous in the unstable direction. Same for Γ_, switching stable/unstable. So supp $v_s \subset X$, supp $v_u \subset Y$ where $X, Y \subset \mathbb{R}$ are porous.
- Fractal Uncertainty Principle: cannot have v_u and $\mathcal{F}_h v_u = v_s$ both localized on porous sets. Contradiction.

Semyon Dyatlov **[Uncertainty Principles, Quantum Chaos](#page-0-0)** Jan 11, 2025 22/22