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Equidistribution of eigenfunctions

Laplace eigenfunctions

The topic: high energy behavior of Laplace eigenfunctions
‘Simplest’ setting: bounded planar domain Ω ⊂ R2

Complete system of eigenfunctions of ∆ = ∂2
x1 + ∂2

x2 , Dirichlet b.c.:

−∆uj = λ2
j uj , uj |∂Ω = 0, ∥uj∥L2(Ω) = 1, λj → ∞

Quantum mechanical interpretation:
uj = pure quantum state of a particle constrained to Ω
|uj |2 dx = probability distribution of the location of the particle

Study |uj |2 dx in the high energy limit λj → ∞
in the sense of weak convergence of measures on Ω

Looking for equidistribution: weak limit = volume measure∫
Ω
a|uj |2 dx → 1

vol(Ω)

∫
Ω
a dx for all a ∈ C 0(Ω)
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Equidistribution of eigenfunctions

Two examples: quantum side

Eigenfunction concentration
(picture on the right by Alex Barnett)

No equidistribution Equidistribution

What is the ‘classical’ difference between the domains?

It is the long time behavior of billiard trajectories
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Equidistribution of eigenfunctions

Two examples: classical side

A long billiard trajectory

Completely integrable Ergodic (by Bunimovich)

Ergodicity is a weak way to define chaotic behavior:
almost every trajectory equidistributes as time → ∞

Quantum chaos: chaotic classical flow ⇒ equidistribution of eigenfunctions
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Equidistribution of eigenfunctions

Quantum Ergodicity

Ω ⊂ R2 a planar domain, uj a complete system of eigenfunctions:

−∆uj = λ2
j uj , uj |∂Ω = 0, ∥uj∥L2(Ω) = 1, λj → ∞

Theorem 1
Assume that Ω has ergodic billiard flow. Then there exists a density 1
subsequence λjk such that ujk equidistribute:∫

Ω
a|ujk |

2 dx → 1
vol(Ω)

∫
Ω
a dx for all a ∈ C 0(Ω).

Shnirelman ’74, Zelditch ’87, Colin de Verdière ’85,
Gérard–Leichtnam ’93, Zelditch–Zworski ’96
Applies to general Riemannian manifolds (use the geodesic flow)
Do we have equidistribution for all eigenfunctions?
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Equidistribution of eigenfunctions

Eigenfunctions for the stadium

A selection of high energy eigenfunctions (by Alex Barnett):

Most eigenfunctions equidistribute by Quantum Ergodicity
Some eigenfunctions do not equidistribute: Hassell ’10
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QUE and hyperbolicity

Quantum Unique Ergodicity

Setting: boundaryless compact Riemannian manifold (M, g)

Eigenfunctions of Laplace–Beltrami operator ∆g on M:

−∆guj = λ2
j uj , ∥uj∥L2(M,d volg ) = 1, λj → ∞

QUE conjecture [Rudnick–Sarnak ’94]

Assume that g has negative sectional curvature. Then the entire sequence
of eigenfunctions equidistributes:∫

M
a|uj |2 d volg → 1

volg (M)

∫
M
a d volg for all a ∈ C 0(M).

Proved by Lindenstrauss ’06 in the arithmetic case, open in general
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QUE and hyperbolicity

Eigenfunctions on hyperbolic surfaces

Hyperbolic surfaces: dimM = 2 and g has curvature −1
Pictures courtesy of Alex Strohmaier, using Strohmaier–Uski ’12
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QUE and hyperbolicity

Hyperbolicity of the geodesic flow

Will specialize to hyperbolic surfaces
Geodesic flow on the unit tangent bundle:

φt : SM → SM, SM =
{
(x , ξ) : x ∈ M, ξ ∈ TxM, |ξ|g = 1

}
The flow φt is hyperbolic: there is a frame of 3 vector fields on SM

Flow field V0, the generator of φt = etV0

Stable field Vs , with dφt(ρ)Vs(ρ) = e−tVs(φ
t(ρ))

Unstable field Vu, with dφt(ρ)Vu(ρ) = etVu(φ
t(ρ))

The strongly chaotic behavior of φt as t → ∞ is caused by
exponential contraction in the stable direction,
exponential expansion in the unstable direction,
and wrapping around the compact manifold M
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QUE and hyperbolicity

A simpler example of hyperbolicity: Arnold cat map

To illustrate the geodesic flow φt

on SM, look instead at the
following map on T2 = R2/Z2:

Φ : x 7→ Ax mod Z2,

A =

(
2 1
1 1

)
A has eigenvalues λ−1 < 1 < λ

Exponential expansion/contraction
along the eigenspaces and
wrapping around the torus cause
the trajectories Φn(x) to behave
chaotically as n → ∞:

picture courtesy of Jeffrey Galkowski

n = 0
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Semiclassical measures

Microlocalization

We studied localization of eigenfunctions uj via the integrals∫
M
a|uj |2 d volg = ⟨auj , uj⟩L2 → . . . , a ∈ C 0(M)

Now we study localization of uj in position x and momentum ξ
via semiclassical quantization Oph(a) = a(x ,−ih∂x) : L

2(M) → L2(M)

⟨Ophj (a)uj , uj⟩L2 → . . . , hj = λ−1
j → 0, a(x , ξ) ∈ C∞

c (T ∗M)

where −∆guj = λ2
j uj , ∥uj∥L2 = 1, uj oscillates at frequency ∼ h−1

j

a = a(x) =⇒ Oph(a) is the multiplication operator by a

On Rn, a = a(ξ) =⇒ Oph(a) is a Fourier multiplier:

Oph(a)u
∧

(η) = a(hη)û(η)

That is: frequency η = ξ/h, momentum = ξ
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Semiclassical measures

Semiclassical measures

−∆guj = λ2
j uj , ∥uj∥L2 = 1, hj = λ−1

j , Oph(a) = a(x ,−ih∂x)

Definition
The sequence uj converges microlocally to a measure µ on T ∗M if

⟨Ophj (a)uj , uj⟩L2(M) →
∫
T∗M

a dµ for all a ∈ C∞
c (T ∗M)

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: |uj |2 d volg → π∗µ weakly where π : T ∗M → M

Properties of semiclassical measures
µ probability measure
suppµ contained in the unit cotangent bundle S∗M ≃ SM

µ invariant under the geodesic flow φt : S∗M → S∗M
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Semiclassical measures

Main results

A stronger equidistribution property: uj converges microlocally to the
Liouville measure µL = cd volg (x)dS(ξ) on S∗M

Implies equidistribution for |uj |2 d volg

QE and QUE actually feature microlocal equidistribution

Plenty of φt-invariant measures, e.g. δ-measure on a closed geodesic
QUE conjecture: Liouville measure is the only semiclassical measure

I will present two restrictions on what φt-invariant measures
can appear as semiclassical measures for negatively curved manifolds

Semyon Dyatlov Uncertainty Principles, Quantum Chaos Jan 11, 2025 13 / 22



Semiclassical measures

Main results

A stronger equidistribution property: uj converges microlocally to the
Liouville measure µL = cd volg (x)dS(ξ) on S∗M

Implies equidistribution for |uj |2 d volg

QE and QUE actually feature microlocal equidistribution

Plenty of φt-invariant measures, e.g. δ-measure on a closed geodesic
QUE conjecture: Liouville measure is the only semiclassical measure

I will present two restrictions on what φt-invariant measures
can appear as semiclassical measures for negatively curved manifolds

Semyon Dyatlov Uncertainty Principles, Quantum Chaos Jan 11, 2025 13 / 22



Semiclassical measures

Main results

A stronger equidistribution property: uj converges microlocally to the
Liouville measure µL = cd volg (x)dS(ξ) on S∗M

Implies equidistribution for |uj |2 d volg

QE and QUE actually feature microlocal equidistribution

Plenty of φt-invariant measures, e.g. δ-measure on a closed geodesic
QUE conjecture: Liouville measure is the only semiclassical measure

I will present two restrictions on what φt-invariant measures
can appear as semiclassical measures for negatively curved manifolds

Semyon Dyatlov Uncertainty Principles, Quantum Chaos Jan 11, 2025 13 / 22



Semiclassical measures

Main results: full support property

Theorem 2 [D–Jin ’18, D–Jin–Nonnenmacher ’21]

If µ is a semiclassical measure on a negatively curved surface, then

suppµ = S∗M.

That is, µ(U) > 0 for any open nonempty U ⊂ S∗M.

Corollary: ∥uj∥L2(Ω) ≥ cΩ > 0 for any open nonempty Ω ⊂ M where cΩ
depends on M,Ω but not on λj

Theorem 2 is only known for surfaces because the main new tool, Fractal
Uncertainty Principle, was only known for subsets of R. Recent work:
Han–Schlag ’20, Jaye–Mitkovski ’22, D–Jézéquel ’24,
Athreya–D–Miller ’24, Cohen ’23, Kim ’24
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Semiclassical measures

Main results: entropy bound

Theorem 3 [Anantharaman–Nonnenmacher ’07]

On a hyperbolic surface, each semiclassical measure µ has entropy

hKS(µ) ≥ 1
2 .

Holds for any negatively curved manifold with some constant > 0
Anantharaman ’08, Rivière ’10, Anantharaman–Silberman ’13

Liouville measure µL has entropy 1, delta-measure has entropy 0
Counterexample of Faure–Nonnenmacher–de Bièvre ’03: in the
toy model of quantum cat maps, can have semiclassical measure
µ = 1

2δ0 +
1
2µL of entropy = 1

2
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Semiclassical measures

Definition of Kolmogorov–Sinai entropy

How to define the entropy hKS(µ) of a φt-invariant measure µ on S∗M:
Start with a fixed fine partition of S∗M
Refine it using the flow φt for times t = 0, 1, . . . ,N − 1
Take a µ-random point ρ ∈ S∗M and let A be the element of the
refined partition containing ρ. Then

E logµ(A) ≈ −hKS(µ)N as N → ∞

N = 1

N = 2 N = 3 N = 4

(using Arnold cat map model for the figures)
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Proofs and uncertainty principles

Proofs and uncertainty principles

We now briefly discuss the proofs of Theorems 2 and 3:
Relate macroscopic information (semiclassical measure) to
microscopic information (microlocalization in h-dependent sets)
This uses that microlocalization of Laplace eigenfunctions uj is
invariant under the geodesic flow φt

If the semiclassical measure is ‘too concentrated’ then uj has
microlocalization inconsistent with an uncertainty principle
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Proofs and uncertainty principles

Semiclassical measures: three examples

Example 1:

uh(x) = π− 1
4 h−

1
2 exp

(
− x2

2h2

)
ûh(η) =

√
2π

1
4 h

1
2 exp

(
− h2η2

2

)
Microlocalized at position ∼ h and
frequency ∼ h−1, i.e. momentum ∼ 1

Converges microlocally to the measure

µ = π− 1
2 exp(−ξ2)δ0(x)× dξ
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Proofs and uncertainty principles

Semiclassical measures: three examples

Example 2:

uh(x) = π− 1
4 h−

1
4 exp

(
− x2

2h

)
ûh(η) =

√
2π

1
4 h

1
4 exp

(
− hη2

2

)
Microlocalized at position ∼ h

1
2 and

frequency ∼ h−
1
2 , i.e. momentum ∼ h

1
2

Converges microlocally to the measure

µ = δ0(x)× δ0(ξ)
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Proofs and uncertainty principles

Semiclassical measures: three examples

Example 3:

uh(x) = π− 1
4 exp

(
− x2

2

)
ûh(η) =

√
2π

1
4 exp

(
− η2

2

)
Microlocalized at position ∼ 1 and
frequency ∼ 1, i.e. momentum ∼ h

Converges microlocally to the measure

µ = π− 1
2 exp(−x2) dx × δ0(ξ)
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Proofs and uncertainty principles

Basic Uncertainty Principle

Uncertainty Principle

If u ∈ L2(R) is microlocalized in an interval of size ∆x in position and an
interval of size ∆ξ in momentum (= frequency ×h) then

∆x ·∆ξ ≳ h.
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Proofs and uncertainty principles

Proving the full support property (Theorem 2)

Key ingredient: Fractal Uncertainty Principle [Bourgain–D ’18]

No u ∈ L2(R) can be localized in position and frequency near a fractal set

Argue by contradiction: assume µ(U) = 0 for some open nonempty
U ⊂ S∗M, then uj is microlocalized away from U
Then uj also microlocalized away from φt(U) for all t. Use for
|t| ≤ log(1/h), get microlocalization incompatible with FUP

Γ−(N), N = 0 U (in white) Γ+(N), N = 0
(using Arnold cat map model for the figures)
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Proofs and uncertainty principles

Proving the entropy bound (Theorem 3)

Entropic Uncertainty Principle [Hirschman ’57, Maassen–Uffink ’88]

Assume that f ∈ L2(R), ∥f ∥L2 = 1, and define the Shannon entropy

H(|f |2) = −
∫
R
|f (x)|2 log(|f (x)|2) dx .

Then, defining f̂ (y) =
∫
R e−2πixy f (x) dx ,

H(|f |2) + H(|f̂ |2) ≥ 0.

Write uj as a superposition of stable wave packets and also unstable
wave packets, with coefficients expressed as 2 functions vu, vs ∈ L2(R)
Using that uj is an eigenfunction, show that vu and vs have roughly
the same entropy and relate it to the entropy of µ
Relate v̂u to vs and use the Entropic Uncertainty Principle to get a
lower bound on entropy of vu, vs and thus the entropy of µ
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Thank you for your attention!
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Supplementary slides

Fractal uncertainty principle

Definition
A set X ⊂ [0, 1] is ν-porous (ν > 0) on scales h to 1 if for each interval I
of size h ≤ |I | ≤ 1, there is an interval J ⊂ I with |J| = ν|I | and J ∩X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous on scales 0 to 1

Fractal uncertainty principle [Bourgain–D ’18]

Assume that X ,Y ⊂ [0, 1] are ν-porous on scales h to 1. Then there exist
β > 0,C depending on ν but not on X ,Y , h such that

f ∈ L2(R), supp(Fhf ) ⊂ X =⇒ ∥f ∥L2(Y ) ≤ Chβ∥f ∥L2(R).

Here Fh : L2(R) → L2(R) is the semiclassical Fourier transform:

Fhf (ξ) = (2πh)−
1
2

∫
R
e−ixξ/hf (x) dx
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Supplementary slides

Fractal uncertainty principle [Bourgain–D ’18]

Assume that X ,Y ⊂ [0, 1] are ν-porous on scales h to 1. Then there exist
β > 0,C depending on ν but not on X ,Y , h such that

f ∈ L2(R), supp(Fhf ) ⊂ X =⇒ ∥f ∥L2(Y ) ≤ Chβ∥f ∥L2(R)

Interpretation: no quantum state can be localized on a porous set
in both position and frequency
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Supplementary slides

Stable/unstable packet heuristic

Write a Laplace eigenfunction u as a superposition of
stable wave packets eys , each of which is microlocalized
h-close to a weak stable leaf indexed by y ∈ R:

u(x) =

∫
R
eys (x)vs(y) dy for some vs ∈ L2(R)

Write u as a superposition of unstable wave packets ezu :

u(x) =

∫
R
ezu(x)vu(z) dz for some vu ∈ L2(R)

The coefficients vs , vu are related by semiclassical Fourier transform:

vs(y) = Fhvu(y) = (2πh)−
1
2

∫
R
e−iyz/hvu(z) dz
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Supplementary slides

Proof of Theorem 2 and stable/unstable packets

Write the eigenfunction u in stable and unstable bases:

u(x) =

∫
R
eys (x)vs(y) dy =

∫
R
ezu(x)vu(z) dz , vs = Fhvu

Argue by contradiction: assume U ⊂ S∗M open nonempty and
µ(U) = 0. Then u is microlocalized away from U .
Since u is a Laplace eigenfunction, its microlocalization is invariant
under φt . So u is microlocalized on the sets

Γ±(T ) = {ρ ∈ S∗M | φ±t(ρ) /∈ U , t = 0, . . . ,T}

Fix T = log(1/h). Then Γ+ is foliated by stable leaves and porous in
the unstable direction. Same for Γ−, switching stable/unstable. So
supp vs ⊂ X , supp vu ⊂ Y where X ,Y ⊂ R are porous.
Fractal Uncertainty Principle: cannot have vu and Fhvu = vs
both localized on porous sets. Contradiction.
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