Minicourse on fractal uncertainty principle Lecture 2: from control of eigenfunctions to FUP

Semyon Dyatlov (MIT)

June 2, 2021

Review: general setup

- (M, g) compact hyperbolic surface (curvature $\equiv -1$)
- We are given $a \in C_c^{\infty}(T^*M)$ such that $a|_{S^*M} \not\equiv 0$
- Goal (Theorem 1'): prove that for all $h \ll 1$ and $u \in C^{\infty}(M)$

$$(-h^2\Delta_g-1)u=0 \implies ||u|| \le C||\operatorname{Op}_h(a)u||$$

(all norms are L^2 or operator norm $L^2 o L^2$)

• Take two functions $a_1, a_2 \in C_c^{\infty}(T^*M \setminus 0; [0,1])$ such that

$$a_1+a_2=1$$
 near S^*M,\quad supp $a_1\subset\{a
eq 0\},\quad S^*M\setminus ext{supp }a_j
eq \emptyset$

The operators
$$A_j := \mathsf{Op}_h(a_j)$$
 satisfy $\|A_j\| \leq 1 + \mathcal{O}(h)$ and

$$||A_1(j)u|| \le C||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

where
$$A(j) := U(-t)AU(t)$$
 and $U(t) = \exp(-it\sqrt{-\Delta_g})$

Review: general setup

- ullet (M,g) compact hyperbolic surface (curvature $\equiv -1$)
- We are given $a \in C_c^{\infty}(T^*M)$ such that $a|_{S^*M} \not\equiv 0$
- Goal (Theorem 1'): prove that for all $h \ll 1$ and $u \in C^{\infty}(M)$

$$(-h^2\Delta_g-1)u=0 \implies ||u|| \le C||\operatorname{Op}_h(a)u||$$

(all norms are L^2 or operator norm $L^2 \to L^2$)

• Take two functions $a_1, a_2 \in C_c^{\infty}(T^*M \setminus 0; [0,1])$ such that

$$a_1 + a_2 = 1 \text{ near } S^*M, \quad \text{supp } a_1 \subset \{a \neq 0\}, \quad S^*M \setminus \text{supp } a_j \neq \emptyset$$

The operators $A_j := \operatorname{Op}_h(a_j)$ satisfy $\|A_j\| \leq 1 + \mathcal{O}(h)$ and

$$||A_1(j)u|| \le C||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

where A(j) := U(-t)AU(t) and $U(t) = \exp(-it\sqrt{-\Delta_g})$

$$A_{\mathbf{w}} := A_{w_{\mathcal{N}-1}}(\mathcal{N}-1)\cdots A_{w_1}(1)A_{w_0}(0), \quad a_{\mathbf{w}} := \prod_{j=0}^{\mathcal{N}-1}(a_{w_j}\circ arphi_j)$$

- $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}_N(h)$ and $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u + \mathcal{O}(h^{\infty}) \|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2...2} = 0$ where $2...2 \in \mathcal{W}(N)$
- To do that we split $u = A_{\mathcal{X}}u + A_{\mathcal{Y}}u$ where $A_{\mathcal{X}} = A_{2...2} = \mathcal{O}(h)$ and $||A_{\mathcal{Y}}u|| \leq CN||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$
- ullet Without GCC, we have $\sup_{S^*M}|a_{2...2}|=1$ and thus $\|\mathcal{A}_{\mathcal{X}}\|=1+\mathcal{O}(h)$
- Key fact for Theorem 1' without GCC: for $N \approx 2 \log(1/h)$, we do not have $A_{2...2} = \operatorname{Op}_h(a_{2...2}) + \ldots$ and in fact $||A_{2...2}|| \ll 1$

$$A_{\mathbf{w}} := A_{w_{N-1}}(N-1)\cdots A_{w_1}(1)A_{w_0}(0), \quad a_{\mathbf{w}} := \prod_{j=0}^{N-1}(a_{w_j}\circ \varphi_j)$$

- $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}_N(h)$ and $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u + \mathcal{O}(h^{\infty}) \|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2...2} = 0$ where $2...2 \in \mathcal{W}(N)$
- To do that we split $u = A_{\mathcal{X}}u + A_{\mathcal{Y}}u$ where $A_{\mathcal{X}} = A_{2...2} = \mathcal{O}(h)$ and $||A_{\mathcal{Y}}u|| \leq CN ||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$
- ullet Without GCC, we have $\sup_{S^*M}|a_{2...2}|=1$ and thus $\|\mathcal{A}_{\mathcal{X}}\|=1+\mathcal{O}(h)$
- Key fact for Theorem 1' without GCC: for $N \approx 2 \log(1/h)$, we do not have $A_{2...2} = \operatorname{Op}_h(a_{2...2}) + \ldots$ and in fact $||A_{2...2}|| \ll 1$

$$A_{\mathbf{w}} := A_{w_{N-1}}(N-1)\cdots A_{w_1}(1)A_{w_0}(0), \quad a_{\mathbf{w}} := \prod_{j=0}^{N-1}(a_{w_j}\circ \varphi_j)$$

- $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}_N(h)$ and $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u + \mathcal{O}(h^{\infty}) \|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2...2} = 0$ where $2...2 \in \mathcal{W}(N)$
- To do that we split $u = A_{\mathcal{X}}u + A_{\mathcal{Y}}u$ where $A_{\mathcal{X}} = A_{2...2} = \mathcal{O}(h)$ and $||A_{\mathcal{Y}}u|| \leq CN||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$
- ullet Without GCC, we have $\sup_{S^*M}|a_{2...2}|=1$ and thus $\|\mathcal{A}_{\mathcal{X}}\|=1+\mathcal{O}(h)$
- Key fact for Theorem 1' without GCC: for $N \approx 2 \log(1/h)$, we do not have $A_{2...2} = \operatorname{Op}_h(a_{2...2}) + \ldots$ and in fact $||A_{2...2}|| \ll 1$

$$A_{\mathbf{w}} := A_{w_{N-1}}(N-1)\cdots A_{w_1}(1)A_{w_0}(0), \quad a_{\mathbf{w}} := \prod_{j=0}^{N-1}(a_{w_j}\circ \varphi_j)$$

- $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}_N(h)$ and $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u + \mathcal{O}(h^{\infty}) \|u\|$
- Previously we gave the proof under the geometric control condition: there exists N such that $a_{2...2} = 0$ where $2...2 \in \mathcal{W}(N)$
- To do that we split $u = A_{\mathcal{X}}u + A_{\mathcal{Y}}u$ where $A_{\mathcal{X}} = A_{2...2} = \mathcal{O}(h)$ and $||A_{\mathcal{Y}}u|| \leq CN ||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$
- ullet Without GCC, we have $\sup_{S^*M}|a_{2...2}|=1$ and thus $\|\mathcal{A}_{\mathcal{X}}\|=1+\mathcal{O}(h)$
- Key fact for Theorem 1' without GCC: for $N \approx 2 \log(1/h)$, we do not have $A_{2...2} = \operatorname{Op}_h(a_{2...2}) + \ldots$ and in fact $||A_{2...2}|| \ll 1$

Key estimate

Let $N := 2 |\log(1/h)|$. Then there exist $\beta > 0$, C such that for all h

$$\|A_{\mathbf{w}}\| \leq Ch^{\beta}$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u = A_{\mathcal{X}} u + A_{\mathcal{Y}} u, \quad A_{\mathcal{X}} := A_{2...2}$
- By the key estimate, $||A_{\mathcal{X}}u|| \leq Ch^{\beta}||u|| \ll ||u||$
- Can estimate Ayu as before:

$$||A_{\mathcal{Y}}u|| \le 2\sum_{j=0}^{N-1} ||A_1(j)u|| \le C\log(1/h)||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

- Putting together, get $||u|| \le C\log(1/h)|| \operatorname{Op}_h(a)u||$ for $h \ll 1$
- Plan: prove the key estimate and get rid of log(1/h)

Key estimate

$$\|A_{\mathbf{w}}\| \leq Ch^{\beta}$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u = A_{\mathcal{X}} u + A_{\mathcal{Y}} u, \quad A_{\mathcal{X}} := A_{2...2}$
- By the key estimate, $||A_{\mathcal{X}}u|| \leq Ch^{\beta}||u|| \ll ||u||$
- Can estimate $A_{\mathcal{V}}u$ as before:

$$||A_{\mathcal{Y}}u|| \le 2 \sum_{j=0}^{N-1} ||A_1(j)u|| \le C \log(1/h) ||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty}) ||u||$$

- Putting together, get $||u|| \leq C\log(1/h)|| \operatorname{Op}_h(a)u||$ for $h \ll 1$
- Plan: prove the key estimate and get rid of log(1/h)

Key estimate

$$\|A_{\mathbf{w}}\| \leq Ch^{\beta}$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u = A_{\mathcal{X}} u + A_{\mathcal{Y}} u, \quad A_{\mathcal{X}} := A_{2...2}$
- By the key estimate, $||A_{\mathcal{X}}u|| \leq Ch^{\beta}||u|| \ll ||u||$
- Can estimate $A_y u$ as before:

$$||A_{\mathcal{Y}}u|| \le 2\sum_{j=0}^{N-1} ||A_1(j)u|| \le C\log(1/h)||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

- Putting together, get $||u|| \leq C\log(1/h)||\operatorname{Op}_h(a)u||$ for $h \ll 1$
- Plan: prove the key estimate and get rid of log(1/h)

Key estimate

$$\|A_{\mathbf{w}}\| \leq Ch^{\beta}$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u = A_{\mathcal{X}} u + A_{\mathcal{Y}} u, \quad A_{\mathcal{X}} := A_{2...2}$
- By the key estimate, $||A_{\mathcal{X}}u|| \leq Ch^{\beta}||u|| \ll ||u||$
- Can estimate $A_y u$ as before:

$$||A_{\mathcal{Y}}u|| \le 2\sum_{j=0}^{N-1} ||A_1(j)u|| \le C\log(1/h)||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

- Putting together, get $||u|| \le C \log(1/h) || \operatorname{Op}_h(a) u ||$ for $h \ll 1$
- Plan: prove the key estimate and get rid of log(1/h)

Key estimate

$$||A_{\mathbf{w}}|| \leq Ch^{\beta}$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

- Why 2? Related to expansion rate of the geodesic flow, more below
- Can write $u = \sum_{\mathbf{w} \in \mathcal{W}(N)} A_{\mathbf{w}} u = A_{\mathcal{X}} u + A_{\mathcal{Y}} u, \quad A_{\mathcal{X}} := A_{2...2}$
- By the key estimate, $||A_{\mathcal{X}}u|| \leq Ch^{\beta}||u|| \ll ||u||$
- Can estimate $A_y u$ as before:

$$||A_{\mathcal{Y}}u|| \le 2 \sum_{j=0}^{N-1} ||A_1(j)u|| \le C \log(1/h) ||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty}) ||u||$$

- Putting together, get $||u|| \le C \log(1/h) || \operatorname{Op}_h(a) u ||$ for $h \ll 1$
- Plan: prove the key estimate and get rid of log(1/h)

Long time propagation

By Egorov's Theorem + composition property, for N independent of h

$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h)$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

Can this work when $N \to \infty$ as $h \to 0$?

- The proof of Egorov's Theorem uses basic semiclassical calculus.
 So the real question is: ¿Can we still quantize a_w?
- The problem with $a_{\mathbf{w}} = \prod_{j=0}^{N-1} (a_{w_j} \circ \varphi_j)$ is that the derivatives of $a_{w_j} \circ \varphi_j$ are large when $j \gg 1$. How large?
- The geodesic flow $\varphi_t: S^*M \to S^*M$ of a hyperbolic surface has the flow/unstable/stable decomposition $T(S^*M) = E_0 \oplus E_u \oplus E_s$:

$$|d\varphi_t(x,\xi)v| = \begin{cases} |v|, & v \in E_0(x,\xi) \\ e^t|v|, & v \in E_u(x,\xi) \\ e^{-t}|v|, & v \in E_s(x,\xi) \end{cases}$$

So $\sup |\partial^{\alpha}(a_{w_i} \circ \varphi_i)| \leq C_{\alpha} e^{N|\alpha|}$

Long time propagation

By Egorov's Theorem + composition property, for N independent of h

$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h)$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

Can this work when $N \to \infty$ as $h \to 0$?

- The proof of Egorov's Theorem uses basic semiclassical calculus.
 So the real question is: ¿Can we still quantize a_w?
- The problem with $a_{\mathbf{w}} = \prod_{j=0}^{N-1} (a_{w_j} \circ \varphi_j)$ is that the derivatives of $a_{w_i} \circ \varphi_j$ are large when $j \gg 1$. How large?
- The geodesic flow $\varphi_t: S^*M \to S^*M$ of a hyperbolic surface has the flow/unstable/stable decomposition $T(S^*M) = E_0 \oplus E_u \oplus E_s$:

$$|d\varphi_t(x,\xi)v| = \begin{cases} |v|, & v \in E_0(x,\xi) \\ e^t|v|, & v \in E_u(x,\xi) \\ e^{-t}|v|, & v \in E_s(x,\xi) \end{cases}$$

So $\sup |\partial^{\alpha}(a_{w_i} \circ \varphi_j)| \leq C_{\alpha} e^{N|\alpha|}$

Long time propagation

By Egorov's Theorem + composition property, for N independent of h

$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h)$$
 for all $\mathbf{w} \in \mathcal{W}(N)$

Can this work when $N \to \infty$ as $h \to 0$?

- The proof of Egorov's Theorem uses basic semiclassical calculus.
 So the real question is: ¿Can we still quantize a_w?
- The problem with $a_{\mathbf{w}} = \prod_{j=0}^{N-1} (a_{w_j} \circ \varphi_j)$ is that the derivatives of $a_{w_i} \circ \varphi_j$ are large when $j \gg 1$. How large?
- The geodesic flow $\varphi_t: S^*M \to S^*M$ of a hyperbolic surface has the flow/unstable/stable decomposition $T(S^*M) = E_0 \oplus E_u \oplus E_s$:

$$|d\varphi_t(x,\xi)v| = \begin{cases} |v|, & v \in E_0(x,\xi) \\ e^t|v|, & v \in E_u(x,\xi) \\ e^{-t}|v|, & v \in E_s(x,\xi) \end{cases}$$

So $\sup |\partial^{\alpha}(a_{w_i} \circ \varphi_j)| \leq C_{\alpha} e^{N|\alpha|}$

Picture of the unstable/stable decomposition

Remarks

- We often ignore the flow direction E_0 because there is no expansion or contraction in it
- We also often restrict to S^*M , where u lives microlocally, and ignore the dilation direction $\xi \cdot \partial_{\xi}$
- So the effective dynamics (on a Poincaré section in S^*M , transversal to the flow) is similar to 2-dimensional hyperbolic maps (e.g. cat map)

Let us look at the standard quantization on \mathbb{R}^n :

$$\operatorname{Op}_h(a)f(x) = (2\pi h)^{-n} \int_{\mathbb{R}^{2n}} e^{\frac{i}{\hbar}\langle x-y,\xi\rangle} a(x,\xi)f(y) \, dy d\xi$$

Composition formula: $Op_h(a) Op_h(b) = Op_h(a\#b)$ where

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

• Use 2 derivatives for each power of h. This works if a, b satisfy

$$\sup |\partial^{\alpha} a|, \sup |\partial^{\alpha} b| \le C_{\alpha} h^{-\rho|\alpha|}$$
 for some $\rho < \frac{1}{2}$

with k-th term of the above expansion being $\mathcal{O}(h^{(1-2\rho)k})$

• The derivatives of $a_{w_j} \circ \varphi_j$ grow like $e^{N|\alpha|}$. So it appears that $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \ldots$ until the Ehrenfest time: $N = \frac{1}{2} \log(1/h)$

Let us look at the standard quantization on \mathbb{R}^n :

$$\operatorname{Op}_h(a)f(x) = (2\pi h)^{-n} \int_{\mathbb{R}^{2n}} e^{\frac{i}{h}\langle x - y, \xi \rangle} a(x, \xi) f(y) \, dy d\xi$$

Composition formula: $Op_h(a) Op_h(b) = Op_h(a\#b)$ where

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

• Use 2 derivatives for each power of h. This works if a, b satisfy

$$\sup |\partial^{\alpha} a|, \sup |\partial^{\alpha} b| \leq C_{\alpha} h^{-\rho |\alpha|} \quad \text{for some} \quad \rho < \frac{1}{2}$$

with k-th term of the above expansion being $\mathcal{O}(h^{(1-2\rho)k})$

• The derivatives of $a_{w_j} \circ \varphi_j$ grow like $e^{N|\alpha|}$. So it appears that $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \ldots$ until the Ehrenfest time: $N = \frac{1}{2} \log(1/h)$

Let us look at the standard quantization on \mathbb{R}^n :

$$\operatorname{Op}_h(a)f(x) = (2\pi h)^{-n} \int_{\mathbb{R}^{2n}} e^{\frac{i}{\hbar}\langle x-y,\xi\rangle} a(x,\xi)f(y) \, dy d\xi$$

Composition formula: $Op_h(a) Op_h(b) = Op_h(a\#b)$ where

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

• Use 2 derivatives for each power of h. This works if a, b satisfy

$$\sup |\partial^{\alpha}a|, \sup |\partial^{\alpha}b| \leq C_{\alpha}h^{-\rho|\alpha|} \quad \text{for some} \quad \rho < \frac{1}{2}$$

with k-th term of the above expansion being $\mathcal{O}(h^{(1-2\rho)k})$

• The derivatives of $a_{w_j} \circ \varphi_j$ grow like $e^{N|\alpha|}$. So it appears that $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \ldots$ until the Ehrenfest time: $N = \frac{1}{2} \log(1/h)$

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

Can afford to lose $h^{-\rho}$, $\rho < 1$, differentiating in x, if we lose nothing when differentiating in ξ

That is, we can take a,b in the class $S_{L_0,
ho}$ defined by the inequalities

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\alpha|}$$

Or we could take a, b in the class $S_{L_1,\rho}$ defined by losing in ξ but not in x:

$$\sup |\partial_x^{lpha} \partial_\xi^{eta} a| \leq C_{lpha eta} h^{-
ho |eta|}$$

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

Can afford to lose $h^{-\rho}$, $\rho < 1$, differentiating in x, if we lose nothing when differentiating in ξ

That is, we can take a, b in the class $S_{L_0,\rho}$ defined by the inequalities

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\alpha|}$$

Or we could take a, b in the class $S_{L_1,\rho}$ defined by losing in ξ but not in x:

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\beta}$$

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

Can afford to lose $h^{-\rho}$, $\rho < 1$, differentiating in x, if we lose nothing when differentiating in ξ

That is, we can take a, b in the class $S_{L_0,\rho}$ defined by the inequalities

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\alpha|}$$

Or we could take a, b in the class $S_{L_1,\rho}$ defined by losing in ξ but not in x:

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\beta|}$$

Can we quantize symbols which are rougher in x but smoother in ξ ?

$$a\#b \sim \sum_{k=0}^{\infty} (-ih)^k \sum_{|\alpha|=k} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \cdot \partial_{x}^{\alpha} b$$
 as $h \to 0$

Can afford to lose $h^{-\rho}$, $\rho < 1$, differentiating in x, if we lose nothing when differentiating in ξ

That is, we can take a, b in the class $S_{L_0,\rho}$ defined by the inequalities

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\alpha|}$$

Or we could take a, b in the class $S_{L_1,\rho}$ defined by losing in ξ but not in x:

$$\sup |\partial_x^\alpha \partial_\xi^\beta a| \le C_{\alpha\beta} h^{-\rho|\beta|}$$

The derivatives of $a_{w_j} \circ \varphi_j$ are only large in the unstable direction.

Using this, we get $A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h^{1-\rho})$ for times $N \leq \rho \log(1/h)$ for any $\rho < 1$ Here $a_{\mathbf{w}} \in S_{L_s,\rho}(T^*M)$, putting $L_s := E_0 \oplus E_s$:

Let $L: (x, \xi) \in T^*M \mapsto L_{(x,\xi)} \subset T_{(x,\xi)}(T^*M)$ be a smooth foliation such that $L_{(x,\xi)}$ are Lagrangian (dim 2 + the symplectic form vanishes).

Fix $\rho < 1$. Define the class $S_{L,\rho}(T^*M)$ of $a \in C_c^{\infty}(T^*M)$ satisfying

$$\sup |X_1 \dots X_k Y_1 \dots Y_\ell a| \le Ch^{-\rho\ell}$$

for all vector fields $X_1, \ldots, X_k, Y_1, \ldots, Y_\ell$ s.t. X_1, \ldots, X_k are tangent to L

The derivatives of $a_{w_j} \circ \varphi_j$ are only large in the unstable direction.

Using this, we get
$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h^{1-\rho})$$
 for times $N \leq \rho \log(1/h)$ for any $\rho < 1$
Here $a_{\mathbf{w}} \in S_{L_s,\rho}(T^*M)$, putting $L_s := E_0 \oplus E_s$:

Let $L: (x, \xi) \in T^*M \mapsto L_{(x,\xi)} \subset T_{(x,\xi)}(T^*M)$ be a smooth foliation such that $L_{(x,\xi)}$ are Lagrangian (dim 2 + the symplectic form vanishes).

Fix $\rho < 1$. Define the class $S_{L,\rho}(T^*M)$ of $a \in C_c^{\infty}(T^*M)$ satisfying

$$\sup |X_1 \dots X_k Y_1 \dots Y_\ell a| \le Ch^{-\rho\ell}$$

for all vector fields $X_1, \ldots, X_k, Y_1, \ldots, Y_\ell$ s.t. X_1, \ldots, X_k are tangent to L

The derivatives of $a_{w_j} \circ \varphi_j$ are only large in the unstable direction.

Using this, we get
$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h^{1-\rho})$$
 for times $N \leq \rho \log(1/h)$ for any $\rho < 1$
Here $a_{\mathbf{w}} \in S_{L_s,\rho}(T^*M)$, putting $L_s := E_0 \oplus E_s$:

Let $L: (x,\xi) \in T^*M \mapsto L_{(x,\xi)} \subset T_{(x,\xi)}(T^*M)$ be a smooth foliation such that $L_{(x,\xi)}$ are Lagrangian (dim 2 + the symplectic form vanishes).

Fix $\rho < 1$. Define the class $S_{L,\rho}(T^*M)$ of $a \in C_c^\infty(T^*M)$ satisfying $\sup |X_1 \dots X_k Y_1 \dots Y_\ell a| \leq C h^{-\rho\ell}$

for all vector fields $X_1, \ldots, X_k, Y_1, \ldots, Y_\ell$ s.t. X_1, \ldots, X_k are tangent to L

The derivatives of $a_{w_j} \circ \varphi_j$ are only large in the unstable direction.

Using this, we get
$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h^{1-\rho})$$
 for times $N \leq \rho \log(1/h)$ for any $\rho < 1$
Here $a_{\mathbf{w}} \in S_{L_s,\rho}(T^*M)$, putting $L_s := E_0 \oplus E_s$:

Let $L: (x,\xi) \in T^*M \mapsto L_{(x,\xi)} \subset T_{(x,\xi)}(T^*M)$ be a smooth foliation such that $L_{(x,\xi)}$ are Lagrangian (dim 2 + the symplectic form vanishes).

Fix $\rho < 1$. Define the class $S_{L,\rho}(T^*M)$ of $a \in C_c^{\infty}(T^*M)$ satisfying

$$\sup |X_1 \dots X_k Y_1 \dots Y_\ell a| \le Ch^{-\rho\ell}$$

for all vector fields $X_1, \ldots, X_k, Y_1, \ldots, Y_\ell$ s.t. X_1, \ldots, X_k are tangent to L

The derivatives of $a_{w_j} \circ \varphi_j$ are only large in the unstable direction.

Using this, we get
$$A_{\mathbf{w}} = \operatorname{Op}_h(a_{\mathbf{w}}) + \mathcal{O}(h^{1-\rho})$$
 for times $N \leq \rho \log(1/h)$ for any $\rho < 1$
Here $a_{\mathbf{w}} \in S_{L_s,\rho}(T^*M)$, putting $L_s := E_0 \oplus E_s$:

Let $L: (x,\xi) \in T^*M \mapsto L_{(x,\xi)} \subset T_{(x,\xi)}(T^*M)$ be a smooth foliation such that $L_{(x,\xi)}$ are Lagrangian (dim 2 + the symplectic form vanishes).

Fix $\rho < 1$. Define the class $S_{L,\rho}(T^*M)$ of $a \in C_c^{\infty}(T^*M)$ satisfying

$$\sup |X_1 \dots X_k Y_1 \dots Y_\ell a| \le Ch^{-\rho\ell}$$

for all vector fields $X_1, \ldots, X_k, Y_1, \ldots, Y_\ell$ s.t. X_1, \ldots, X_k are tangent to L

Key estimate: $||A_{\mathbf{w}}|| \leq Ch^{\beta}$ for $\mathbf{w} \in \mathcal{W}(2N_1)$, $N_1 = \lfloor \rho \log(1/h) \rfloor$, $\rho < 1$

Write
$$A_{\mathbf{w}} = A_{w_{2N_1-1}}(2N_1-1)\cdots A_{w_0}(0)$$
 as $A_{\mathbf{w}} = U(-N_1)A_-A_+U(N_1)$

$$A_{-} := A_{w_{2N_{1}-1}}(N_{1}-1)\cdots A_{w_{N_{1}}}(0), \quad A_{+} := A_{w_{N_{1}-1}}(-1)\cdots A_{w_{0}}(-N_{1})$$

We have $A_- = \operatorname{Op}_h(a_-) + \mathcal{O}(h^{1-\rho}), \quad A_+ = \operatorname{Op}_h(a_+) + \mathcal{O}(h^{1-\rho})$ where

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{w_{j+N_{1}}} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{w_{N_{1}-j}} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

and $L_s = E_0 \oplus E_s$, $L_u = E_0 \oplus E_u$. Reformulate the key estimate as

$$\|\mathsf{Op}_h(a_-)\mathsf{Op}_h(a_+)\| \leq Ch^{\varepsilon}$$

Key estimate:
$$||A_{\mathbf{w}}|| \leq Ch^{\beta}$$
 for $\mathbf{w} \in \mathcal{W}(2N_1)$, $N_1 = \lfloor \rho \log(1/h) \rfloor$, $\rho < 1$
Write $A_{\mathbf{w}} = A_{w_{2N_1-1}}(2N_1-1)\cdots A_{w_0}(0)$ as $A_{\mathbf{w}} = U(-N_1)A_-A_+U(N_1)$

$$A_- := A_{w_{2N_1-1}}(N_1-1)\cdots A_{w_{N_1}}(0), \quad A_+ := A_{w_{N_1-1}}(-1)\cdots A_{w_0}(-N_1)$$

We have $A_- = \operatorname{Op}_h(a_-) + \mathcal{O}(h^{1-\rho}), \quad A_+ = \operatorname{Op}_h(a_+) + \mathcal{O}(h^{1-\rho})$ where

$$m{a}_{-} = \prod_{j=0}^{N_{1}-1} (m{a}_{w_{j+N_{1}}} \circ arphi_{j}) \in S_{L_{s},
ho}, \quad m{a}_{+} = \prod_{j=1}^{N_{1}} (m{a}_{w_{N_{1}-j}} \circ arphi_{-j}) \in S_{L_{u},
ho}$$

and $L_s = E_0 \oplus E_s$, $L_u = E_0 \oplus E_u$. Reformulate the key estimate as

$$\|\mathsf{Op}_h(a_-)\mathsf{Op}_h(a_+)\| \leq Ch^{\beta}$$

Key estimate:
$$||A_{\mathbf{w}}|| \leq Ch^{\beta}$$
 for $\mathbf{w} \in \mathcal{W}(2N_1)$, $N_1 = \lfloor \rho \log(1/h) \rfloor$, $\rho < 1$
Write $A_{\mathbf{w}} = A_{w_{2N_1-1}}(2N_1-1)\cdots A_{w_0}(0)$ as $A_{\mathbf{w}} = U(-N_1)A_-A_+U(N_1)$

$$A_{-} := A_{w_{2N_{1}-1}}(N_{1}-1)\cdots A_{w_{N_{1}}}(0), \quad A_{+} := A_{w_{N_{1}-1}}(-1)\cdots A_{w_{0}}(-N_{1})$$

We have $A_{-} = \operatorname{Op}_{h}(a_{-}) + \mathcal{O}(h^{1-\rho}), \quad A_{+} = \operatorname{Op}_{h}(a_{+}) + \mathcal{O}(h^{1-\rho})$ where

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{w_{j+N_{1}}} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{w_{N_{1}-j}} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

and $L_s = E_0 \oplus E_s$, $L_u = E_0 \oplus E_u$. Reformulate the key estimate as

$$\|\mathsf{Op}_h(a_-)\mathsf{Op}_h(a_+)\| \leq Ch^{\beta}$$

Key estimate:
$$||A_{\mathbf{w}}|| \leq Ch^{\beta}$$
 for $\mathbf{w} \in \mathcal{W}(2N_1)$, $N_1 = \lfloor \rho \log(1/h) \rfloor$, $\rho < 1$
Write $A_{\mathbf{w}} = A_{w_2N_1-1}(2N_1-1)\cdots A_{w_0}(0)$ as $A_{\mathbf{w}} = U(-N_1)A_-A_+U(N_1)$

$$A_{-}:=A_{w_{2N_{1}-1}}(N_{1}-1)\cdots A_{w_{N_{1}}}(0),\quad A_{+}:=A_{w_{N_{1}-1}}(-1)\cdots A_{w_{0}}(-N_{1})$$

We have $A_{-} = \operatorname{Op}_{h}(a_{-}) + \mathcal{O}(h^{1-\rho}), \quad A_{+} = \operatorname{Op}_{h}(a_{+}) + \mathcal{O}(h^{1-\rho})$ where

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{w_{j+N_{1}}} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{w_{N_{1}-j}} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

and $L_s = E_0 \oplus E_s$, $L_u = E_0 \oplus E_u$. Reformulate the key estimate as

$$\|\mathsf{Op}_h(a_-)\mathsf{Op}_h(a_+)\| \leq Ch^{\beta}$$

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\operatorname{supp} a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\operatorname{supp} a_2)$$

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\operatorname{supp} a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\operatorname{supp} a_2)$$

Using cat map for illustration:

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\text{supp } a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\text{supp } a_2)$$

Using cat map for illustration:

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\text{supp } a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\text{supp } a_2)$$

Using cat map for illustration:

Assume for simplicity that $w = 2 \dots 2$, then

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\text{supp } a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\text{supp } a_2)$$

Using cat map for illustration:

Assume for simplicity that $w = 2 \dots 2$, then

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\text{supp } a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\text{supp } a_2)$$

Using cat map for illustration:

Assume for simplicity that $w = 2 \dots 2$, then

$$a_{-} = \prod_{j=0}^{N_{1}-1} (a_{2} \circ \varphi_{j}) \in S_{L_{s},\rho}, \quad a_{+} = \prod_{j=1}^{N_{1}} (a_{2} \circ \varphi_{-j}) \in S_{L_{u},\rho}$$

We have supp $a_{\pm} \subset V_{\pm}(N_1)$ where $N_1 = \lfloor \rho \log(1/h) \rfloor$ and

$$V_{-}(N_1) = \bigcap_{j=0}^{N_1-1} \varphi_{-j}(\operatorname{supp} a_2), \quad V_{+}(N_1) = \bigcap_{j=1}^{N_1} \varphi_{j}(\operatorname{supp} a_2)$$

Using cat map for illustration:

 $V_-(N_1)$ is nice in the stable direction, porous up to scale $e^{-N_1}\sim h^{\rho}$ in the unstable direction

 $V_{+}(N_1)$ is nice in the unstable direction, porous up to scale h^{ρ} in the stable direction

Want: localizations to V_- , V_+ incompatible

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $rac{1}{6}$ -porous on scales 0 to 1

Theorem 2 [Bourgain–D '18]

Assume that $X,Y\subset\mathbb{R}$ are u-porous up to scale h. Then $\exists \beta=\beta(
u)>0$:

$$\|\mathbf{1}_X(\frac{h}{i}\partial_x)\mathbf{1}_Y(x)\|_{L^2(\mathbb{R})\to L^2(\mathbb{R})}=\mathcal{O}(h^\beta)$$
 as $h\to 0$

Note: enough to require porosity up to scales $h^
ho$ where $ho>rac{1}{2}$

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous on scales 0 to 1

Theorem 2 [Bourgain-D '18]

Assume that $X, Y \subset \mathbb{R}$ are ν -porous up to scale h. Then $\exists \beta = \beta(\nu) > 0$: $\|\mathbf{1}_{X}(\frac{h}{i}\partial_{X})\mathbf{1}_{Y}(x)\|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} = \mathcal{O}(h^{\beta})$ as $h \to 0$

Note: enough to require porosity up to scales $\mathit{h}^
ho$ where $ho>rac{1}{2}$

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous on scales 0 to 1

Theorem 2 [Bourgain-D '18]

Assume that $X,Y\subset\mathbb{R}$ are u-porous up to scale h. Then $\exists \beta=\beta(
u)>0$:

$$\|\mathbf{1}_{X}(\frac{h}{i}\partial_{x})\mathbf{1}_{Y}(x)\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}=\mathcal{O}(h^{\beta})$$
 as $h\to 0$

Note: enough to require porosity up to scales $h^
ho$ where $ho>rac{1}{2}$

No function can be localized in both position and frequency near a fractal set

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous on scales 0 to 1

Theorem 2 [Bourgain-D '18]

Assume that $X,Y\subset\mathbb{R}$ are ν -porous up to scale h. Then $\exists \beta=\beta(\nu)>0$:

$$\|\mathbf{1}_{X}(\frac{h}{i}\partial_{x})\mathbf{1}_{Y}(x)\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}=\mathcal{O}(h^{\beta})$$
 as $h\to 0$

Note: enough to require porosity up to scales h^{ρ} where $\rho > \frac{1}{2}$

From FUP to the key estimate

Need: $\|\operatorname{Op}_h(a_-)\operatorname{Op}_h(a_+)\| \le Ch^{\beta}$, supp a_- porous in unstable direction, supp a_+ porous in stable direction FUP: $\|\operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)\| \le Ch^{\beta}$, $b_{\pm} \in C_{\operatorname{c}}^{\infty}(\mathbb{R}^2)$, $\operatorname{supp} b_- \subset \{\xi \in W_-\}$, $\operatorname{supp} b_+ \subset \{x \in W_+\}$, $W_{\pm} \subset \mathbb{R}$ porous

To pass from FUP to the key estimate, we can try to conjugate by a Fourier Integral operator to map $E_u \mapsto \mathbb{R}\partial_{\xi}$, $E_s \mapsto \mathbb{R}\partial_{x}$. Not quite possible but after some cutting and pasting can make it work...

From FUP to the key estimate

Need: $\|\operatorname{Op}_h(a_-)\operatorname{Op}_h(a_+)\| \le Ch^{\beta}$, supp a_- porous in unstable direction, supp a_+ porous in stable direction

FUP: $\|\operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)\| \le Ch^{\beta}$, $b_{\pm} \in C_{\operatorname{c}}^{\infty}(\mathbb{R}^2)$, $\operatorname{supp} b_- \subset \{\xi \in W_-\}$, $\operatorname{supp} b_+ \subset \{x \in W_+\}$, $W_{\pm} \subset \mathbb{R}$ porous

To pass from FUP to the key estimate, we can try to conjugate by a Fourier Integral operator to map $E_u \mapsto \mathbb{R}\partial_{\xi}$, $E_s \mapsto \mathbb{R}\partial_{x}$. Not quite possible but after some cutting and pasting can make it work...

Removing the log

So far we proved that $||u|| \le C \log(1/h) || \operatorname{Op}_h(a) u ||$ by writing

$$u = A_{\mathcal{X}}u + A_{\mathcal{Y}}u, \quad A_{\mathcal{X}} := A_{2...2}$$

and estimating

$$||A_{\mathcal{X}}u|| \le Ch^{\beta}||u||, \quad ||A_{\mathcal{Y}}u|| \le C\log(1/h)||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

To get rid of the log prefactor, we will revise the decomposition $u = A_X u + A_Y u$ so that

$$||A_{\mathcal{X}}u|| \le Ch^{\frac{\beta}{2}}||u||, \qquad ||A_{\mathcal{Y}}u|| \le C||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\frac{1}{10}})||u||$$

Here the constant in front of $\|\operatorname{Op}_{h}(a)u\|$ will be large depending on β

Removing the log

So far we proved that $||u|| \le C \log(1/h) || \operatorname{Op}_h(a) u ||$ by writing

$$u = A_{\mathcal{X}}u + A_{\mathcal{Y}}u, \quad A_{\mathcal{X}} := A_{2...2}$$

and estimating

$$||A_{\mathcal{X}}u|| \le Ch^{\beta}||u||, \quad ||A_{\mathcal{Y}}u|| \le C\log(1/h)||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

To get rid of the log prefactor, we will revise the decomposition $u = A_{\chi} u + A_{\chi} u$ so that

$$||A_{\mathcal{X}}u|| \le Ch^{\frac{\beta}{2}}||u||, \qquad ||A_{\mathcal{Y}}u|| \le C||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\frac{1}{10}})||u||$$

Here the constant in front of $\|\operatorname{Op}_h(a)u\|$ will be large depending on β

Removing the log: uncontrolled words

- Recall that we are dealing with words of length $2\lfloor \log(1/h)\rfloor$. Let's use instead the similar time $20N_0$ where $N_0 = \lfloor \frac{1}{10} \log(1/h) \rfloor$
- Define the set of controlled short logarithmic words

$$\mathcal{Z} := \{ \mathbf{w} \in \mathcal{W}(N_0) \mid F(\mathbf{w}) \ge \alpha \}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

where $0<lpha\ll 1$ is chosen depending on eta from the key estimate

• Now write $\sum_{\mathbf{w} \in \mathcal{W}(20N_0)} A_{\mathbf{w}} = A_{\mathcal{X}} + A_{\mathcal{Y}}$ where, writing words in $\mathcal{W}(20N_0)$ as concatenations of 20 words in $\mathcal{W}(N_0)$

$$\mathcal{A}_{\mathcal{X}} := \sum_{\mathbf{w} \in \mathcal{X}} \mathcal{A}_{\mathbf{w}}, \quad \mathcal{X} := \{\mathbf{w}^{(1)} \dots \mathbf{w}^{(20)} \mid \mathbf{w}^{(1)}, \dots, \mathbf{w}^{(20)} \in \mathcal{W}(N_0) \setminus \mathcal{Z}\}$$

• We have $\#(\mathcal{X}) \leq Ch^{100\alpha \log \alpha}$, so for $\alpha \ll_{\beta} 1$ the triangle inequality + the key estimate $\|A_{\mathbf{w}}\| \leq Ch^{\beta}$ give $\|A_{\mathcal{X}}\| \leq Ch^{\frac{\beta}{2}}$

Removing the log: uncontrolled words

- Recall that we are dealing with words of length $2\lfloor \log(1/h)\rfloor$. Let's use instead the similar time $20\,N_0$ where $N_0 = \lfloor \frac{1}{10}\log(1/h)\rfloor$
- Define the set of controlled short logarithmic words

$$\mathcal{Z} := \{ \mathbf{w} \in \mathcal{W}(N_0) \mid F(\mathbf{w}) \ge \alpha \}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

where 0 < $\alpha \ll$ 1 is chosen depending on β from the key estimate

• Now write $\sum_{\mathbf{w} \in \mathcal{W}(20N_0)} A_{\mathbf{w}} = A_{\mathcal{X}} + A_{\mathcal{Y}}$ where, writing words in $\mathcal{W}(20N_0)$ as concatenations of 20 words in $\mathcal{W}(N_0)$

$$A_{\mathcal{X}} := \sum_{\mathbf{w} \in \mathcal{X}} A_{\mathbf{w}}, \quad \mathcal{X} := \{\mathbf{w}^{(1)} \dots \mathbf{w}^{(20)} \mid \mathbf{w}^{(1)}, \dots, \mathbf{w}^{(20)} \in \mathcal{W}(N_0) \setminus \mathcal{Z}\}$$

• We have $\#(\mathcal{X}) \leq Ch^{100\alpha \log \alpha}$, so for $\alpha \ll_{\beta} 1$ the triangle inequality + the key estimate $\|A_{\mathbf{w}}\| \leq Ch^{\beta}$ give $\|A_{\mathcal{X}}\| \leq Ch^{\frac{\beta}{2}}$

Removing the log: uncontrolled words

- Recall that we are dealing with words of length $2\lfloor \log(1/h)\rfloor$. Let's use instead the similar time $20\,N_0$ where $N_0 = \lfloor \frac{1}{10}\log(1/h)\rfloor$
- Define the set of controlled short logarithmic words

$$\mathcal{Z} := \{ \mathbf{w} \in \mathcal{W}(N_0) \mid F(\mathbf{w}) \geq \alpha \}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

where 0 < $\alpha \ll$ 1 is chosen depending on β from the key estimate

• Now write $\sum_{\mathbf{w} \in \mathcal{W}(20N_0)} A_{\mathbf{w}} = A_{\mathcal{X}} + A_{\mathcal{Y}}$ where, writing words in $\mathcal{W}(20N_0)$ as concatenations of 20 words in $\mathcal{W}(N_0)$

$$A_{\mathcal{X}} := \sum_{\mathbf{w} \in \mathcal{X}} A_{\mathbf{w}}, \quad \mathcal{X} := \{\mathbf{w}^{(1)} \dots \mathbf{w}^{(20)} \mid \mathbf{w}^{(1)}, \dots, \mathbf{w}^{(20)} \in \mathcal{W}(N_0) \setminus \mathcal{Z}\}$$

• We have $\#(\mathcal{X}) \leq Ch^{100\alpha \log \alpha}$, so for $\alpha \ll_{\beta} 1$ the triangle inequality + the key estimate $\|A_{\mathbf{w}}\| \leq Ch^{\beta}$ give $\|A_{\mathcal{X}}\| \leq Ch^{\frac{\beta}{2}}$

Removing the log: controlled words I

It remains to bound $A_{\mathcal{Y}}u$ where

$$\mathcal{A}_{\mathcal{Y}} := \sum_{\boldsymbol{w} \in \mathcal{Y}} \mathcal{A}_{\boldsymbol{w}}, \quad \mathcal{Y} := \{\boldsymbol{w}^{(1)} \dots \boldsymbol{w}^{(20)} \mid \exists \ell : \boldsymbol{w}^{(\ell)} \in \mathcal{Z}\}$$

Similarly to the end of Lecture 1, since $u = A_z u + A_{z^0} u$, write

$$A_{\mathcal{Y}}u = \sum_{\ell=0}^{19} A_{\mathcal{Z}^{\complement}}(19N_0) \cdots A_{\mathcal{Z}^{\complement}}((\ell+1)N_0) A_{\mathcal{Z}}(\ell N_0)u$$

We can show that $\|A_{\mathcal{Z}^\complement}\| \leq 1 + \mathcal{O}(h^{\frac{1}{10}})$, so

$$||A_{\mathcal{Y}}u|| \le 2\sum_{\ell=0}^{19} ||A_{\mathcal{Z}}(\ell N_0)u|| \le 40||A_{\mathcal{Z}}u||$$

since ||A(j)u|| = ||Au|| for all A, J

Removing the log: controlled words I

It remains to bound $A_{y}u$ where

$$A_{\mathcal{Y}} := \sum_{\mathbf{w} \in \mathcal{Y}} A_{\mathbf{w}}, \quad \mathcal{Y} := \{\mathbf{w}^{(1)} \dots \mathbf{w}^{(20)} \mid \exists \ell : \mathbf{w}^{(\ell)} \in \mathcal{Z}\}$$

Similarly to the end of Lecture 1, since $u = A_{\mathcal{Z}}u + A_{\mathcal{Z}^{\complement}}u$, write

$$A_{\mathcal{Y}}u = \sum_{\ell=0}^{19} A_{\mathcal{Z}^{\complement}}(19N_0) \cdots A_{\mathcal{Z}^{\complement}}((\ell+1)N_0) A_{\mathcal{Z}}(\ell N_0)u$$

We can show that $\|A_{\mathcal{Z}^\complement}\| \leq 1 + \mathcal{O}(h^{\frac{1}{10}})$, so

$$||A_{\mathcal{Y}}u|| \le 2\sum_{\ell=0}^{19} ||A_{\mathcal{Z}}(\ell N_0)u|| \le 40||A_{\mathcal{Z}}u||$$

since ||A(j)u|| = ||Au|| for all A, j

Removing the log: controlled words II

Now it suffices to estimate $A_{\mathcal{Z}}u$ where $A_{\mathcal{Z}}:=\sum_{\mathbf{w}\in\mathcal{Z}}A_{\mathbf{w}}$ and

$$\mathcal{Z} := \{ \mathbf{w} \in \mathcal{W}(N_0) \mid F(\mathbf{w}) \ge \alpha \}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

Because $N_0 = \lfloor \frac{1}{10} \log(1/h) \rfloor$ and $\frac{1}{10}$ is small, we have

$$A_{\mathcal{Z}} = \mathsf{Op}_h(a_{\mathcal{Z}}) + \mathcal{O}(h^{\frac{1}{10}}), \quad a_{\mathcal{Z}} := \sum_{\mathbf{w} \in \mathcal{Z}} a_{\mathbf{w}}.$$

Now define $A_F := \sum_{\mathbf{w} \in \mathcal{W}(N_0)} F(\mathbf{w}) A_{\mathbf{w}} = \operatorname{Op}_h(\mathbf{a}_F) + \mathcal{O}(h^{\frac{1}{10}})$ where

$$\mathbf{a_F} := \sum_{\mathbf{w} \in \mathcal{W}(N_0)} F(\mathbf{w}) \mathbf{a_w}$$

By the definition of \mathcal{Z} , we have $a_{\mathcal{Z}} \leq lpha^{-1} a_{\mathcal{F}}$. By sharp Gårding inequality

$$|A_{\mathcal{Z}}u|| \le \alpha^{-1} ||A_{\mathcal{F}}u|| + \mathcal{O}(h^{\frac{1}{10}})||u|$$

Removing the log: controlled words II

Now it suffices to estimate $A_{\mathcal{Z}}u$ where $A_{\mathcal{Z}}:=\sum_{\mathbf{w}\in\mathcal{Z}}A_{\mathbf{w}}$ and

$$\mathcal{Z} := \{ \mathbf{w} \in \mathcal{W}(N_0) \mid F(\mathbf{w}) \ge \alpha \}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

Because $N_0 = \lfloor \frac{1}{10} \log(1/h) \rfloor$ and $\frac{1}{10}$ is small, we have

$$A_{\mathcal{Z}} = \mathsf{Op}_h(a_{\mathcal{Z}}) + \mathcal{O}(h^{\frac{1}{10}}), \quad a_{\mathcal{Z}} := \sum_{\mathbf{w} \in \mathcal{Z}} a_{\mathbf{w}}.$$

Now define $A_F := \sum_{\mathbf{w} \in \mathcal{W}(N_0)} F(\mathbf{w}) A_{\mathbf{w}} = \operatorname{Op}_h(\mathbf{a}_F) + \mathcal{O}(h^{\frac{1}{10}})$ where

$$a_{\mathsf{F}} := \sum_{\mathsf{w} \in \mathcal{W}(N_0)} F(\mathsf{w}) a_{\mathsf{w}}$$

By the definition of \mathcal{Z} , we have $a_{\mathcal{Z}} \leq \alpha^{-1} a_{\mathcal{F}}$. By sharp Gårding inequality

$$||A_{\mathcal{Z}}u|| \le \alpha^{-1} ||A_{\mathcal{F}}u|| + \mathcal{O}(h^{\frac{1}{10}})||u||$$

Removing the log: controlled words II

Now it suffices to estimate $A_{\mathcal{Z}}u$ where $A_{\mathcal{Z}}:=\sum_{\mathbf{w}\in\mathcal{Z}}A_{\mathbf{w}}$ and

$$\mathcal{Z} := \{ \mathbf{w} \in \mathcal{W}(N_0) \mid F(\mathbf{w}) \ge \alpha \}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

Because $N_0 = \lfloor \frac{1}{10} \log(1/h) \rfloor$ and $\frac{1}{10}$ is small, we have

$$A_{\mathcal{Z}} = \operatorname{Op}_h(a_{\mathcal{Z}}) + \mathcal{O}(h^{\frac{1}{10}}), \quad a_{\mathcal{Z}} := \sum_{\mathbf{w} \in \mathcal{Z}} a_{\mathbf{w}}.$$

Now define $A_F := \sum_{\mathbf{w} \in \mathcal{W}(N_0)} F(\mathbf{w}) A_{\mathbf{w}} = \operatorname{Op}_h(\mathbf{a}_F) + \mathcal{O}(h^{\frac{1}{10}})$ where

$$a_{\mathsf{F}} := \sum_{\mathsf{w} \in \mathcal{W}(N_0)} F(\mathsf{w}) a_{\mathsf{w}}$$

By the definition of \mathcal{Z} , we have $a_{\mathcal{Z}} \leq \alpha^{-1} a_{\mathcal{F}}$. By sharp Gårding inequality

$$||A_{\mathcal{Z}}u|| \le \alpha^{-1} ||A_{\mathcal{F}}u|| + \mathcal{O}(h^{\frac{1}{10}})||u||$$

Removing the log: controlled words III

We finally need to estimate $||A_F u||$ where

$$A_F := \sum_{\mathbf{w} \in \mathcal{W}(N_0)} F(\mathbf{w}) A_{\mathbf{w}}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

Write $A_F = \frac{1}{N_0} \sum_{j=0}^{N_0-1} A_{F_j}$ where

$$F = \frac{1}{N_0} \sum_{j=0}^{N_0 - 1} F_j, \quad F_j(w) := \begin{cases} 1, & w_j = 1 \\ 0, & w_j = 2 \end{cases}$$

Then (pretending that $A_1 + A_2 = I$) we have $A_{F_j} = A_1(j)$, so

$$||A_F u|| \le \frac{1}{N_0} \sum_{j=0}^{N_0-1} ||A_1(j)u|| \le ||A_1 u|| \le C ||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

which gives the bound on ||Ayu|| needed to finish the proof of Theorem 1'.

Removing the log: controlled words III

We finally need to estimate $||A_F u||$ where

$$A_F := \sum_{\mathbf{w} \in \mathcal{W}(N_0)} F(\mathbf{w}) A_{\mathbf{w}}, \quad F(\mathbf{w}) := \frac{\#\{j \mid w_j = 1\}}{N_0}$$

Write $A_F = \frac{1}{N_0} \sum_{j=0}^{N_0-1} A_{F_j}$ where

$$F = \frac{1}{N_0} \sum_{j=0}^{N_0 - 1} F_j, \quad F_j(w) := \begin{cases} 1, & w_j = 1 \\ 0, & w_j = 2 \end{cases}$$

Then (pretending that $A_1 + A_2 = I$) we have $A_{F_j} = A_1(j)$, so

$$||A_F u|| \le \frac{1}{N_0} \sum_{i=0}^{N_0-1} ||A_1(j)u|| \le ||A_1 u|| \le C ||\operatorname{Op}_h(a)u|| + \mathcal{O}(h^{\infty})||u||$$

which gives the bound on $||A_{\mathcal{Y}}u||$ needed to finish the proof of Theorem 1'.

Thank you for your attention!