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Overview

This talk presents two recent results in quantum chaos
Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency

near a fractal set

Using tools from
Microlocal analysis ( classical/quantum correspondence )
Hyperbolic dynamics ( classical chaos )
Fractal geometry
Harmonic analysis
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Lower bound on mass

First result: lower bound on mass

(M, g) compact hyperbolic surface
Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)
Eigenfunctions of the Laplacian −∆g studied
by quantum chaos

M

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1 [D–Jin ’18, using D–Zahl ’16 and Bourgain–D ’18]

Let Ω ⊂ M be a nonempty open set. Then there exists c depending on
M,Ω but not on λ such that

‖u‖L2(Ω) ≥ c > 0

For bounded λ this follows from unique continuation principle
The new result is in the high frequency limit λ→∞
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Let Ω ⊂ M be a nonempty open set. Then there exists c depending on
M,Ω but not on λ such that

‖u‖L2(Ω) ≥ c > 0

The chaotic nature of geodesic flow is important
For example, Theorem 1 is false if M is the round sphere
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Lower bound on mass

Theorem 1
Let M be a hyperbolic surface, Ω ⊂ M nonempty open set. Then ∃cΩ > 0:

(−∆g − λ2)u = 0 =⇒ ‖u‖L2(Ω) ≥ cΩ‖u‖L2(M)

Application to control theory:

Theorem 2 [Jin ’17]

Fix T > 0 and nonempty open Ω ⊂ M. Then there exists C = C (T ,Ω) :

‖f ‖2L2(M) ≤ C

∫ T

0

∫
Ω
|e it∆g f (x)|2 dxdt for all f ∈ L2(M)

Control by any nonempty open set previously known only for flat tori:
Haraux ’89, Jaffard ’90

Work in progress

Datchev–Jin: an estimate on cΩ in terms of Ω (using Jin–Zhang ’17)
D–Jin–Nonnenmacher: Theorems 1 and 2 for surfaces of variable
negative curvature
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Weak limits of eigenfunctions

Weak limits of eigenfunctions
Original motivation: study high frequency sequences of eigenfunctions

(−∆g − λ2
j )uj = 0, ‖uj‖L2 = 1, λj →∞

in terms of weak limit: probability measure µ on M such that uj → µ i.e.∫
M
a(x)|uj(x)|2 d volg (x)→

∫
M
a dµ for all a ∈ C∞(M)

Theorem 1 ⇒ for hyperbolic surfaces, suppµ = M: ‘no whitespace’

A (much) stronger property is equidistribution: µ = d volg

Quantum ergodicity: most eigenfunctions equidistribute if the
geodesic flow is chaotic: Shnirelman ’74, Zelditch ’87, Colin de
Verdière ’85 . . . Zelditch–Zworski ’96
QUE conjecture: all eigenfunctions equidistribute for strongly chaotic
systems. Only proved in arithmetic situations: Lindenstrauss ’06
Entropy bounds: Anantharaman ’07, A–Nonnenmacher ’08. . .
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Weak limits of eigenfunctions

Pictures of eigenfunctions (courtesy of Alex Strohmaier)

Hyperbolic surfaces, using Strohmaier–Uski ’12

No whitespace (Theorem 1) Equidistribution conjectured by QUE
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Weak limits of eigenfunctions

Pictures of eigenfunctions (courtesy of Alex Barnett)

One can also study Dirichlet eigenfunctions on a domain with boundary
The geodesic flow is replaced by the billiard ball flow

Completely integrable
Whitespace in the center (easy)

Mildly chaotic
Whitespace on the sides (conjectured)
Lack of equidistribution [Hassell ’10]

Strongly chaotic
No whitespace (conjectured)
Equidistribution conjectured by QUE
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Spectral gaps

Second result: spectral gaps for noncompact surfaces

(M, g) convex co-compact hyperbolic surface

M
`1 `2

`3

Resonances: zeroes of the Selberg zeta function

ZM(s) =
∏
`∈LM

∞∏
k=0

(
1− e−(s+k)`

)
LM = {lengths of primitive closed geodesics}

Pictures of resonances
(by David Borthwick and

Tobias Weich)
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Spectral gaps

Second result: spectral gaps for noncompact surfaces

Theorem 3 [D–Zahl ’16, Bourgain–D ’18, D–Zworski ’18]

Let M be a convex co-compact hyperbolic surface. Then there exists an
essential spectral gap of size β = β(M) > 0, namely M has only finitely
many resonances s with Re s > 1

2 − β

Previously known only for ‘thinner half’ of surfaces: Patterson ’76,
Sullivan ’79, Naud ’05
Gap for ‘thin’ open systems: Ikawa ’88, Gaspard–Rice ’89,
Nonnenmacher–Zworski ’09
Applications to wave decay and Strichartz estimates: Wang ’17
Conjecture: every strongly chaotic scattering system has a spectral gap
Stronger gap conjecture for hyperbolic surfaces: Jakobson–Naud ’12
Density results supporting the stronger conjecture: Naud ’14, D ’15,
D–Galkowski ’17
Semyon Dyatlov FUP and quantum chaos October 4, 2018 9 / 18
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Fractal uncertainty principle

Main ingredient: fractal uncertainty principle (FUP)

Standard uncertainty principle for Fourier transform
with ‘Planck constant’ 0 < h� 1:

f ∈ L2(R), supp f̂ ⊂ [0, 1] =⇒ ‖1[0,h]f ‖L2(R) ≤ h1/2‖f ‖L2(R)

“Cannot concentrate in both position and frequency near one point”

Fractal uncertainty principle: if X ,Y are
h-neighborhoods of ‘fractal sets’ then for some β > 0

supp f̂ ⊂ h−1 · Y =⇒ ‖1X f ‖L2(R) ≤ Chβ‖f ‖L2(R)

“Cannot concentrate in both position and frequency on a fractal set”
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Fractal uncertainty principle

Statement of the fractal uncertainty principle

Definition
Fix ν > 0. A set X ⊂ R is ν-porous up to scale h if for each interval I ⊂ R
of length h ≤ |I | ≤ 1, there exists an interval J ⊂ I , |J| = ν|I |, J ∩ X = ∅

Example: mid-third Cantor set C ⊂ [0, 1] is 1
6 -porous up to scale 0

Theorem 4 [Bourgain–D ’18]

Let X ,Y be ν-porous up to scale h� 1. Then there exists β = β(ν) > 0:

f ∈ L2(R), supp f̂ ⊂ h−1 · Y =⇒ ‖1X f ‖L2(R) ≤ Chβ‖f ‖L2(R)

Recent progress: Jin–Zhang ’17 (explicit β(ν)),
Han–Schlag ’18 (some higher dimensional cases)
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Fractal uncertainty principle

Proof of the fractal uncertainty principle

Theorem 4
Let X ,Y be ν-porous up to scale h� 1. Then there exists β = β(ν) > 0:

f ∈ L2(R), supp f̂ ⊂ h−1 · Y =⇒ ‖1X f ‖L2(R) ≤ Chβ‖f ‖L2(R)

Write X ⊂
⋂

j Xj where each Xj ⊂ Xj−1 has holes on scale 2−j ≥ h
Will show: for each j , ‖1Xj

f ‖L2 ≤ (1− ε)‖1Xj−1f ‖L2

This requires a lower bound on the mass of f on the ‘holes’ in R \ Xj

Such bounds exist if we know about decay of f̂ , e.g.

|f̂ (ξ)| ≤ Ce−w(ξ) where
∫
R

w(ξ)

1 + ξ2
dξ =∞

To pass from supp f̂ ⊂ h−1 · Y to Fourier decay bounds, take the
convolution f ∗ g , f̂ ∗ g = f̂ ĝ , where g is compactly supported and ĝ
has the right decay but only on h−1 · Y
Existence of g follows from Beurling–Malliavin theorem, porosity of Y
Semyon Dyatlov FUP and quantum chaos October 4, 2018 12 / 18
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Proof of Theorem 1

Proof of Theorem 1 (lower bound on mass)

Assume Theorem 1 fails, i.e. there exist λ = λj →∞, u = uj s.t.

(−∆g − λ2
j )uj = 0, ‖uj‖L2(M) = 1, ‖uj‖L2(Ω) → 0

Using semiclassical quantization Oph(a) = a(x , hi ∂x), h := λ−1 � 1,
a ∈ C∞(T ∗M), study localization of u in the phase space T ∗M

(−∆g − λ2)u = 0 =⇒ phase space localization of u is invariant
under the geodesic flow ϕt : T ∗M → T ∗M

We know u is small on the ‘hole’ U := π−1(Ω) where π : T ∗M → M

Then u is also small on ϕt(U) where |t| ≤ log(1/h)

Thus u lives on the sets

Γ±(T ) := {ρ ∈ T ∗M | ϕ∓t(ρ) /∈ U for all t ∈ [0,T ]}, T := log(1/h)

Can use microlocal analysis to make sense of localization on Γ+, Γ−
but not on Γ+ ∩ Γ−
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Proof of Theorem 1

End of proof of Theorem 1

Γ±(T ) := {ρ ∈ T ∗M | ϕ∓t(ρ) /∈ U for all t ∈ [0,T ]}, T := log(1/h)

Γ±(T ) smooth in stable/unstable directions, porous up to scale h in
unstable/stable ones:

Γ−(T ), T = 0 Γ+(T ), T = 0

FUP =⇒ no function can be localized on both Γ+(T ) and Γ−(T )!
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Proof of Theorem 1

Remarks on the proof of Theorem 1

The porosity property for Γ±(T ) is proved using that U 6= ∅ and
unique ergodicity of horocycle flows. The condition ϕ∓t(ρ) /∈ U gives
holes on scale e−t

To make sense of localization on Γ±(T ), where T = log(1/h), we use
the calculus developed in D–Zahl ’16
To use localization on Γ±(T ) (foliated by stable/unstable leaves)
together with FUP (corresponding to localization in
position/frequency) we use a Fourier integral operator to straighten
out the stable/unstable foliations
These cannot be straightened out together: an additional linearization
argument is needed
We also remove the flow and dilation direction in T ∗M: this is why
one-dimensional FUP is used to get a result on surfaces
For higher dimensional manifolds need higher-dimensional FUP: a big
open problem
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Variable curvature

Case of variable curvature

Theorem 5 [D–Jin–Nonnenmacher, in progress]

Let M be a surface of (variable) negative curvature and Ω ⊂ M a
nonempty open set. Then there exists cΩ > 0 such that

(−∆g − λ2)u = 0 =⇒ ‖u‖L2(Ω) ≥ cΩ‖u‖L2(M)

Two serious challenges compared to constant curvature:
Non-constant expansion rates of ϕt =⇒ the propagation time to
reach thickness h varies from point to point. Need propagation up to
local Ehrenfest time
Stable/unstable foliations are no longer C∞ so cannot use the calculus
of D–Zahl ’16. Also, cannot conjugate to a model situation. Instead
employ a microlocal linearization argument and use that the foliations
are C 2−ε
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Variable curvature

Variable curvature in pictures

Constant curvature Variable curvature

(using perturbed Arnold cat map model for the figures)
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Thank you for your attention!
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