Fractal uncertainty principle and quantum chaos

Semyon Dyatlov

October 4, 2018

Overview

- This talk presents two recent results in quantum chaos
- Central ingredient: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

- Using tools from
 - Microlocal analysis (classical/quantum correspondence)
 - Hyperbolic dynamics (classical chaos)
 - Fractal geometry
 - Harmonic analysis

Overview

- This talk presents two recent results in quantum chaos
- Central ingredient: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

- Using tools from
 - Microlocal analysis (classical/quantum correspondence)
 - Hyperbolic dynamics (classical chaos)
 - Fractal geometry
 - Harmonic analysis

- (M, g) compact hyperbolic surface
- Geodesic flow on M: a standard model of classical chaos (perturbations diverge exponentially from the original geodesic)

• Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [D–Jin '18, using D–Zahl '16 and Bourgain–D '18] Let $\Omega \subset M$ be a nonempty open set. Then there exists c depending on M, Ω but not on λ such that

$$||u||_{L^2(\Omega)} \ge c > 0$$

For bounded λ this follows from unique continuation principle

The new result is in the high frequency limit $\lambda \to \infty$

- (M, g) compact hyperbolic surface
- Geodesic flow on M: a standard model of classical chaos (perturbations diverge exponentially from the original geodesic)

ullet Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [D-Jin '18, using D-Zahl '16 and Bourgain-D '18]

Let $\Omega \subset M$ be a nonempty open set. Then there exists c depending on M, Ω but not on λ such that

$$||u||_{L^2(\Omega)} \geq c > 0$$

For bounded λ this follows from unique continuation principle

The new result is in the high frequency limit $\lambda o \infty$

- (M, g) compact hyperbolic surface
- Geodesic flow on M: a standard model of classical chaos (perturbations diverge exponentially from the original geodesic)

ullet Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [D-Jin '18, using D-Zahl '16 and Bourgain-D '18]

Let $\Omega \subset M$ be a nonempty open set. Then there exists c depending on M, Ω but not on λ such that

$$||u||_{L^2(\Omega)} \geq c > 0$$

For bounded $\boldsymbol{\lambda}$ this follows from unique continuation principle

The new result is in the high frequency limit $\lambda \to \infty$

- (M, g) compact hyperbolic surface
- Geodesic flow on M: a standard model of classical chaos (perturbations diverge exponentially from the original geodesic)
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [D-Jin '18, using D-Zahl '16 and Bourgain-D '18]

Let $\Omega \subset M$ be a nonempty open set. Then there exists c depending on M, Ω but not on λ such that

$$||u||_{L^2(\Omega)} \geq c > 0$$

The chaotic nature of geodesic flow is important

For example, Theorem 1 is false if M is the round sphere

Theorem 1

Let M be a hyperbolic surface, $\Omega \subset M$ nonempty open set. Then $\exists c_{\Omega} > 0$:

$$(-\Delta_g - \lambda^2)u = 0 \quad \Longrightarrow \quad \|u\|_{L^2(\Omega)} \ge c_{\Omega} \|u\|_{L^2(M)}$$

Application to control theory:

Theorem 2 [Jin '17]

Fix T > 0 and nonempty open $\Omega \subset M$. Then there exists $C = C(T, \Omega)$

$$\|f\|_{L^2(M)}^2 \le C \int_0^T \int_{\Omega} |e^{it\Delta_g} f(x)|^2 dxdt$$
 for all $f \in L^2(M)$

Control by any nonempty open set previously known only for flat tori: Haraux '89, Jaffard '90

Work in progress

- Datchev–Jin: an estimate on c_{Ω} in terms of Ω (using Jin–Zhang '17)
- D-Jin-Nonnenmacher: Theorems 1 and 2 for surfaces of variable negative curvature

Theorem 1

Let M be a hyperbolic surface, $\Omega \subset M$ nonempty open set. Then $\exists c_{\Omega} > 0$:

$$(-\Delta_g - \lambda^2)u = 0 \implies \|u\|_{L^2(\Omega)} \ge c_{\Omega} \|u\|_{L^2(M)}$$

Application to control theory:

Theorem 2 [Jin '17]

Fix T > 0 and nonempty open $\Omega \subset M$. Then there exists $C = C(T, \Omega)$:

$$||f||_{L^2(M)}^2 \le C \int_0^T \int_{\Omega} |e^{it\Delta_g} f(x)|^2 dxdt$$
 for all $f \in L^2(M)$

Control by any nonempty open set previously known only for flat tori: Haraux '89, Jaffard '90

Work in progress

- Datchev–Jin: an estimate on c_{Ω} in terms of Ω (using Jin–Zhang '17)
- D-Jin-Nonnenmacher: Theorems 1 and 2 for surfaces of variable negative curvature

Theorem 1

Let M be a hyperbolic surface, $\Omega \subset M$ nonempty open set. Then $\exists c_{\Omega} > 0$:

$$(-\Delta_g - \lambda^2)u = 0 \quad \Longrightarrow \quad \|u\|_{L^2(\Omega)} \ge c_{\Omega} \|u\|_{L^2(M)}$$

Application to control theory:

Theorem 2 [Jin '17]

Fix T > 0 and nonempty open $\Omega \subset M$. Then there exists $C = C(T, \Omega)$:

$$||f||_{L^2(M)}^2 \le C \int_0^T \int_{\Omega} |e^{it\Delta_g} f(x)|^2 dxdt$$
 for all $f \in L^2(M)$

Control by any nonempty open set previously known only for flat tori: Haraux '89, Jaffard '90

Work in progress

- Datchev–Jin: an estimate on c_{Ω} in terms of Ω (using Jin–Zhang '17)
- D-Jin-Nonnenmacher: Theorems 1 and 2 for surfaces of variable negative curvature

Original motivation: study high frequency sequences of eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2} = 1, \quad \lambda_j \to \infty$$

in terms of weak limit: probability measure μ on M such that $u_i \to \mu$ i.e.

$$\int_M a(x)|u_j(x)|^2 d\operatorname{vol}_g(x) \to \int_M a d\mu \quad \text{for all} \quad a \in C^\infty(M)$$

Theorem $1 \;\;\Rightarrow\;\;$ for hyperbolic surfaces, $\operatorname{\mathsf{supp}} \mu = M$: 'no whitespace

- Quantum ergodicity: most eigenfunctions equidistribute if the geodesic flow is chaotic: Shnirelman '74, Zelditch '87, Colin de Verdière '85 ... Zelditch–Zworski '96
- QUE conjecture: all eigenfunctions equidistribute for strongly chaotic systems. Only proved in arithmetic situations: Lindenstrauss '06
- Entropy bounds: Anantharaman '07, A-Nonnenmacher '08...

Original motivation: study high frequency sequences of eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2} = 1, \quad \lambda_j \to \infty$$

in terms of weak limit: probability measure μ on M such that $u_i \to \mu$ i.e.

$$\int_M a(x)|u_j(x)|^2 d\operatorname{vol}_g(x) \to \int_M a d\mu \quad \text{for all} \quad a \in C^\infty(M)$$

Theorem 1 \Rightarrow for hyperbolic surfaces, supp $\mu = M$: 'no whitespace'

- Quantum ergodicity: most eigenfunctions equidistribute if the geodesic flow is chaotic: Shnirelman '74, Zelditch '87, Colin de Verdière '85 ... Zelditch–Zworski '96
- QUE conjecture: all eigenfunctions equidistribute for strongly chaotic systems. Only proved in arithmetic situations: Lindenstrauss '06
- Entropy bounds: Anantharaman '07, A-Nonnenmacher '08...

Original motivation: study high frequency sequences of eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2} = 1, \quad \lambda_j \to \infty$$

in terms of weak limit: probability measure μ on M such that $u_i \to \mu$ i.e.

$$\int_M a(x)|u_j(x)|^2 d\operatorname{vol}_g(x) \to \int_M a d\mu \quad \text{for all} \quad a \in C^\infty(M)$$

Theorem 1 \Rightarrow for hyperbolic surfaces, supp $\mu = M$: 'no whitespace'

- Quantum ergodicity: most eigenfunctions equidistribute if the geodesic flow is chaotic: Shnirelman '74, Zelditch '87, Colin de Verdière '85 ... Zelditch–Zworski '96
- QUE conjecture: all eigenfunctions equidistribute for strongly chaotic systems. Only proved in arithmetic situations: Lindenstrauss '06
- Entropy bounds: Anantharaman '07, A-Nonnenmacher '08...

Original motivation: study high frequency sequences of eigenfunctions

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2} = 1, \quad \lambda_j \to \infty$$

in terms of weak limit: probability measure μ on M such that $u_i \to \mu$ i.e.

$$\int_M a(x)|u_j(x)|^2 d\operatorname{vol}_g(x) \to \int_M a d\mu \quad \text{for all} \quad a \in C^\infty(M)$$

Theorem 1 \Rightarrow for hyperbolic surfaces, supp $\mu = M$: 'no whitespace'

- Quantum ergodicity: most eigenfunctions equidistribute if the geodesic flow is chaotic: Shnirelman '74, Zelditch '87, Colin de Verdière '85 . . . Zelditch–Zworski '96
- QUE conjecture: all eigenfunctions equidistribute for strongly chaotic systems. Only proved in arithmetic situations: Lindenstrauss '06
- Entropy bounds: Anantharaman '07, A-Nonnenmacher '08...

Pictures of eigenfunctions (courtesy of Alex Strohmaier)

Hyperbolic surfaces, using Strohmaier-Uski '12

No whitespace (Theorem 1)
 Equidistribution conjectured by QUE

One can also study Dirichlet eigenfunctions on a domain with boundary The geodesic flow is replaced by the billiard ball flow

Completely integrable Whitespace in the center (easy)

Mildly chaotic

Whitespace on the sides (conjectured)
Lack of equidistribution [Hassell '10]

Strongly chaotic

No whitespace (conjectured) Equidistribution conjectured by QUE

One can also study Dirichlet eigenfunctions on a domain with boundary The geodesic flow is replaced by the billiard ball flow

Completely integrable Whitespace in the center (easy)

Mildly chaotic

Whitespace on the sides (conjectured)
Lack of equidistribution [Hassell '10]

Strongly chaotic

No whitespace (conjectured)
Equidistribution conjectured by QUE

One can also study Dirichlet eigenfunctions on a domain with boundary The geodesic flow is replaced by the billiard ball flow

Completely integrable
Whitespace in the center (easy)

Mildly chaotic
Whitespace on the sides (conjectured)
Lack of equidistribution [Hassell '10]

Strongly chaotic
No whitespace (conjectured)
Equidistribution conjectured by QUE

One can also study Dirichlet eigenfunctions on a domain with boundary The geodesic flow is replaced by the billiard ball flow

Completely integrable

Whitespace in the center (easy)

Mildly chaotic

Whitespace on the sides (conjectured) Lack of equidistribution [Hassell '10]

Strongly chaotic

No whitespace (conjectured) Equidistribution conjectured by QUE

(M,g) convex co-compact hyperbolic surface

Pictures of resonances (by David Borthwick and Tobias Weich)

Resonances: zeroes of the Selberg zeta function

$$Z_M(s) = \prod_{\ell \in \mathcal{L}_M} \prod_{k=0}^{\infty} \left(1 - e^{-(s+k)\ell}\right)$$

 $\mathcal{L}_M = \{ \text{lengths of primitive closed geodesics} \}$

(M,g) convex co-compact hyperbolic surface

Resonances: zeroes of the Selberg zeta function

$$Z_M(s) = \prod_{\ell \in \mathcal{L}_M} \prod_{k=0}^{\infty} \left(1 - e^{-(s+k)\ell}\right)$$

 $\mathcal{L}_M = \{ \text{lengths of primitive closed geodesics} \}$

Pictures of resonances (by David Borthwick and Tobias Weich)

(M,g) convex co-compact hyperbolic surface

Resonances: zeroes of the Selberg zeta function

$$Z_M(s) = \prod_{\ell \in \mathcal{L}_M} \prod_{k=0}^{\infty} \left(1 - e^{-(s+k)\ell}\right)$$

 $\mathcal{L}_M = \{ \text{lengths of primitive closed geodesics} \}$

Pictures of resonances (by David Borthwick and Tobias Weich)

(M,g) convex co-compact hyperbolic surface

Resonances: zeroes of the Selberg zeta function

$$Z_M(s) = \prod_{\ell \in \mathcal{L}_M} \prod_{k=0}^{\infty} \left(1 - e^{-(s+k)\ell}\right)$$

 $\mathcal{L}_M = \{ \text{lengths of primitive closed geodesics} \}$

Pictures of resonances (by David Borthwick and Tobias Weich)

Theorem 3 [D-Zahl '16, Bourgain-D '18, D-Zworski '18]

- Previously known only for 'thinner half' of surfaces: Patterson '76, Sullivan '79, Naud '05
- Gap for 'thin' open systems: Ikawa '88, Gaspard-Rice '89, Nonnenmacher-Zworski '09
- Applications to wave decay and Strichartz estimates: Wang '17
- Conjecture: every strongly chaotic scattering system has a spectral gap
- Stronger gap conjecture for hyperbolic surfaces: Jakobson-Naud '12
- Density results supporting the stronger conjecture: Naud '14, D '15, D-Galkowski '17

Theorem 3 [D-Zahl '16, Bourgain-D '18, D-Zworski '18]

- Previously known only for 'thinner half' of surfaces: Patterson '76, Sullivan '79, Naud '05
- Gap for 'thin' open systems: Ikawa '88, Gaspard–Rice '89, Nonnenmacher–Zworski '09
- Applications to wave decay and Strichartz estimates: Wang '17
- Conjecture: every strongly chaotic scattering system has a spectral gap
- Stronger gap conjecture for hyperbolic surfaces: Jakobson-Naud '12
- Density results supporting the stronger conjecture: Naud '14, D '15, D-Galkowski '17

Theorem 3 [D-Zahl '16, Bourgain-D '18, D-Zworski '18]

- Previously known only for 'thinner half' of surfaces: Patterson '76, Sullivan '79, Naud '05
- Gap for 'thin' open systems: Ikawa '88, Gaspard–Rice '89, Nonnenmacher–Zworski '09
- Applications to wave decay and Strichartz estimates: Wang '17
- Conjecture: every strongly chaotic scattering system has a spectral gap
- Stronger gap conjecture for hyperbolic surfaces: Jakobson-Naud '12
- Density results supporting the stronger conjecture: Naud '14, D '15, D-Galkowski '17

Theorem 3 [D-Zahl '16, Bourgain-D '18, D-Zworski '18]

- Previously known only for 'thinner half' of surfaces: Patterson '76, Sullivan '79, Naud '05
- Gap for 'thin' open systems: Ikawa '88, Gaspard–Rice '89, Nonnenmacher–Zworski '09
- Applications to wave decay and Strichartz estimates: Wang '17
- Conjecture: every strongly chaotic scattering system has a spectral gap
- Stronger gap conjecture for hyperbolic surfaces: Jakobson-Naud '12
- Density results supporting the stronger conjecture: Naud '14, D '15, D-Galkowski '17

Theorem 3 [D-Zahl '16, Bourgain-D '18, D-Zworski '18]

- Previously known only for 'thinner half' of surfaces: Patterson '76, Sullivan '79, Naud '05
- Gap for 'thin' open systems: Ikawa '88, Gaspard–Rice '89, Nonnenmacher–Zworski '09
- Applications to wave decay and Strichartz estimates: Wang '17
- Conjecture: every strongly chaotic scattering system has a spectral gap
- Stronger gap conjecture for hyperbolic surfaces: Jakobson-Naud '12
- Density results supporting the stronger conjecture: Naud '14, D '15, D-Galkowski '17

Main ingredient: fractal uncertainty principle (FUP)

Standard uncertainty principle for Fourier transform with 'Planck constant' $0 < h \ll 1$:

$$f\in L^2(\mathbb{R}), \quad \operatorname{supp} \hat{f}\subset \llbracket 0,1
brack \implies \quad \lVert \mathbf{1}_{\llbracket 0,h
brack} f\rVert_{L^2(\mathbb{R})}\leq h^{1/2}\lVert f\rVert_{L^2(\mathbb{R})}$$

"Cannot concentrate in both position and frequency near one point"

Fractal uncertainty principle: if X, Y are h-neighborhoods of 'fractal sets' then for some $\beta > 0$

$$\operatorname{supp} \hat{f} \subset \mathbf{h}^{-1} \cdot \mathbf{Y} \quad \Longrightarrow \quad \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}$$

"Cannot concentrate in both position and frequency on a fractal set"

Main ingredient: fractal uncertainty principle (FUP)

Standard uncertainty principle for Fourier transform with 'Planck constant' $0 < h \ll 1$:

$$f \in L^2(\mathbb{R}), \quad \text{supp } \hat{f} \subset [0,1] \quad \Longrightarrow \quad \|\mathbf{1}_{[0,h]}f\|_{L^2(\mathbb{R})} \le h^{1/2}\|f\|_{L^2(\mathbb{R})}$$

"Cannot concentrate in both position and frequency near one point"

Fractal uncertainty principle: if X,Y are h-neighborhoods of 'fractal sets' then for some $\beta>0$

$$\operatorname{supp} \hat{f} \subset {\color{red} h^{-1}} \cdot {\color{red} Y} \quad \Longrightarrow \quad \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}$$

"Cannot concentrate in both position and frequency on a fractal set"

Statement of the fractal uncertainty principle

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset \mathbb{R}$ of length $h \leq |I| \leq 1$, there exists an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous up to scale 0

Theorem 4 [Bourgain-D '18]

Let X,Y be ν -porous up to scale $h\ll 1$. Then there exists $\beta=\beta(\nu)>0$: $f\in L^2(\mathbb{R}), \quad \text{supp } \hat{f}\subset h^{-1}\cdot Y \implies \|\mathbf{1}_Xf\|_{L^2(\mathbb{R})}\leq Ch^{\beta}\|f\|_{L^2(\mathbb{R})}$

Recent progress: Jin–Zhang '17 (explicit $\beta(\nu)$), Han–Schlag '18 (some higher dimensional cases)

Statement of the fractal uncertainty principle

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset \mathbb{R}$ of length $h \leq |I| \leq 1$, there exists an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous up to scale 0

Theorem 4 [Bourgain-D '18]

Let X, Y be ν -porous up to scale $h \ll 1$. Then there exists $\beta = \beta(\nu) > 0$: $f \in L^2(\mathbb{R}), \quad \text{supp } \hat{f} \subset h^{-1} \cdot Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq \frac{Ch^{\beta}}{\|f\|_{L^2(\mathbb{R})}}$

Recent progress: Jin–Zhang '17 (explicit $\beta(\nu)$), Han–Schlag '18 (some higher dimensional cases)

Statement of the fractal uncertainty principle

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset \mathbb{R}$ of length $h \leq |I| \leq 1$, there exists an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{6}$ -porous up to scale 0

Theorem 4 [Bourgain-D '18]

Let X,Y be ν -porous up to scale $h\ll 1$. Then there exists $\beta=\beta(\nu)>0$:

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp} \hat{f} \subset h^{-1} \cdot Y \quad \Longrightarrow \quad \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq \frac{\mathsf{C} h^\beta}{\|f\|_{L^2(\mathbb{R})}}$$

Recent progress: Jin–Zhang '17 (explicit $\beta(\nu)$), Han–Schlag '18 (some higher dimensional cases)

Proof of the fractal uncertainty principle

Theorem 4

Let X, Y be ν -porous up to scale $h \ll 1$. Then there exists $\beta = \beta(\nu) > 0$: $f \in L^2(\mathbb{R}), \quad \text{supp } \hat{f} \subset h^{-1} \cdot Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq \frac{Ch^{\beta}}{\|f\|_{L^2(\mathbb{R})}}$

- Write $X \subset \bigcap_i X_j$ where each $X_j \subset X_{j-1}$ has holes on scale $2^{-j} \geq h$
- Will show: for each j, $||1_{X_j}f||_{L^2} \le (1-\epsilon)||1_{X_{j-1}}f||_{L^2}$
- This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R}\setminus X_j$
- Such bounds exist if we know about decay of \hat{f} , e.g.

$$|\hat{f}(\xi)| \leq \mathit{Ce}^{-w(\xi)} \quad ext{where} \quad \int_{\mathbb{R}} rac{w(\xi)}{1+\xi^2} \, d\xi = \infty$$

- To pass from supp $\hat{f} \subset h^{-1} \cdot Y$ to Fourier decay bounds, take the convolution f * g, $\widehat{f * g} = \hat{f} \hat{g}$, where g is compactly supported and \hat{g} has the right decay but only on $h^{-1} \cdot Y$
- ullet Existence of g follows from Beurling-Malliavin theorem, porosity of Y

Proof of the fractal uncertainty principle

Theorem 4

Let X, Y be ν -porous up to scale $h \ll 1$. Then there exists $\beta = \beta(\nu) > 0$: $f \in L^2(\mathbb{R}), \quad \text{supp } \hat{f} \subset h^{-1} \cdot Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq \frac{Ch^{\beta}}{\|f\|_{L^2(\mathbb{R})}}$

- Write $X \subset \bigcap_i X_j$ where each $X_j \subset X_{j-1}$ has holes on scale $2^{-j} \geq h$
- Will show: for each j, $||1_{X_j}f||_{L^2} \le (1-\epsilon)||1_{X_{j-1}}f||_{L^2}$
- ullet This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R}\setminus X_j$
- Such bounds exist if we know about decay of \hat{f} , e.g.

$$|\hat{f}(\xi)| \leq C \mathrm{e}^{-w(\xi)} \quad ext{where} \quad \int_{\mathbb{R}} rac{w(\xi)}{1+\xi^2} \, d\xi = \infty$$

- To pass from supp $\hat{f} \subset h^{-1} \cdot Y$ to Fourier decay bounds, take the convolution f * g, $\widehat{f * g} = \hat{f} \hat{g}$, where g is compactly supported and \hat{g} has the right decay but only on $h^{-1} \cdot Y$
- ullet Existence of g follows from Beurling-Malliavin theorem, porosity of Y

Proof of the fractal uncertainty principle

Theorem 4

Let X, Y be ν -porous up to scale $h \ll 1$. Then there exists $\beta = \beta(\nu) > 0$: $f \in L^2(\mathbb{R}), \quad \text{supp } \hat{f} \subset h^{-1} \cdot Y \implies \|\mathbf{1}_X f\|_{L^2(\mathbb{R})} \leq \frac{Ch^{\beta}}{\|f\|_{L^2(\mathbb{R})}}$

- Write $X \subset \bigcap_j X_j$ where each $X_j \subset X_{j-1}$ has holes on scale $2^{-j} \geq h$
- Will show: for each j, $||1_{X_j}f||_{L^2} \leq (1-\epsilon)||1_{X_{j-1}}f||_{L^2}$
- ullet This requires a lower bound on the mass of f on the 'holes' in $\mathbb{R}\setminus X_j$
- Such bounds exist if we know about decay of \hat{f} , e.g.

$$|\hat{f}(\xi)| \leq Ce^{-w(\xi)}$$
 where $\int_{\mathbb{R}} rac{w(\xi)}{1+\xi^2} \, d\xi = \infty$

- To pass from supp $\hat{f} \subset h^{-1} \cdot Y$ to Fourier decay bounds, take the convolution f * g, $\widehat{f * g} = \hat{f} \hat{g}$, where g is compactly supported and \hat{g} has the right decay but only on $h^{-1} \cdot Y$
- ullet Existence of g follows from Beurling-Malliavin theorem, porosity of Y

• Assume Theorem 1 fails, i.e. there exist $\lambda = \lambda_j \to \infty$, $u = u_j$ s.t.

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2(M)} = 1, \quad ||u_j||_{L^2(\Omega)} \to 0$$

- Using semiclassical quantization $\operatorname{Op}_h(a) = a(x, \frac{h}{i}\partial_x), \ h := \lambda^{-1} \ll 1,$ $a \in C^{\infty}(T^*M)$, study localization of u in the phase space T^*M
- $(-\Delta_g \lambda^2)u = 0 \implies$ phase space localization of u is invariant under the geodesic flow $\varphi_t : T^*M \to T^*M$
- We know u is small on the 'hole' $U:=\pi^{-1}(\Omega)$ where $\pi:T^*M\to M$
- Then u is also small on $\varphi_t(U)$ where $|t| \leq \log(1/h)$
- Thus *u* lives on the sets

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

• Assume Theorem 1 fails, i.e. there exist $\lambda = \lambda_i \to \infty$, $u = u_i$ s.t.

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2(M)} = 1, \quad ||u_j||_{L^2(\Omega)} \to 0$$

- Using semiclassical quantization $\operatorname{Op}_h(a) = a(x, \frac{h}{i}\partial_x), \ h := \lambda^{-1} \ll 1,$ $a \in C^{\infty}(T^*M)$, study localization of u in the phase space T^*M
- $(-\Delta_g \lambda^2)u = 0 \implies$ phase space localization of u is invariant under the geodesic flow $\varphi_t : T^*M \to T^*M$
- We know u is small on the 'hole' $U:=\pi^{-1}(\Omega)$ where $\pi:T^*M\to M$
- Then u is also small on $\varphi_t(U)$ where $|t| \leq \log(1/h)$
- Thus *u* lives on the sets

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

• Assume Theorem 1 fails, i.e. there exist $\lambda = \lambda_i \to \infty$, $u = u_i$ s.t.

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \|u_j\|_{L^2(M)} = 1, \quad \|u_j\|_{L^2(\Omega)} \to 0$$

- Using semiclassical quantization $\operatorname{Op}_h(a) = a(x, \frac{h}{i}\partial_x), \ h := \lambda^{-1} \ll 1,$ $a \in C^{\infty}(T^*M)$, study localization of u in the phase space T^*M
- $(-\Delta_g \lambda^2)u = 0 \implies$ phase space localization of u is invariant under the geodesic flow $\varphi_t : T^*M \to T^*M$
- We know u is small on the 'hole' $U:=\pi^{-1}(\Omega)$ where $\pi:T^*M\to M$
- Then u is also small on $\varphi_t(U)$ where $|t| \leq \log(1/h)$
- Thus *u* lives on the sets

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

• Assume Theorem 1 fails, i.e. there exist $\lambda = \lambda_i \to \infty$, $u = u_i$ s.t.

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad ||u_j||_{L^2(M)} = 1, \quad ||u_j||_{L^2(\Omega)} \to 0$$

- Using semiclassical quantization $\operatorname{Op}_h(a) = a(x, \frac{h}{i}\partial_x), \ h := \lambda^{-1} \ll 1,$ $a \in C^{\infty}(T^*M)$, study localization of u in the phase space T^*M
- $(-\Delta_g \lambda^2)u = 0 \implies$ phase space localization of u is invariant under the geodesic flow $\varphi_t : T^*M \to T^*M$
- We know u is small on the 'hole' $U:=\pi^{-1}(\Omega)$ where $\pi:T^*M\to M$
- Then u is also small on $\varphi_t(U)$ where $|t| \leq \log(1/h)$
- Thus *u* lives on the sets

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_{\pm}(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

$$\Gamma_{-}(T), T=0$$

 $\Gamma_+(T), T=0$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_{\pm}(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

$$\Gamma_{-}(T), T=1$$

 $\Gamma_+(T), T=1$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_{\pm}(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

$$\Gamma_{-}(T), T=2$$

 $\Gamma_+(T), T=2$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_+(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

 $\Gamma_{\perp}(T), T=3$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_{\pm}(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

 $\Gamma_+(T), T=4$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_{\pm}(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

$$_{-}(T), T = 5$$

 $\Gamma_{\perp}(T), T=5$

$$\Gamma_{\pm}(T) := \{ \rho \in T^*M \mid \varphi_{\mp t}(\rho) \notin U \text{ for all } t \in [0, T] \}, \quad T := \log(1/h)$$

 $\Gamma_{\pm}(T)$ smooth in stable/unstable directions, porous up to scale h in unstable/stable ones:

$$T_{-}(T), T = 5$$

$$\Gamma_{\perp}(T), T=5$$

- The porosity property for $\Gamma_{\pm}(T)$ is proved using that $U \neq \emptyset$ and unique ergodicity of horocycle flows. The condition $\varphi_{\mp t}(\rho) \notin U$ gives holes on scale e^{-t}
- To make sense of localization on $\Gamma_{\pm}(T)$, where $T = \log(1/h)$, we use the calculus developed in D–Zahl '16
- To use localization on $\Gamma_{\pm}(T)$ (foliated by stable/unstable leaves) together with FUP (corresponding to localization in position/frequency) we use a Fourier integral operator to straighten out the stable/unstable foliations
- These cannot be straightened out together: an additional linearization argument is needed
- We also remove the flow and dilation direction in T^*M : this is why one-dimensional FUP is used to get a result on surfaces
- For higher dimensional manifolds need higher-dimensional FUP: a big open problem

- The porosity property for $\Gamma_{\pm}(T)$ is proved using that $U \neq \emptyset$ and unique ergodicity of horocycle flows. The condition $\varphi_{\mp t}(\rho) \notin U$ gives holes on scale e^{-t}
- To make sense of localization on $\Gamma_{\pm}(T)$, where $T = \log(1/h)$, we use the calculus developed in D–Zahl '16
- To use localization on $\Gamma_{\pm}(T)$ (foliated by stable/unstable leaves) together with FUP (corresponding to localization in position/frequency) we use a Fourier integral operator to straighten out the stable/unstable foliations
- These cannot be straightened out together: an additional linearization argument is needed
- We also remove the flow and dilation direction in T^*M : this is why one-dimensional FUP is used to get a result on surfaces
- For higher dimensional manifolds need higher-dimensional FUP: a big open problem

- The porosity property for $\Gamma_{\pm}(T)$ is proved using that $U \neq \emptyset$ and unique ergodicity of horocycle flows. The condition $\varphi_{\mp t}(\rho) \notin U$ gives holes on scale e^{-t}
- To make sense of localization on $\Gamma_{\pm}(T)$, where $T = \log(1/h)$, we use the calculus developed in D–Zahl '16
- To use localization on $\Gamma_{\pm}(T)$ (foliated by stable/unstable leaves) together with FUP (corresponding to localization in position/frequency) we use a Fourier integral operator to straighten out the stable/unstable foliations
- These cannot be straightened out together: an additional linearization argument is needed
- We also remove the flow and dilation direction in T^*M : this is why one-dimensional FUP is used to get a result on surfaces
- For higher dimensional manifolds need higher-dimensional FUP: a big open problem

- The porosity property for $\Gamma_{\pm}(T)$ is proved using that $U \neq \emptyset$ and unique ergodicity of horocycle flows. The condition $\varphi_{\mp t}(\rho) \notin U$ gives holes on scale e^{-t}
- To make sense of localization on $\Gamma_{\pm}(T)$, where $T = \log(1/h)$, we use the calculus developed in D–Zahl '16
- To use localization on $\Gamma_{\pm}(T)$ (foliated by stable/unstable leaves) together with FUP (corresponding to localization in position/frequency) we use a Fourier integral operator to straighten out the stable/unstable foliations
- These cannot be straightened out together: an additional linearization argument is needed
- We also remove the flow and dilation direction in T^*M : this is why one-dimensional FUP is used to get a result on surfaces
- For higher dimensional manifolds need higher-dimensional FUP: a big open problem

Case of variable curvature

Theorem 5 [D-Jin-Nonnenmacher, in progress]

Let M be a surface of (variable) negative curvature and $\Omega \subset M$ a nonempty open set. Then there exists $c_{\Omega} > 0$ such that

$$(-\Delta_g - \lambda^2)u = 0 \implies \|u\|_{L^2(\Omega)} \ge c_{\Omega} \|u\|_{L^2(M)}$$

Two serious challenges compared to constant curvature

- Non-constant expansion rates of $\varphi_t \implies$ the propagation time to reach thickness h varies from point to point. Need propagation up to local Ehrenfest time
- Stable/unstable foliations are no longer C^{∞} so cannot use the calculus of D–Zahl '16. Also, cannot conjugate to a model situation. Instead employ a microlocal linearization argument and use that the foliations are $C^{2-\epsilon}$

Case of variable curvature

Theorem 5 [D-Jin-Nonnenmacher, in progress]

Let M be a surface of (variable) negative curvature and $\Omega \subset M$ a nonempty open set. Then there exists $c_{\Omega} > 0$ such that

$$(-\Delta_g - \lambda^2)u = 0 \implies \|u\|_{L^2(\Omega)} \ge c_{\Omega} \|u\|_{L^2(M)}$$

Two serious challenges compared to constant curvature:

- Non-constant expansion rates of $\varphi_t \implies$ the propagation time to reach thickness h varies from point to point. Need propagation up to local Ehrenfest time
- Stable/unstable foliations are no longer C^{∞} so cannot use the calculus of D–Zahl '16. Also, cannot conjugate to a model situation. Instead employ a microlocal linearization argument and use that the foliations are $C^{2-\epsilon}$

Variable curvature in pictures

Variable curvature

(using perturbed Arnold cat map model for the figures)

Thank you for your attention!