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@ This talk presents several recent results in quantum chaos

o Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency
near a fractal set
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@ This talk presents several recent results in quantum chaos

o Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency
near a fractal set

@ Using tools from
e Microlocal analysis ( classical/quantum correspondence )
o Hyperbolic dynamics ( classical chaos )
o Fractal geometry

e Harmonic analysis
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@ This talk presents several recent results in quantum chaos

o Central ingredient: fractal uncertainty principle (FUP)

No function can be localized
in both position and frequency
near a fractal set

@ Using tools from
e Microlocal analysis ( classical/quantum correspondence )
o Hyperbolic dynamics ( classical chaos )
o Fractal geometry

e Harmonic analysis

@ Despite recent progress, many open problems remain
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Control of eigenfunctions

Application: control of eigenfunctions

e (M, g) compact hyperbolic surface

e Geodesic flow ¢ : T"M — T*M is a
standard model of classical chaos

e Eigenfunctions of the Laplacian —A,
studied by quantum chaos

(B¢ =N)u=0, |ul2=1
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Control of eigenfunctions

Application: control of eigenfunctions

e (M, g) compact hyperbolic surface

e Geodesic flow ¢ : T"M — T*M is a M
standard model of classical chaos g g

e Eigenfunctions of the Laplacian —A, @
studied by quantum chaos

(B¢ =N)u=0, |ul2=1

Theorem 1 [Bourgain-D '16, D—Jin '17]

Let Q C M be an arbitrary nonempty open set. Then
ull2() > >0

where ¢ depends on M, Q2 but not on A
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Control of eigenfunctions

Application: control of eigenfunctions

e (M, g) compact hyperbolic surface

o Geodesic flow ¢; : T"M — T*M is a M
standard model of classical chaos g g
e Eigenfunctions of the Laplacian —A, @

studied by quantum chaos

(B¢ =N)u=0, |ul2=1

Theorem 1 [Bourgain-D '16, D—Jin '17]

Let Q C M be an arbitrary nonempty open set. Then
ull2() > >0

where ¢ depends on M, Q2 but not on A

For bounded \ this follows from unique continuation principle

The new result is in the high frequency limit A — oo
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Control of eigenfunctions

Application: control of eigenfunctions

e (M, g) compact hyperbolic surface
e Geodesic flow ¢ : T"M — T*M is a

standard model of classical chaos
e Eigenfunctions of the Laplacian —A, v
studied by quantum chaos
(—2g = X)u=0, [ufp=1

Theorem 1 [Bourgain-D '16, D—Jin '17]

Let Q C M be an arbitrary nonempty open set. Then
ull2(@) > ¢ >0

where ¢ depends on M, Q2 but not on A

The chaotic nature of geodesic flow is important

For example, Theorem 1 is false if M is the round sphere
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Control of eigenfunctions

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x.) € C(T*M)  Opy(a) = a(x ?ax) . C(M) = C(M)
Examples (on R"):  Op,(xj)u = xju, Opp(&)u = ?(‘Lju
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Control of eigenfunctions

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x.) € C(T*M)  Opy(a) = a(x ?ax> L C(M) — C(M)

Examples (on R"):  Op,(xj)u = xju, Opp(&)u = ?8xju
Properties of quantization in the semiclassical limit h — 0
 Opp(a) Op,(b) = Opp(ab) + O(h)
@ Op,(a)* = Op,(a) + O(h)
o [Opy(a), Opp(b)] = —ih Opy({a, b}) + O(h?)
o supla| <oo = |[|Opy(a)lliz—s2 = O(1)
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Control of eigenfunctions

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x.) € C(T*M)  Opy(a) = a(x ?ax> L C(M) = C2(M)
Examples (on R"):  Op,(xj)u = xju, Opp(&)u = ?8xju
Properties of quantization in the semiclassical limit h — 0
o Opjy(a) Opy(b) = Opy(ab) + O(h)
@ Op,(a)" = Op,(a) + O(h)
o [Op4(a), Opy(b)] = —ih Op,({a, b}) + O(h?)
osuplal <oco = || Opy(a)lli2—12 = O(1)

Rescale (—Ag—M)u=0, \—
to obtain (—h*Ag —1u=0, h=X"'-0
where - h2Ag -1= Oph(p2 - 1)7 p(Xag) = |f|g
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Control of eigenfunctions

Microlocal version of Theorem 1

General elliptic estimate
If a,b € C®(T*M) and supp b C {a # 0} then for all u € L2(M)

[10py(b)ull < Cl| Opy(a)ull + O(h>)|ull
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Control of eigenfunctions

Microlocal version of Theorem 1

General elliptic estimate

If a,b € C®(T*M) and supp b C {a # 0} then for all u € L2(M)

[10py(b)ull < Cl| Opy(a)ull + O(h>)|ull

Localization of eigenfunctions to  S*M = {(x,&) € T*M: ||, =1}

Assume (—h*Ag —1)u =0, lull2my = 1. (1)
Then suppbNS*M =0 = | Opp(b)ull;2 = O(h™)
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Control of eigenfunctions

Microlocal version of Theorem 1

General elliptic estimate

If a,b € C®(T*M) and supp b C {a # 0} then for all u € L2(M)

[10ps(b)ull < CI[ Opy(a)ull + O(h™)|ull

Localization of eigenfunctions to  S*M = {(x,&) € T*M: ||, =1}

Assume (—h*Ag —1)u =0, lull2my = 1. (1)
Then suppbNS*M =0 = | Opp(b)ull;2 = O(h™)

Theorem 1’ [Bourgain-D '16, D—Jin '17]
Let a € C°(T*M) satisfy a|s-p # 0, u satisfy (1). Then for h < 1

| Opn(a)ull 2y > ¢ >0

where ¢ depends on M, a but not on h
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Control of eigenfunctions

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions
(—hiAg —1)uj =0, |ujllizy =1, hj—0
We say uj converges weakly to a measure ;1 on T*M if

Vae CX(T*M):  (Opy(a)yj, uj) 2 —>/ adp asj— oo
T*M

Call such limits p semiclassical measures
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Control of eigenfunctions

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

(—hiAg —1)uj =0, |ujllizy =1, hj—0
We say uj converges weakly to a measure ;1 on T*M if
Vae C(T*M):  (Opp(a)uj uj)z — /T*Mad,u as j — oo
Call such limits p semiclassical measures
Basic properties
@ 4 is a probability measure, supppu C S*M

@ 4 is invariant under the geodesic flow ¢; : S*M — S*M

o Natural candidate: Liouville measure 1y ~ dvol (equidistribution)

o Natural enemy: delta measure 4, on a closed geodesic (scarring)
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Semiclassical measures and Theorem 1
(—hDg = 1)y =0, |ullzmy=1, h—0
Vae C(T"M):  (Opp(a)y), uj) 2 — / adu asj— oo
TM
Theorem 1" alssy 0 = [ Opp (a)ujlli2 > ¢ >0

Theorem 1” [Bourgain-D '16, D—Jin '17] J

Let 1 be a semiclassical measure on M. Then supp = S*M
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Control of eigenfunctions

Semiclassical measures and Theorem 1

(—hAg —1uj =0, |lujlizmy=1, hj—0
Vae C(T"M):  (Opp(a)y), uj) 2 — / adp asj — oo
T*M
Theorem 1" alssy 0 = [ Opp (a)ujlli2 > ¢ >0

Theorem 1” [Bourgain—-D '16, D-Jin '17]

Let 1 be a semiclassical measure on M. Then supp = S*M

Brief overview of history

@ Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de
Verdiére '85]: p = u; for density 1 sequence of eigenfunctions
@ Quantum Unique Ergodicity conjecture [Rudnick—Sarnak '94]:
w = g for all eigenfunctions, that is y; is the only semiclassical
measure. Proved in the arithmetic case [Lindenstrauss '06]

v
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Semiclassical measures and Theorem 1
(—hAg = 1wy =0, |lujlizmy=1, hj—0
Vae C(T*M):  (Opp(a)y), uj) 2 — / adp asj — oo
T*M
Theorem 1" alsiy 0 = [ Opp (a)ujlli2 > ¢ >0

Theorem 1” [Bourgain—-D '16, D-Jin '17]

Let 1 be a semiclassical measure on M. Then supp u = S*M

Brief overview of history, continued

e Entropy bound [Anantharaman '08, A-Nonnenmacher '07]:
Hgs(1) > 3, in particular 1 # 6. Here Hks denotes
Kolmogorov-Sinai entropy. Note Hks(r) = 1 and Hks(dy) =0

@ Theorem 1”: between QE and QUE and ‘orthogonal’ to entropy

bound. There exist ¢;-invariant p with supp pu # S*M, Hgs(u) >

1
2
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Proof of Theorem 1’

(—rPDg—Nu=0, [lulz=1 aeC(TM), alsm#0
We say u is controlled on an open set V C T*M if

10p(b)ul[ 2 < C|| Opy(a)ull2 + o(1)p—0 when suppb C V
Goal: show u is controlled on T*M (then can take b =1, Op,(b)u = u)
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Proof of Theorem 1’

(—rPDg—Nu=0, [lulz=1 aeC(TM), alsm#0
We say u is controlled on an open set V C T*M if

10py(b)ulli2 < C||Opp(a)ullz + o(1)p0  when suppb C V
Goal: show u is controlled on T*M (then can take b =1, Op,(b)u = u)

@ u is controlled away from S*M (by ellipticity)
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Proof of Theorem 1’

(—rPDg—Nu=0, [lulz=1 aeC(TM), alsm#0
We say u is controlled on an open set V C T*M if

10py(b)ulli2 < C||Opp(a)ullz + o(1)p0  when suppb C V
Goal: show u is controlled on T*M (then can take b =1, Op,(b)u = u)

@ u is controlled away from S*M (by ellipticity)
@ u is controlled on {a # 0} (also by ellipticity)
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Proof of Theorem 1’

(—hDg—Du=0, [ul2=1, a€CE(T'M), as-u#0
We say u is controlled on an open set V C T*M if

1Oph(b)ull2 < C[|Opp(a)ulli2 + o(1)ns0  when suppb C V
Goal: show u is controlled on T*M (then can take b =1, Op,(b)u = u)

@ u is controlled away from S*M (by ellipticity)
@ u is controlled on {a # 0} (also by ellipticity)
o Use the half-wave propagator U(t) = exp(—it\/—Ag)

U(t)u=e ™"y —  |U(=t) Op4(a)U(t)ul|12 = || Opp(a)ul| 2
Egorov's Theorem: U(—t) Op,(a)U(t) = Opp(a o ¢t) + O(h) where
¢ = exp(tH,) : T*M — T*M is the homogeneous geodesic flow
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Proof of Theorem 1’

(—hDg—Du=0, [ul2=1, a€CE(T'M), as-u#0
We say u is controlled on an open set V C T*M if

1Oph(b)ull2 < C[|Opp(a)ulli2 + o(1)ns0  when suppb C V
Goal: show u is controlled on T*M (then can take b =1, Op,(b)u = u)

@ u is controlled away from S*M (by ellipticity)
@ u is controlled on {a # 0} (also by ellipticity)
o Use the half-wave propagator U(t) = exp(—it\/—Ag)

Ult)u=e""u = |U(~t)Opy(a)U(t)ull 2 = || Oph(a)ull 2

Egorov's Theorem: U(—t) Op,(a)U(t) = Opp(a o ¢t) + O(h) where
¢ = exp(tH,) : T*M — T*M is the homogeneous geodesic flow

@ Thus u is controlled on ¢:({a # 0}) for all ¢
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Proof of Theorem 1’

(—hDg—Du=0, [ul2=1, a€CE(T'M), as-u#0
We say u is controlled on an open set V C T*M if

1Oph(b)ull2 < C[|Opp(a)ulli2 + o(1)ns0  when suppb C V
Goal: show u is controlled on T*M (then can take b =1, Op,(b)u = u)

@ u is controlled away from S*M (by ellipticity)
@ u is controlled on {a # 0} (also by ellipticity)
o Use the half-wave propagator U(t) = exp(—it\/—Ag)

Ult)u=e""u = |U(~t)Opy(a)U(t)ull 2 = || Oph(a)ull 2

Egorov's Theorem: U(—t) Op,(a)U(t) = Opp(a o ¢t) + O(h) where
¢ = exp(tH,) : T*M — T*M is the homogeneous geodesic flow

@ Thus u is controlled on ¢:({a # 0}) for all ¢, |t| < plog(1/h)
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Control of eigenfunctions: the proof

e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)
@ Thus u = Opy(b+)u + (controlled) for some by, supp by C I'1(h),

Fe(h) ={(x.6) € T"M: ¢g:(x,€) ¢ {a#0} Vte[0, T(h)]}
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e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)
@ Thus u = Opy(b+)u + (controlled) for some by, supp by C I'1(h),
Fe(h) ={(x.6) € T"M: ¢g:(x,€) ¢ {a#0} Vte[0, T(h)]}

e Hyperbolicity of ¢ =
I (h) smooth in the unstable direction, porous in the stable direction

I_(h) smooth in the stable direction, porous in the unstable direction
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e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)

@ Thus u = Opy(b+)u + (controlled) for some by, supp by C I'1(h),
Fe(h) = {(x,6) € T"M: pxe(x,6) ¢ {a#0} Vte[0, T(h)]}

e Hyperbolicity of ¢ =

[+ (h) smooth in the unstable direction, porous in the stable direction

_(h) smooth in the stable direction, porous in the unstable direction

F_(h), T=0 ro(h), T=0
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e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)

@ Thus u = Opy(b+)u + (controlled) for some by, supp by C I'1(h),
Fe(h) = {(x,6) € T"M: pxe(x,6) ¢ {a#0} Vte[0, T(h)]}

e Hyperbolicity of ¢ =

[+ (h) smooth in the unstable direction, porous in the stable direction

_(h) smooth in the stable direction, porous in the unstable direction

r_(h), T=1 ro(h), T=1
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Control of eigenfunctions: the proof

e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)
@ Thus u = Opy(b+)u + (controlled) for some by, supp by C I'1(h),

Fi(h) ={(x.€) € T"M: wze(x,€) ¢ {a#0} Vte[0, T(h)]}
e Hyperbolicity of ¢ =

[+ (h) smooth in the unstable direction, porous in the stable direction

_(h) smooth in the stable direction, porous in the unstable direction
“

ro(h), T=2

/

r_(h), T =2
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Control of eigenfunctions: the proof

e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)
@ Thus u = Opy(b+)u + (controlled) for some by, supp by C I'1(h),

Fi(h) ={(x.€) € T"M: wze(x,€) ¢ {a#0} Vte[0, T(h)]}
e Hyperbolicity of ¢ =

I+ (h) smooth in the unstable direction, porous in the stable direction

I_(h) smooth in the stable direction, porous in the unstable direction
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e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)
@ Thus u = Opy(b+)u + (controlled) for some by, supp by C Iy (

>

),
Fe(h) = {(x,6) € T"M: pxe(x,6) ¢ {a#0} Vte[0, T(h)]}

e Hyperbolicity of ¢ =

I+ (h) smooth in the unstable direction, porous in the stable direction

I_(h) smooth in the stable direction, porous in the unstable direction

NN

), T=4

7/
Vi

V)
o

~(h), T = {a=0}

-
—
=y

+

October 9, 2017 9 /17



e u is controlled on ¢.({a # 0}) for |t| < T(h) := plog(1/h)
@ Thus u = Opy(b+)u + (controlled) for some by, supp by C Iy (

>

),
Fe(h) ={(x.6) € T"M: ¢g:(x,€) ¢ {a#0} Vte[0, T(h)]}

e Hyperbolicity of ¢ =

I+ (h) smooth in the unstable direction, porous in the stable direction
M

)Y N

smooth in the stable direction, porous in the unstable direction

Wi

{a=0} F(h), T=5



u = Opy(b-)Opp(bs)u + (controlled)
supp by C '£(h)

I+(h)  porous in the stable direction
I_(h) ~ porous in the unstable direction

=

r(h)
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Control of eigenfunctions: the proof

u = Opy(b-)Opp(bs)u + (controlled)
supp b+ C I'+(h)
'+ (h) v-porous in the stable direction
_(h) v-porous in the unstable direction
v=v(M,{a#0})>0

Definition

Fix v > 0. A set X C R is v-porous up to scale h
if for each interval | C R of length h < |I| <1,
there is an interval J C I, |[J|=v|l|, INX =0

Semyon Dyatlov FUP and applications
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Control of eigenfunctions: the proof

u = Opy(b-)Opp(bs)u + (controlled)
supp b+ C I'+(h)
'+ (h) v-porous in the stable direction
_(h) v-porous in the unstable direction
v=v(M,{a#0})>0

Definition

Fix v > 0. A set X C R is v-porous up to scale h
if for each interval | C R of length h < |I| <1,
there is an interval J C I, |[J|=v|l|, INX =0

Fractal uncertainty principle + porosity of supp b+ gives
1 Opy(b-) Oph(by )l i2(m)—12(my = O(h”)  for some B = B(v) >0

Thus u = (small) 4 (controlled), finishing the proof of Theorem 1’
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Fractal uncertainty principle

Fractal uncertainty principle

Definition
Fix v > 0. A set X C R is v-porous up to scale h if for each interval | C R
of length h < |I| < 1, there is an interval J C I, [J|=v|l|, JNX =10

Simplified setting on R using unitary semiclassical Fourier transform

Fof(€) = @nn) V2 [ e ux) b, ue ()
R

Localization in stable direction — Localization in position
Oph(b+) — 1x, XCR
Localization in unstable direction —  Localization in frequency
Oph(b_) — ./—'7; ]Iy]:h, Y CR
10pA(b-)OpH(b )l 2(my 52y = [Ty Frlx |2y 12wy
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Fractal uncertainty principle

Fractal uncertainty principle

Definition

Fix v > 0. A set X C R is v-porous up to scale h if for each interval | C R
of length h < |I| <1, there is an interval J C I, |J| =v|l], JINX =10

Fuf(€) = (2mh)~1/2 / e X/hy(x) dx, ue L3(R)
R

Theorem 2 [Bourgain-D '16]

Assume that X, Y C [0, 1] are v-porous up to scale h. Then
11y Fi Ax || 2y 2r) = O(h°) as h— 0

where = (v) > 0

The proof uses tools from harmonic analysis, in particular the
Beurling—Malliavin theorem, and iteration on scale
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Spectral gaps

Another application: spectral gaps

(M, g) = M\H? convex co-compact hyperbolic surface

An example: three-funnel surface with neck lengths ¢1, (5, (3
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Spectral gaps

Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
A, Laplace-Beltrami operator on L2(M)
The L2 spectrum of —A, consists of

e eigenvalues in (0, 1)

@ continuous spectrum [%,oo)

[ 3
0 1/4
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Spectral gaps

Resonances of hyperbolic surfaces

(M, g) convex co-compact hyperbolic surface
A, Laplace-Beltrami operator on L2(M)
The L2 spectrum of —A, consists of

e eigenvalues in (0, 1)

@ continuous spectrum [%,oo)

[ 3
0 1/4

Resonances are poles of the meromorphic continuation

1IN [L%2— H? ImA >0 ---."l"
RO) = (—0g-22=7) 4, , .
4 2,00 = H2., ImA<O .
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Essential spectral gaps
Definition

M has an essential spectral gap of size 8 > 0 if the half-plane
{ImX > —f3} only has finitely many resonances
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Essential spectral gaps

Definition

M has an essential spectral gap of size 8 > 0 if the half-plane
{ImX > —f3} only has finitely many resonances

Applications of spectral gaps

o Resonance expansions of linear waves with O(e~#*) remainder
@ Strichartz estimates [Burq—Guillarmou—Hassell '10]

e Diophantine problems [Bourgain-Gamburd—Sarnak '11,
Magee-Oh-Winter '14]
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Essential spectral gaps

Definition

M has an essential spectral gap of size 8 > 0 if the half-plane
{ImX > —f3} only has finitely many resonances

Applications of spectral gaps

@ Resonance expansions of linear waves with O(e~?*) remainder
@ Strichartz estimates [Burq—Guillarmou—Hassell '10]

e Diophantine problems [Bourgain-Gamburd—Sarnak '11,
Magee-Oh-Winter '14]

Previous results (6 € (0, 1) dimension of the limit set)

@ Patterson '76, Sullivan '79: 8 = % — 0. Related to pressure gap
o Naud '05: B>%—6
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Application of FUP to spectral gaps

Theorem 3 [D-Zahl '16, Bourgain—-D '16]

Every convex co-compact surface M has an essential spectral gap of some
size = pB(M) >0
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Spectral gaps

Application of FUP to spectral gaps

Theorem 3 [D-Zahl '16, Bourgain—-D '16]

Every convex co-compact surface M has an essential spectral gap of some
size = pB(M) >0

B

ol

I i
Numerics for 3- and 4-funneled surfaces by Borthwick—Weich '14
+ standard gap 8 = max(0, % —9)
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Application of FUP to spectral gaps

Theorem 3 [D-Zahl '16, Bourgain-D '16]

Every convex co-compact surface M has an essential spectral gap of some
size = pB(M) >0

The proof uses fractal uncertainty principle

| Op4(b=) Opu(b: )l i2(my—12(my = O(h®) as h — 0,
supp b+ C £(h)

but this time [ (h) are the sets of forward/backward trapped geodesics:
Fi(h) =BN gOiT(B), T = |og(1/h)

where B C T*M is large but bounded set and ¢; is the geodesic flow
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Open problems

e Can Theorem 1 (control of eigenfunctions) and Theorem 3
(spectral gap) be extended to surfaces of variable negative curvature
and more general systems with hyperbolic classical dynamics?

@ Can Theorems 1 and 3 be extended to higher dimensional manifolds?

o Is the exponent in FUP bigger for generic systems?
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Thank you for your attention!
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