Fractal uncertainty principle and applications

Semyon Dyatlov (UC Berkeley/MIT/Clay Mathematics Institute)

October 9, 2017

1 / 17

- This talk presents several recent results in quantum chaos
- Central ingredient: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

- Using tools from
 - Microlocal analysis (classical/quantum correspondence)
 - Hyperbolic dynamics (classical chaos)
 - Fractal geometry
 - Harmonic analysis
- Despite recent progress, many open problems remain

- This talk presents several recent results in quantum chaos
- Central ingredient: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

- Using tools from
 - Microlocal analysis (classical/quantum correspondence)
 - Hyperbolic dynamics (classical chaos)
 - Fractal geometry
 - Harmonic analysis
- Despite recent progress, many open problems remain

- This talk presents several recent results in quantum chaos
- Central ingredient: fractal uncertainty principle (FUP)

No function can be localized in both position and frequency near a fractal set

- Using tools from
 - Microlocal analysis (classical/quantum correspondence)
 - Hyperbolic dynamics (classical chaos)
 - Fractal geometry
 - Harmonic analysis
- Despite recent progress, many open problems remain

- \bullet (M,g) compact hyperbolic surface
- Geodesic flow $\varphi_t: T^*M \to T^*M$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [Bourgain-D '16, D-Jin '17]

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$||u||_{L^2(\Omega)} \geq c > 0$$

where c depends on M, Ω but not on λ

For bounded λ this follows from unique continuation principle. The new result is in the high frequency limit $\lambda \to \infty$

- \bullet (M,g) compact hyperbolic surface
- Geodesic flow $\varphi_t: T^*M \to T^*M$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [Bourgain-D '16, D-Jin '17]

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$||u||_{L^2(\Omega)} \geq c > 0$$

where c depends on M, Ω but not on λ

For bounded λ this follows from unique continuation principle. The new result is in the high frequency limit $\lambda \to \infty$

- \bullet (M,g) compact hyperbolic surface
- Geodesic flow $\varphi_t: T^*M \to T^*M$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [Bourgain-D '16, D-Jin '17]

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$||u||_{L^2(\Omega)} \geq c > 0$$

where c depends on M, Ω but not on λ

For bounded λ this follows from unique continuation principle The new result is in the high frequency limit $\lambda \to \infty$

- \bullet (M,g) compact hyperbolic surface
- Geodesic flow $\varphi_t : T^*M \to T^*M$ is a standard model of classical chaos
- Eigenfunctions of the Laplacian $-\Delta_g$ studied by quantum chaos

$$(-\Delta_g - \lambda^2)u = 0, \quad ||u||_{L^2} = 1$$

Theorem 1 [Bourgain-D '16, D-Jin '17]

Let $\Omega \subset M$ be an arbitrary nonempty open set. Then

$$||u||_{L^2(\Omega)} \geq c > 0$$

where c depends on M, Ω but not on λ

The chaotic nature of geodesic flow is important For example, Theorem 1 is false if M is the round sphere

Microlocal analysis

Localization in position and frequency using semiclassical quantization

$$a(x,\xi) \in C^{\infty}(T^*M) \mapsto \operatorname{Op}_h(a) = a\left(x,\frac{h}{i}\partial_x\right) : C^{\infty}(M) \to C^{\infty}(M)$$

Examples (on \mathbb{R}^n): $\operatorname{Op}_h(x_j)u = x_ju$, $\operatorname{Op}_h(\xi_j)u = \frac{h}{i}\partial_{x_i}u$

Properties of quantization in the <code>semiclassical</code> limit h o 0

- $\operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)$
- $\bullet \mathsf{Op}_h(a)^* = \mathsf{Op}_h(\overline{a}) + \mathcal{O}(h)$
- $[Op_h(a), Op_h(b)] = -ih Op_h(\{a, b\}) + O(h^2)$
- $\sup |a| < \infty$ \implies $\| \operatorname{Op}_h(a) \|_{L^2 \to L^2} = \mathcal{O}(1)$

Rescale
$$(-\Delta_g - \lambda^2)u = 0$$
, $\lambda \to \infty$ to obtain $(-h^2\Delta_g - 1)u = 0$, $h = \lambda^{-1} \to 0$ where $-h^2\Delta_g - 1 = \operatorname{Op}_h(p^2 - 1)$, $p(x, \xi) = |\xi|_{\xi}$

Microlocal analysis

Localization in position and frequency using semiclassical quantization

$$a(x,\xi) \in C^{\infty}(T^*M) \mapsto \operatorname{Op}_h(a) = a\left(x, \frac{h}{i}\partial_x\right) : C^{\infty}(M) \to C^{\infty}(M)$$

Examples (on \mathbb{R}^n): $\operatorname{Op}_h(x_j)u = x_ju$, $\operatorname{Op}_h(\xi_j)u = \frac{h}{i}\partial_{x_i}u$

Properties of quantization in the semiclassical limit $h \to 0$

- $\bullet \operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)$
- $\operatorname{Op}_h(a)^* = \operatorname{Op}_h(\overline{a}) + \mathcal{O}(h)$
- $[Op_h(a), Op_h(b)] = -ih Op_h(\{a, b\}) + O(h^2)$
- $\sup |a| < \infty$ \Longrightarrow $\| \operatorname{Op}_h(a) \|_{L^2 \to L^2} = \mathcal{O}(1)$

Rescale
$$(-\Delta_g - \lambda^2)u = 0$$
, $\lambda \to \infty$ to obtain $(-h^2\Delta_g - 1)u = 0$, $h = \lambda^{-1} \to 0$ where $-h^2\Delta_g - 1 = \mathrm{Op}_h(p^2 - 1)$, $p(x, \xi) = |\xi|_\xi$

Microlocal analysis

Localization in position and frequency using semiclassical quantization

$$a(x,\xi) \in C^{\infty}(T^*M) \mapsto \operatorname{Op}_h(a) = a\left(x, \frac{h}{i}\partial_x\right) : C^{\infty}(M) \to C^{\infty}(M)$$

Examples (on \mathbb{R}^n): $\operatorname{Op}_h(x_j)u = x_ju$, $\operatorname{Op}_h(\xi_j)u = \frac{h}{i}\partial_{x_i}u$

Properties of quantization in the semiclassical limit $h \to 0$

- $\operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)$
- $\operatorname{Op}_h(a)^* = \operatorname{Op}_h(\overline{a}) + \mathcal{O}(h)$
- $[Op_h(a), Op_h(b)] = -ih Op_h(\{a, b\}) + O(h^2)$
- $\sup |a| < \infty \implies \|\mathsf{Op}_h(a)\|_{L^2 \to L^2} = \mathcal{O}(1)$

Rescale
$$(-\Delta_g - \lambda^2)u = 0$$
, $\lambda \to \infty$ to obtain $(-h^2\Delta_g - 1)u = 0$, $h = \lambda^{-1} \to 0$ where $-h^2\Delta_g - 1 = \operatorname{Op}_h(\rho^2 - 1)$, $p(x, \xi) = |\xi|_g$

Microlocal version of Theorem 1

General elliptic estimate

If $a,b \in C^{\infty}(T^*M)$ and supp $b \subset \{a \neq 0\}$ then for all $u \in L^2(M)$

$$\|\operatorname{Op}_h(b)u\| \le C\|\operatorname{Op}_h(a)u\| + \mathcal{O}(h^{\infty})\|u\|$$

Localization of eigenfunctions to
$$S^*M:=\{(x,\xi)\in T^*M\colon |\xi|_g=1\}$$

Assume
$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2(M)} = 1$. (1)

Then supp $b\cap S^*M=\emptyset \quad \Longrightarrow \quad \|\operatorname{Op}_h(b)u\|_{L^2}=\mathcal{O}(h^\infty)$

Theorem 1' [Bourgain-D '16, D-Jin '17]

Let $a \in C_c^{\infty}(T^*M)$ satisfy $a|_{S^*M} \not\equiv 0$, u satisfy (1). Then for $h \ll 1$

$$\|\operatorname{Op}_h(a)u\|_{L^2(M)} \ge c > 0$$

where c depends on M, a but not on b

Microlocal version of Theorem 1

General elliptic estimate

If $a, b \in C^{\infty}(T^*M)$ and supp $b \subset \{a \neq 0\}$ then for all $u \in L^2(M)$

$$\|\operatorname{Op}_h(b)u\| \le C\|\operatorname{Op}_h(a)u\| + \mathcal{O}(h^{\infty})\|u\|$$

Localization of eigenfunctions to $S^*M := \{(x, \xi) \in T^*M \colon |\xi|_g = 1\}$

Assume
$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2(M)} = 1$. (1)

Then supp $b \cap S^*M = \emptyset \implies \|\operatorname{Op}_h(b)u\|_{L^2} = \mathcal{O}(h^{\infty})$

Theorem 1' [Bourgain–D '16, D–Jin '17ceil

Let $a \in C_c^{\infty}(T^*M)$ satisfy $a|_{S^*M} \not\equiv 0$, u satisfy (1). Then for $h \ll 1$

$$\|\operatorname{Op}_h(a)u\|_{L^2(M)}\geq c>0$$

where c depends on M, a but not on h

Microlocal version of Theorem 1

General elliptic estimate

If $a, b \in C^{\infty}(T^*M)$ and supp $b \subset \{a \neq 0\}$ then for all $u \in L^2(M)$

$$\|\operatorname{Op}_h(b)u\| \le C\|\operatorname{Op}_h(a)u\| + \mathcal{O}(h^{\infty})\|u\|$$

Localization of eigenfunctions to $S^*M := \{(x, \xi) \in T^*M \colon |\xi|_g = 1\}$

Assume
$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2(M)} = 1$. (1)

Then supp $b \cap S^*M = \emptyset \implies \|\operatorname{Op}_h(b)u\|_{L^2} = \mathcal{O}(h^{\infty})$

Theorem 1' [Bourgain-D '16, D-Jin '17]

Let $a \in C_c^{\infty}(T^*M)$ satisfy $a|_{S^*M} \not\equiv 0$, u satisfy (1). Then for $h \ll 1$

$$\|\operatorname{Op}_h(a)u\|_{L^2(M)} \ge c > 0$$

where c depends on M, a but not on h

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

$$(-h_j^2\Delta_g-1)u_j=0,\quad \|u_j\|_{L^2(M)}=1,\quad h_j\to 0$$

We say u_j converges weakly to a measure μ on T^*M if

$$\forall a \in C_{\rm c}^{\infty}(T^*M): \langle {\sf Op}_{h_j}(a)u_j, u_j \rangle_{L^2} o \int_{T^*M} a \, d\mu \quad \text{as } j \to \infty$$

Call such limits μ semiclassical measures

Basic properties

- μ is a probability measure, supp $\mu \subset S^*M$
- μ is invariant under the geodesic flow $\varphi_t: S^*M \to S^*M$
- Natural candidate: Liouville measure $\mu_L \sim d \text{ vol}$ (equidistribution)
- ullet Natural enemy: delta measure δ_{γ} on a closed geodesic (scarring)

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

$$(-h_j^2\Delta_g-1)u_j=0, \quad \|u_j\|_{L^2(M)}=1, \quad h_j\to 0$$

We say u_j converges weakly to a measure μ on T^*M if

$$\forall a \in \mathit{C}^{\infty}_{\mathrm{c}}(\mathit{T}^{*}\mathit{M}): \quad \langle \mathsf{Op}_{\mathit{h}_{j}}(a)\mathit{u}_{j}, \mathit{u}_{j} \rangle_{\mathit{L}^{2}}
ightarrow \int_{\mathit{T}^{*}\mathit{M}} \mathit{a}\, \mathit{d}\mu \quad \text{as } j
ightarrow \infty$$

Call such limits μ semiclassical measures

Basic properties

- μ is a probability measure, supp $\mu \subset S^*M$
- μ is invariant under the geodesic flow $\varphi_t: S^*M \to S^*M$
- Natural candidate: Liouville measure $\mu_L \sim d \text{ vol}$ (equidistribution)
- Natural enemy: delta measure δ_{γ} on a closed geodesic (scarring)

Semiclassical measures and Theorem 1

$$\begin{split} &(-h_j^2\Delta_g-1)u_j=0,\quad \|u_j\|_{L^2(M)}=1,\quad h_j\to 0\\ \forall a\in C_c^\infty(T^*M):\quad &\langle \operatorname{Op}_{h_j}(a)u_j,u_j\rangle_{L^2}\to \int_{T^*M}a\,d\mu\quad\text{as }j\to\infty \end{split}$$
 Theorem 1':
$$a|_{S^*M}\not\equiv 0\quad\Longrightarrow\quad \|\operatorname{Op}_{h_j}(a)u_j\|_{L^2}\geq c>0$$

Theorem 1" [Bourgain-D '16, D-Jin '17]

Let μ be a semiclassical measure on M. Then $\operatorname{supp} \mu = S^*M$

Brief overview of history

- Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de Verdière '85]: $\mu = \mu_L$ for density 1 sequence of eigenfunctions
- Quantum Unique Ergodicity conjecture [Rudnick–Sarnak '94]: $\mu = \mu_L$ for all eigenfunctions, that is μ_L is the only semiclassical measure. Proved in the arithmetic case [Lindenstrauss '06]

Semiclassical measures and Theorem 1

$$(-h_j^2\Delta_g-1)u_j=0,\quad \|u_j\|_{L^2(M)}=1,\quad h_j\to 0$$

$$\forall a\in C_c^\infty(T^*M):\quad \langle \operatorname{Op}_{h_j}(a)u_j,u_j\rangle_{L^2}\to \int_{T^*M}a\,d\mu\quad\text{as }j\to\infty$$
 Theorem 1':
$$a|_{S^*M}\not\equiv 0\quad\Longrightarrow\quad \|\operatorname{Op}_{h_j}(a)u_j\|_{L^2}\geq c>0$$

Theorem 1" [Bourgain-D '16, D-Jin '17]

Let μ be a semiclassical measure on M. Then $\operatorname{supp} \mu = S^*M$

Brief overview of history

- Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de Verdière '85]: $\mu = \mu_L$ for density 1 sequence of eigenfunctions
- Quantum Unique Ergodicity conjecture [Rudnick–Sarnak '94]: $\mu = \mu_L$ for all eigenfunctions, that is μ_L is the only semiclassical measure. Proved in the arithmetic case [Lindenstrauss '06]

Semiclassical measures and Theorem 1

$$\begin{split} &(-h_j^2\Delta_g-1)u_j=0,\quad \|u_j\|_{L^2(M)}=1,\quad h_j\to 0\\ \forall a\in \mathit{C}_{\mathrm{c}}^\infty(\mathit{T}^*M):\quad \langle \mathsf{Op}_{h_j}(a)u_j,u_j\rangle_{\mathit{L}^2}\to \int_{\mathit{T}^*M}a\,d\mu\quad\text{as }j\to\infty \end{split}$$
 Theorem 1':
$$a|_{\mathit{S}^*M}\not\equiv 0\quad\Longrightarrow\quad \|\mathsf{Op}_{h_j}(a)u_j\|_{\mathit{L}^2}\geq c>0$$

Theorem 1" [Bourgain-D '16, D-Jin '17]

Let μ be a semiclassical measure on M. Then supp $\mu = S^*M$

Brief overview of history, continued

- Entropy bound [Anantharaman '08, A-Nonnenmacher '07]: $H_{KS}(\mu) \geq \frac{1}{2}$, in particular $\mu \neq \delta_{\gamma}$. Here H_{KS} denotes Kolmogorov–Sinai entropy. Note $H_{KS}(\mu_L) = 1$ and $H_{KS}(\delta_{\gamma}) = 0$
- Theorem 1": between QE and QUE and 'orthogonal' to entropy bound. There exist φ_t -invariant μ with supp $\mu \neq S^*M$, $H_{KS}(\mu) > \frac{1}{2}$

7 / 17

$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2} = 1$, $a \in C_c^{\infty}(T^*M)$, $a|_{S^*M} \not\equiv 0$

We say u is controlled on an open set $V \subset T^*M$ if

$$\|\operatorname{Op}_h(b)u\|_{L^2} \leq C \|\operatorname{Op}_h(a)u\|_{L^2} + o(1)_{h o 0} \quad \text{when supp } b\subset V$$

Goal: show u is controlled on T^*M (then can take $b \equiv 1$, $Op_h(b)u = u$)

- u is controlled away from S^*M (by ellipticity)
- u is controlled on $\{a \neq 0\}$ (also by ellipticity)
- Use the half-wave propagator $U(t) = \exp(-it\sqrt{-\Delta_g})$

$$U(t)u = e^{-it/h}u \implies ||U(-t)\operatorname{Op}_h(a)U(t)u||_{L^2} = ||\operatorname{Op}_h(a)u||_{L^2}$$

Egorov's Theorem: $U(-t) \operatorname{Op}_h(a) U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$ where $\varphi_t = \exp(tH_p) : T^*M \to T^*M$ is the homogeneous geodesic flow

$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2} = 1$, $a \in C_c^{\infty}(T^*M)$, $a|_{S^*M} \not\equiv 0$

We say u is controlled on an open set $V \subset T^*M$ if

$$\|\operatorname{Op}_h(b)u\|_{L^2} \leq C \|\operatorname{Op}_h(a)u\|_{L^2} + o(1)_{h o 0} \quad \text{when supp } b \subset V$$

Goal: show u is controlled on T^*M (then can take $b\equiv 1$, $\operatorname{Op}_h(b)u=u$)

- u is controlled away from S^*M (by ellipticity)
- u is controlled on $\{a \neq 0\}$ (also by ellipticity)
- ullet Use the half-wave propagator $U(t)=\exp(-it\sqrt{-\Delta_g})$

$$U(t)u = e^{-it/h}u \implies ||U(-t)\operatorname{Op}_h(a)U(t)u||_{L^2} = ||\operatorname{Op}_h(a)u||_{L^2}$$

Egorov's Theorem: $U(-t) \operatorname{Op}_h(a) U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$ where $\varphi_t = \exp(tH_p) : T^*M \to T^*M$ is the homogeneous geodesic flow

$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2} = 1$, $a \in C_c^{\infty}(T^*M)$, $a|_{S^*M} \not\equiv 0$

We say u is controlled on an open set $V \subset T^*M$ if

$$\|\operatorname{Op}_h(b)u\|_{L^2} \leq C \|\operatorname{Op}_h(a)u\|_{L^2} + o(1)_{h o 0} \quad \text{when supp } b\subset V$$

Goal: show u is controlled on T^*M (then can take $b\equiv 1$, $\operatorname{Op}_h(b)u=u$)

- u is controlled away from S^*M (by ellipticity)
- u is controlled on $\{a \neq 0\}$ (also by ellipticity)
- Use the half-wave propagator $U(t) = \exp(-it\sqrt{-\Delta_g})$

$$U(t)u = e^{-it/h}u \implies ||U(-t) \operatorname{Op}_h(a) U(t)u||_{L^2} = ||\operatorname{Op}_h(a) u||_{L^2}$$

Egorov's Theorem: $U(-t) \operatorname{Op}_h(a) U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$ where $\varphi_t = \exp(tH_p) : T^*M \to T^*M$ is the homogeneous geodesic flow

$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2} = 1$, $a \in C_c^{\infty}(T^*M)$, $a|_{S^*M} \not\equiv 0$

We say u is controlled on an open set $V \subset T^*M$ if

$$\|\operatorname{Op}_h(b)u\|_{L^2} \leq C \|\operatorname{Op}_h(a)u\|_{L^2} + o(1)_{h o 0} \quad \text{when supp } b\subset V$$

Goal: show u is controlled on T^*M (then can take $b \equiv 1$, $Op_h(b)u = u$)

- u is controlled away from S^*M (by ellipticity)
- u is controlled on $\{a \neq 0\}$ (also by ellipticity)
- Use the half-wave propagator $U(t) = \exp(-it\sqrt{-\Delta_g})$

$$U(t)u = e^{-it/h}u \implies ||U(-t)\operatorname{Op}_h(a)U(t)u||_{L^2} = ||\operatorname{Op}_h(a)u||_{L^2}$$

Egorov's Theorem: $U(-t)\operatorname{Op}_h(a)U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$ where $\varphi_t = \exp(tH_p): T^*M \to T^*M$ is the homogeneous geodesic flow

$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2} = 1$, $a \in C_c^{\infty}(T^*M)$, $a|_{S^*M} \not\equiv 0$

We say u is controlled on an open set $V \subset T^*M$ if

$$\|\operatorname{Op}_h(b)u\|_{L^2} \leq C \|\operatorname{Op}_h(a)u\|_{L^2} + o(1)_{h o 0} \quad \text{when supp } b\subset V$$

Goal: show u is controlled on T^*M (then can take $b \equiv 1$, $Op_h(b)u = u$)

- u is controlled away from S^*M (by ellipticity)
- u is controlled on $\{a \neq 0\}$ (also by ellipticity)
- ullet Use the half-wave propagator $U(t)=\exp(-it\sqrt{-\Delta_g})$

$$U(t)u = e^{-it/h}u \implies ||U(-t)\operatorname{Op}_h(a)U(t)u||_{L^2} = ||\operatorname{Op}_h(a)u||_{L^2}$$

Egorov's Theorem: $U(-t)\operatorname{Op}_h(a)U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$ where $\varphi_t = \exp(tH_p): T^*M \to T^*M$ is the homogeneous geodesic flow

$$(-h^2\Delta_g - 1)u = 0$$
, $||u||_{L^2} = 1$, $a \in C_c^{\infty}(T^*M)$, $a|_{S^*M} \not\equiv 0$

We say u is controlled on an open set $V \subset T^*M$ if

$$\|\operatorname{Op}_h(b)u\|_{L^2} \leq C \|\operatorname{Op}_h(a)u\|_{L^2} + o(1)_{h o 0} \quad \text{when supp } b \subset V$$

Goal: show u is controlled on T^*M (then can take $b \equiv 1$, $Op_h(b)u = u$)

- u is controlled away from S^*M (by ellipticity)
- u is controlled on $\{a \neq 0\}$ (also by ellipticity)
- ullet Use the half-wave propagator $U(t)=\exp(-it\sqrt{-\Delta_g})$

$$U(t)u = e^{-it/h}u \implies ||U(-t)\operatorname{Op}_h(a)U(t)u||_{L^2} = ||\operatorname{Op}_h(a)u||_{L^2}$$

Egorov's Theorem: $U(-t)\operatorname{Op}_h(a)U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$ where $\varphi_t = \exp(tH_p): T^*M \to T^*M$ is the homogeneous geodesic flow

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_{\pm})u + (\text{controlled})$ for some b_{\pm} , supp $b_{\pm} \subset \Gamma_{\pm}(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

 $\Gamma_{-}(h), \ T=0$ $\{a=0\}$ $\Gamma_{+}(h), \ T=0$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_{\pm})u + (\text{controlled})$ for some b_{\pm} , supp $b_{\pm} \subset \Gamma_{\pm}(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$$\Gamma_{-}(h), T = 0$$
 $\{a = 0\}$ $\Gamma_{+}(h), T = 0$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_{\pm})u + (\text{controlled})$ for some b_{\pm} , supp $b_{\pm} \subset \Gamma_{\pm}(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$$\Gamma_{-}(h), T = 0$$

$${a = 0}$$

 $\Gamma_+(h), T=0$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_{\pm})u + (\text{controlled})$ for some b_{\pm} , supp $b_{\pm} \subset \Gamma_{\pm}(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$$\Gamma_{-}(h), T=1$$

$${a = 0}$$

 $\Gamma_+(h), T=1$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_{\pm})u + \text{(controlled)}$ for some b_{\pm} , supp $b_{\pm} \subset \Gamma_{\pm}(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$${a = 0}$$

 $\Gamma_+(h), T=2$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_+)u + \text{(controlled)}$ for some b_+ , supp $b_+ \subset \Gamma_+(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$${a = 0}$$

 $\Gamma_{+}(h), T=3$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_+)u + \text{(controlled)}$ for some b_+ , supp $b_+ \subset \Gamma_+(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$${a = 0}$$

 $\Gamma_{+}(h), T=4$

- u is controlled on $\varphi_t(\{a \neq 0\})$ for $|t| \leq T(h) := \rho \log(1/h)$
- Thus $u = \operatorname{Op}_h(b_+)u + \text{(controlled)}$ for some b_+ , supp $b_+ \subset \Gamma_+(h)$,

$$\Gamma_{\pm}(h) = \{(x,\xi) \in T^*M \colon \varphi_{\mp t}(x,\xi) \notin \{a \neq 0\} \quad \forall t \in [0,T(h)]\}$$

$${a = 0}$$

 $\Gamma_{+}(h), T=5$

$$u = \operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)u + (\text{controlled})$$

 $\operatorname{supp} b_{\pm} \subset \Gamma_{\pm}(h)$

 $\Gamma_{+}(h)$ ν -porous in the stable direction $\Gamma_{-}(h)$ ν -porous in the unstable direction

$\Gamma_{-}(h)$

$$\|\operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)\|_{L^2(M)\to L^2(M)}=\mathcal{O}(h^\beta) \quad \text{for some } \beta=\beta(\nu)>0$$

$$u = \operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)u + (\operatorname{controlled})$$

 $\operatorname{supp} b_{\pm} \subset \Gamma_{\pm}(h)$

 $\Gamma_{+}(h)$ ν -porous in the stable direction $\Gamma_{-}(h)$ ν -porous in the unstable direction $\nu = \nu(M, \{a \neq 0\}) > 0$

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Fractal uncertainty principle + porosity of supp b_{\pm} gives

$$\|\operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)\|_{L^2(M)\to L^2(M)}=\mathcal{O}(h^\beta) \quad \text{for some } \beta=\beta(\nu)>0$$

Thus u = (small) + (controlled), finishing the proof of Theorem 1'

$$u = \operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)u + (\operatorname{controlled})$$

 $\operatorname{supp} b_\pm \subset \Gamma_\pm(h)$

 $\Gamma_{+}(h)$ ν -porous in the stable direction $\Gamma_{-}(h)$ ν -porous in the unstable direction $\nu = \nu(M, \{a \neq 0\}) > 0$

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Fractal uncertainty principle + porosity of supp b_{\pm} gives

$$\|\operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)\|_{L^2(M)\to L^2(M)}=\mathcal{O}(h^\beta)$$
 for some $\beta=\beta(\nu)>0$

Thus u = (small) + (controlled), finishing the proof of Theorem 1'

Fractal uncertainty principle

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

Simplified setting on $\mathbb R$ using unitary semiclassical Fourier transform

$$\mathcal{F}_h f(\xi) = (2\pi h)^{-1/2} \int_{\mathbb{R}} e^{-ix\xi/h} u(x) dx, \quad u \in L^2(\mathbb{R})$$

Localization in stable direction → Localization in position

$$\operatorname{Op}_h(b_+) \rightarrow \mathbf{1}_X, X \subset \mathbb{R}$$

Localization in unstable direction $\ \ o$ Localization in frequency

$$\operatorname{Op}_h(b_-) \rightarrow \mathcal{F}_h^* \mathbb{1}_Y \mathcal{F}_h, Y \subset \mathbb{R}$$

$$\|\mathsf{Op}_{h}(b_{-})\mathsf{Op}_{h}(b_{+})\|_{L^{2}(M)\to L^{2}(M)} \to \|\mathbb{1}_{Y}\mathcal{F}_{h}\mathbb{1}_{X}\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}$$

11 / 17

Fractal uncertainty principle

Definition

Fix $\nu > 0$. A set $X \subset \mathbb{R}$ is ν -porous up to scale h if for each interval $I \subset R$ of length $h \leq |I| \leq 1$, there is an interval $J \subset I$, $|J| = \nu |I|$, $J \cap X = \emptyset$

$$\mathcal{F}_h f(\xi) = (2\pi h)^{-1/2} \int_{\mathbb{R}} e^{-ix\xi/h} u(x) dx, \quad u \in L^2(\mathbb{R})$$

Theorem 2 [Bourgain-D '16]

Assume that $X,Y\subset [0,1]$ are u-porous up to scale h. Then

$$\|\mathbf{1}_{Y} \mathcal{F}_{h} \mathbf{1}_{X}\|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} = \mathcal{O}(h^{\beta})$$
 as $h \to 0$

where
$$\beta = \beta(\nu) > 0$$

The proof uses tools from harmonic analysis, in particular the Beurling-Malliavin theorem, and iteration on scale

Another application: spectral gaps

 $(M,g) = \Gamma \backslash \mathbb{H}^2$ convex co-compact hyperbolic surface

An example: three-funnel surface with neck lengths ℓ_1,ℓ_2,ℓ_3

Resonances of hyperbolic surfaces

(M,g) convex co-compact hyperbolic surface

 Δ_g Laplace–Beltrami operator on $L^2(M)$

The L^2 spectrum of $-\Delta_g$ consists of

- eigenvalues in $(0, \frac{1}{4})$
- continuous spectrum $\left[\frac{1}{4},\infty\right)$

0 1/4

Resonances of hyperbolic surfaces

(M,g) convex co-compact hyperbolic surface

 Δ_g Laplace–Beltrami operator on $L^2(M)$

The L^2 spectrum of $-\Delta_g$ consists of

- eigenvalues in $(0, \frac{1}{4})$
- continuous spectrum $\left[\frac{1}{4},\infty\right)$

Resonances are poles of the meromorphic continuation

$$R(\lambda) = \left(-\Delta_g - \lambda^2 - \frac{1}{4}\right)^{-1} : \begin{cases} L^2 \to H^2, & \text{Im } \lambda > 0 \\ L_{\text{comp}}^2 \to H_{\text{loc}}^2, & \text{Im } \lambda \le 0 \end{cases}$$

Essential spectral gaps

Definition

M has an essential spectral gap of size $\beta \geq 0$ if the half-plane $\{\operatorname{Im} \lambda \geq -\beta\}$ only has finitely many resonances

Applications of spectral gaps

- Resonance expansions of linear waves with $\mathcal{O}(e^{-\beta t})$ remainder
- Strichartz estimates [Burq-Guillarmou-Hassell '10]
- Diophantine problems [Bourgain–Gamburd–Sarnak '11, Magee–Oh–Winter '14]

Previous results ($\delta \in (0,1)$ dimension of the limit set)

- Patterson '76, Sullivan '79: $\beta = \frac{1}{2} \delta$. Related to pressure gap
- Naud '05: $\beta > \frac{1}{2} \delta$

Essential spectral gaps

Definition

M has an essential spectral gap of size $\beta \geq 0$ if the half-plane $\{\operatorname{Im} \lambda \geq -\beta\}$ only has finitely many resonances

Applications of spectral gaps

- ullet Resonance expansions of linear waves with $\mathcal{O}(e^{-eta t})$ remainder
- Strichartz estimates [Burq-Guillarmou-Hassell '10]
- Diophantine problems [Bourgain–Gamburd–Sarnak '11, Magee–Oh–Winter '14]

Previous results ($\delta \in (0,1)$ dimension of the limit set)

- Patterson '76, Sullivan '79: $\beta = \frac{1}{2} \delta$. Related to pressure gap
- Naud '05: $\beta > \frac{1}{2} \delta$

Essential spectral gaps

Definition

M has an essential spectral gap of size $\beta \geq 0$ if the half-plane $\{\operatorname{Im} \lambda \geq -\beta\}$ only has finitely many resonances

Applications of spectral gaps

- ullet Resonance expansions of linear waves with $\mathcal{O}(e^{-eta t})$ remainder
- Strichartz estimates [Burq-Guillarmou-Hassell '10]
- Diophantine problems [Bourgain–Gamburd–Sarnak '11, Magee–Oh–Winter '14]

Previous results ($\delta \in (0,1)$ dimension of the limit set)

- Patterson '76, Sullivan '79: $\beta = \frac{1}{2} \delta$. Related to pressure gap
- Naud '05: $\beta > \frac{1}{2} \delta$

Application of FUP to spectral gaps

Theorem 3 [D-Zahl '16, Bourgain-D '16]

Every convex co-compact surface M has an essential spectral gap of some size $\beta = \beta(M) > 0$

15 / 17

Application of FUP to spectral gaps

Theorem 3 [D-Zahl '16, Bourgain-D '16]

Every convex co-compact surface M has an essential spectral gap of some size $\beta = \beta(M) > 0$

Numerics for 3- and 4-funneled surfaces by Borthwick–Weich '14 + standard gap $\beta = \max(0, \frac{1}{2} - \delta)$

Application of FUP to spectral gaps

Theorem 3 [D-Zahl '16, Bourgain-D '16]

Every convex co-compact surface M has an essential spectral gap of some size $\beta = \beta(M) > 0$

The proof uses fractal uncertainty principle

$$\|\operatorname{Op}_h(b_-)\operatorname{Op}_h(b_+)\|_{L^2(M) o L^2(M)}=\mathcal{O}(h^eta) \quad ext{as } h o 0,$$
 $\operatorname{supp} b_\pm\subset \Gamma_\pm(h)$

but this time $\Gamma_{\pm}(h)$ are the sets of forward/backward trapped geodesics:

$$\Gamma_{\pm}(h) = B \cap \varphi_{\pm T}(B), \quad T = \log(1/h)$$

where $B \subset T^*M$ is large but bounded set and φ_t is the geodesic flow

Open problems

- Can Theorem 1 (control of eigenfunctions) and Theorem 3 (spectral gap) be extended to surfaces of variable negative curvature and more general systems with hyperbolic classical dynamics?
- Can Theorems 1 and 3 be extended to higher dimensional manifolds?
- Is the exponent in FUP bigger for generic systems?

Thank you for your attention!