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Abstract

Resonances in general relativity

by

Semen Vladimirovich Dyatlov

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Maciej Zworski, Chair

The topic of this thesis is a detailed study of wave decay on black hole backgrounds, in
particular the quasi-normal modes (QNMs) of black holes, known as resonances in other
contexts of scattering theory.1

Black holes are modeled in general relativity by Lorentzian manifolds (X̃, g̃) that solve
vacuum Einstein’s equations. We study the long-time behavior of solutions to the linear
wave equation

�g̃u = 0, (0.0.1)

which can be considered as the first step towards understanding the behavior of the nonlinear
Einstein’s equations, just like a precise understanding of linear waves on the Minkowski
spacetime has lead to proving its stability with respect to Einstein’s equations [24].

The particular black hole backgrounds we consider are Kerr and Kerr–de Sitter metrics,
which both model rotating black holes. The difference between these two cases is the cos-
mological constant Λ, with Λ = 0 for Kerr and Λ > 0 for Kerr–de Sitter (which is the case
according to the currently accepted ΛCDM cosmological model). The black hole itself is
surrounded by the event horizon. The causal structure of the metric only allows information
to cross the event horizon in the direction of the black hole. Since the energy of a solution
to (0.0.1) can escape through the event horizon (as well as to spatial infinity as discussed
below), one expects to see decay of the energy as time t goes to infinity.

The escape of the waves through event horizons is rapid in the sense that the correspond-
ing escaping trajectories cross the event horizon in finite time. The Kerr metric also features
an asymptotically Euclidean infinite end, with trajectories that take infinite time to escape.
A wave concentrated on such an escaping trajectory will radiate information back to the
observer at all times; because of the resulting ‘shadow’, the decay of solutions to (0.0.1) in

1Here is an irresistible quote of Chandrasekhar “. . . we may expect that any intial perturbation will,
during its last stages, decay in a manner characteristic of the black hole itself and independent of the cause.
In other words, we may expect that during these last stages, the black hole emits gravitational waves with
frequencies and rates of damping that are characteristic of the black hole itself, in the manner of a bell
sounding its last dying notes.”
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the Kerr case is at most polynomial, O(t−3) (in compact sets). See for instance [92, 31] for
a detailed discussion of many recent results in this direction.

We instead concentrate our attention on the Kerr–de Sitter metric, whose main geometric
difference from Kerr is the replacement of the spatial infinity by a cosmological horizon,
geometrically similar to the black hole event horizon. The decay of linear waves in this case
is exponential, O(e−νt). What is more, one can quantify this exponential decay in the form
of a resonance expansion (see Theorem 2.2 for a more accurate version)

u(t, x) ∼
∑
z∈Res

e−itzuz(x),

where z runs over a discrete set of resonances, or quasi-normal modes, Res ⊂ C; this set
depends only on the black hole metric, not on the solution u. The real part of z corresponds
to the rate of oscillation of the corresponding wave and the (negative) imaginary part, to its
rate of exponential decay in time. Quasi-normal modes have a rich history of study in the
physics literature, see [79]; in this thesis, we in particular compare the numerically computed
QNMs of [13] with the mathematical predictions and give a rigorous explanation to some
phenomena observed recently in [134, 133, 67] (see Chapter 4).

The proof of exponential decay and the resonance expansion is done in the framework of
scattering theory, dating back to [80]. There are two key steps:

(1) identify the discrete set of resonances as solutions to a nonselfadjoint generalized eigen-
value problem;

(2) understand the behavior of resonances in the high frequency limit

Re z →∞, | Im z| ≤ C.

The first step relies on the understanding of the infinite ends/event horizons of the metric
and the low frequency contributions, while the second one depends on the geometry of the
trapped set, consisting of light rays (geodesics) that stay in a fixed compact set away from
the event horizons for all times.

The main goal of this thesis is to understand how the geometry of the event horizons
and the trapped set leads to quantitative statements about behavior of quasi-normal modes
and linear waves. The thesis consists of four chapters, which are largely independent of
each other in terms of presentation; in fact, the first two chapters are similar to previously
published work of the author,2 and the third one has been submitted for publication.

The special case of the nonrotating Schwarzschild–de Sitter black hole was previously
studied in [103, 17, 90]. They in particular constructed the set of resonances, proved a

2Chapter 1 is similar to the article ‘Quasi-normal modes and exponential energy decay for the Kerr–de
Sitter black hole’ in Comm. Math. Phys. 306(2011), pp. 119–163, and Chapter 2, to the article ‘Asymptotic
distribution of quasi-normal modes for Kerr–de Sitter black holes’ in Ann. Henri Poincaré 13(2012), pp.
1101–1166.
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Figure 0.1: The lattice structure of QNMs in the completely integrable cases.

resonance expansion, and established a quantization condition, which in this situation means
that resonances approximately lie on a distorted lattice in the high frequency limit – see
Figure 0.1 and Theorem 2.1. These results rely on separation of variables techniques and
the spherical symmetry of nonrotating black holes, splitting the problem into the angular
component, which is just the eigenvalue problem for Laplacian on the sphere, and the radial
component, where the scattering theory phenomena take place. In particular, complete
integrability of the geodesic flow is crucial in establishing the quantization condition.

In Chapters 1 and 2, we generalize there results to the slowly rotating Kerr–de Sitter
case. We still use separation of variables, but the analysis is made difficult by the a con-
siderably more complicated structure of the separation of variables procedure (see §1.3) and
the ergoregion, the region of space where the associated generalized eigenfunction problem
is not elliptic. The lack of ellipticity inside the ergoregion is handled by using in a nontrivial
way the analyticity of the metric (see §1.7), and the lack of self-adjointness of the angular
operator, by a specially constructed Grushin problem (see §2.A).

However, an approach which does not use separation of variables techniques is ultimately
more favorable; one reason is applicability of the results to small (stationary) perturbations
of exact black hole metrics. The definition of the set of resonances (namely, step (1) above)
for metrics with event horizons was done recently in [128], and the assumptions at the event
horizons are stable under perturbations and formulated in geometric terms. The second part
of the thesis deals with the consequences for resonances of the trapping structure of Kerr–de
Sitter black holes.

The key property of the trapping is the fact that it is normally hyperbolic, which means
that the trapped set K̃ is smooth and the linearization of the geodesic flow ϕ̃t in the directions
transversal to K̃ exhibits hyperbolic behavior as t → ∞ (see §§3.5.1, 4.2.2, 4.3.2). Normal
hyperbolicity is a dynamical assumption not relying on separation of variables, and it was
shown in [132] that it implies existence of a resonance free strip {Im z > −ν}. Together
with [128], this gives the exponential rate of decay O(e−νt) for solutions to (0.0.1), but does
not recover information about resonances lying below the strip.

In Chapter 3, we obtain the following result on the set of resonances, presented in Fig-
ure 0.2: there are two resonance free strips and the resonances in between satisfy a Weyl
law – the number of these resonances in a region of size R grows like cR2, where c > 0 is an
explicit constant. The sizes of the strips are given in terms of naturally arising dynamical
quantities 0 < νmin ≤ νmax, the minimal and maximal expansion rates in the directions
transversal to K̃. Our result applies under a pinching condition νmax < 2νmin and under a
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Figure 0.2: The structure of the set of resonances for r-normally hyperbolic trapping.

stronger dynamical assumption of r-normal hyperbolicity, which additionally requires that
the maximal expansion rate of the flow along K̃ is much smaller than νmin. This dynamical
assumption is crucial for understanding the behavior of the associated solutions to (0.0.1)
in phase space; moreover, unlike just normal hyperbolicity, r-normal hyperbolicity is stable
under perturbations of the metric, as shown in [64] (see also §3.5.2).

Our Weyl law gives one of the very few situations in scattering theory where one has an
asymptotics on the number of resonances near the real axis. We are able to deduce such
asymptotics because of the presence of the second resonance free strip, and this structure in
turn depends on the very fine r-normal hyperbolic structure of the trapping. This structure
of the trapping is still stable under perturbations, unlike the completely integrable structure
used in Chapter 2. However, the results of Chapter 2 also provide much more precise
control on the location of QNMs, in the form of a quantization condition, so the two results
complement each other.

The results of Chapter 3 hold under some general geometric and dynamical assumptions
(§§3.4.1, 3.5.1) and that chapter makes no explicit reference to the Kerr–de Sitter metric;
one reason for this is the possible applicability of the results to different settings, relating
in particular to the recent work [50, 49, 51] on Ruelle resonances for contact Anosov flows –
see §3.1 for details. In Chapter 4, we verify that the assumptions of Chapter 3 do indeed hold
for Kerr–de Sitter metrics (with any subextremal speed of rotation) and their perturbations.
Furthermore, we establish a high frequency analog of resonance expansions, decomposing a
solution to the wave equation into the sum of a component with controlled decay rate and a
more rapidly exponentially decaying remainder – see Theorem 4.2. The latter result in fact
also applies to the Kerr metric (namely, to the case Λ = 0), giving a long time asymptotic
for high frequency solutions.
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Chapter 1

Construction of resonances and
exponential energy decay for Kerr–de
Sitter black holes

1.1 Introduction

Quasi-normal modes are the complex frequencies appearing in expansions of waves; their
real part corresponds to the rate of oscillation and the nonpositive imaginary part, to the
rate of decay. According to the physics literature [79] they are expected to appear in gravita-
tional waves caused by perturbations of black holes (for more recent references and findings,
see for example [13]). In the mathematics literature they were studied by Bachelot and
Motet-Bachelot [8, 9, 10] and Sá Barreto and Zworski [103], who applied the methods of
scattering theory and semiclassical analysis to the case of a spherically symmetric black
hole. Quasi-normal modes were described in [103] as resonances ; that is, poles of the mero-
morphic continuation of a certain family of operators; it was also proved that these poles
asymptotically lie on a lattice. This was further developed by Bony and Häfner in [17],
who established an expansion of the solutions of the wave equation in terms of resonant
states. As a byproduct of this result, they obtained exponential decay of local energy for
Schwarzschild–de Sitter. Melrose, Sá Barreto, and Vasy [90] have extended this result to
more general manifolds and more general initial data.

In this chapter, we employ different methods to define quasi-normal modes for the Kerr–
de Sitter rotating black hole. As in [103] and [17], we use the de Sitter model; physically, this
corresponds to a positive cosmological constant; mathematically, it replaces asymptotically
Euclidean spatial infinity with an asymptotically hyperbolic one. Let Pg(ω), ω ∈ C, be the
stationary d’Alembert–Beltrami operator of the Kerr–de Sitter metric (see §1.2 for details).
It acts on functions on the space slice X0 = (r−, r+)× S2. We define quasi-normal modes as
poles of a certain (right) inverse Rg(ω) to Pg(ω). Because of the cylindrical symmetry of the
operator Pg(ω), it leaves invariant the spaceD′k of distributions with fixed angular momentum
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k ∈ Z (with respect to the axis of rotation); the inverse Rg(ω) on D′k is constructed by

Theorem 1.1. Let Pg(ω, k) be the restriction of Pg(ω) to D′k. Then there exists a family of
operators

Rg(ω, k) : L2
comp(X0) ∩ D′k → H2

loc(X0) ∩ D′k
meromorphic in ω ∈ C with poles of finite rank and such that Pg(ω, k)Rg(ω, k)f = f for each
f ∈ L2

comp(X0) ∩ D′k.

Since Rg(ω, k) is meromorphic, its poles, which we call k-resonances, form a discrete set.
One can then say that ω ∈ C is a resonance, or a quasi-normal mode, if ω is a k-resonance
for some k ∈ Z. However, it is desirable to know that resonances form a discrete subset of
C; that is, k-resonances for different k do not accumulate near some point. Also, one wants
to construct the inverse Rg(ω) that works for all values of k. For δr > 0,1 put

Kr = (r− + δr, r+ − δr), XK = Kr × S2,

and let 1XK be the operator of multiplication by the characteristic function of XK (which
will, based on the context, act L2(XK)→ L2(X0) or L2(X0)→ L2(XK)). Then we are able
to construct Rg(ω) on XK for a slowly rotating black hole:

Theorem 1.2. Fix δr > 0. Then there exists a0 > 0 such that if the rotation speed of the
black hole satisfies |a| < a0, we have the following:

1. Every fixed compact set can only contain k-resonances for a finite number of values of
k. Therefore, quasi-normal modes form a discrete subset of C.

2. The operators 1XKRg(ω, k)1XK define a family of operators

Rg(ω) : L2(XK)→ H2(XK)

such that Pg(ω)Rg(ω)f = f on XK for each f ∈ L2(XK) and Rg(ω) is meromorphic in
ω ∈ C with poles of finite rank.

As stated in Theorem 1.2, the operator Rg(ω) acts only on functions supported in a
certain compact subset of the space slice X0 depending on how small a is. This is due to
the fact that the operator Pg(ω) is not elliptic inside the two ergospheres located near the
endpoints r = r±. The result above can then be viewed as a construction of Rg(ω) away
from the ergospheres. However, for fixed angular momentum we are able to obtain certain
boundary conditions on the elements in the image of Rg(ω, k), as well as on resonant states:

Theorem 1.3. Let ω ∈ C.
1. Assume that ω is not a resonance. Take f ∈ L2

comp(X0) ∩ D′k for some k ∈ Z and put
u = Rg(ω, k)f ∈ H2

loc(X0). Then u is outgoing in the following sense: the functions

v±(r, θ, ϕ) = |r − r±|iA
−1
± (1+α)(r2±+a2)ωu(r, θ, ϕ− A−1

± (1 + α)a ln |r − r±|).
1The subscript in the constants such as δr, Cr, Cθ does not mean that these constants depend on the

corresponding variables, such as r or θ; instead, it indicates that they are related to these variables.
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are smooth near the event horizons {r±} × S2.
2. Assume that ω is a resonance. Then there exists a resonant state; i.e., a nonzero

solution u ∈ C∞(X0) to the equation Pg(ω)u = 0 that is outgoing in the sense of part 1.

The outgoing condition can be reformulated as follows. Consider the function U =
e−iωtu on the spacetime R × X0; then u is outgoing if and only if U is smooth up to the
event horizons in the extension of the metric given by the Kerr-star coordinates (t∗, r, θ, ϕ∗)
discussed in §1.2. This lets us establish a relation between the wave equation on Kerr-de
Sitter and the family of operators Rg(ω) (Proposition 1.2.2). Note that here we do not
follow earlier applications of scattering theory (including [17]), where spectral theory and
in particular self-adjointness of Pg are used to define Rg(ω) for Imω > 0 and relate it to
solutions of the wave equation via Stone’s formula. In the situation of the present chapter,
due to the lack of ellipticity of Pg(ω) inside the ergospheres, it is doubtful that Pg can be
made into a self-adjoint operator; therefore, we construct Rg(ω) directly using separation of
variables, cite the theory of hyperbolic equations (see §1.2) for well-posedness of the Cauchy
problem for the wave equation, and prove Proposition 1.2.2 without any reference to spectral
theory.

We now study the distribution of resonances in the slowly rotating Kerr–de Sitter case.
First, we establish absense of nonzero resonances in the closed upper half-plane:

Theorem 1.4. Fix δr > 0. Then there exist constants a0 and C such that if |a| < a0, then:
1. There are no resonances in the upper half-plane and

‖Rg(ω)‖L2(XK)→L2(XK) ≤
C

| Imω|2
, Imω > 0.

2. There are no resonances ω ∈ R \ 0 and

Rg(ω) =
i(1⊗ 1)

4π(1 + α)(r2
+ + r2

− + 2a2)ω
+ Hol(ω),

where Hol stands for a family of operators holomorphic at zero.

Next, we use the methods of [132] and the fact that the only trapping in our situation is
normally hyperbolic to get a resonance free strip:

Theorem 1.5. Fix δr > 0 and s > 0. Then there exist a0 > 0, ν0 > 0, and C such that for
|a| < a0,

‖Rg(ω)‖L2(XK)→L2(XK) ≤ C|ω|s, |Reω| ≥ C, | Imω| ≤ ν0.

Theorems 1.4 and 1.5, together with the fact that resonances form a discrete set, imply
that for ν0 small enough, zero is the only resonance in {Imω ≥ −ν0}. This and the presence
of the global meromorphic continuation provide exponential decay of local energy:
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Theorem 1.6. Let (r, t∗, θ, ϕ∗) be the coordinates on the Kerr–de Sitter background intro-
duced in §1.2. Fix δr > 0 and s′ > 0 and assume that a is small enough. Let u be a solution
to the wave equation �gu = 0 with initial data

u|t∗=0 = f0 ∈ H3/2+s′(X0) ∩ E ′(XK),

∂t∗u|t∗=0 = f1 ∈ H1/2+s′(X0) ∩ E ′(XK).
(1.1.1)

Also, define the constant

u0 =
1 + α

4π(r2
+ + r2

− + 2a2)

∫
t∗=0

∗(du).

Here ∗ denotes the Hodge star operator for the metric g (see §1.2). Then

‖u(t∗, ·)− u0‖L2(XK) ≤ Ce−ν
′t∗(‖f0‖H3/2+s′ (XK) + ‖f1‖H1/2+s′ (XK)), t

∗ > 0,

for certain constants C and ν ′ independent of u.

For the Kerr metric, the local energy decay is polynomial as shown by Tataru and To-
haneanu [121, 122], see also the lecture notes by Dafermos and Rodnianski [30] and the
references below.
Outline of the proof. The starting point of the construction of Rg(ω) is the separation
of variables introduced by Carter. The separation of variables techniques and the related
symmetries have been used in many papers, including [4, 16, 17, 41, 42, 52, 53, 103, 125];
however, these mostly consider the case of zero cosmological constant, where other difficulties
occur at zero energy and a global meromorphic continuation of the type presented here
is unlikely. In our case, since the metric is invariant under axial rotation, it is enough
to construct the operators Rg(ω, k) and study their behavior for large k. The operator
Pg(ω, k) is next decomposed into the sum of two ordinary differential operators, Pr and Pθ
(see (1.2.3)). The separation of variables is discussed in §1.2; the same section contains the
derivation of Theorem 1.6 from the other theorems by the complex contour deformation
method.

In the Schwarzchild–de Sitter case, Pθ is just the Laplace–Beltrami operator on the round
sphere and one can use spherical harmonics to reduce the problem to studying the operator
Pr + λ for large λ. In the case a 6= 0, however, the operator Pθ is ω-dependent; what is
more, it is no longer self-adjoint unless ω ∈ R. This raises two problems with the standard
implementation of separation of variables, namely decomposing L2 into a direct sum of the
eigenspaces of Pθ. Firstly, since Pθ is not self-adjoint, we cannot automatically guarantee
existence of a complete system of eigenfunctions and the corresponding eigenspaces need not
be orthogonal. Secondly, the eigenvalues of Pθ are functions of ω, and meromorphy of Rg(ω)
is nontrivial to show when two of these eigenvalues coincide. Therefore, instead of using
the eigenspace decomposition, we write Rg(ω) as a certain contour integral (1.3.1) in the
complex plane; the proof of meromorphy of this integral is based on Weierstrass preparation
theorem. This is described in §1.3.
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In §1.4, we use the separation of variables procedure to reduce Theorems 1.1–1.4 to
certain facts about the radial resolvent Rr (Proposition 1.4.2). For fixed ω, λ, k, where
λ ∈ C is the separation constant, Rr is constructed in §1.5 using the methods of one-
dimensional scattering theory. Indeed, the radial operator Pr, after the Regge–Wheeler
change of variables (1.5.1), is equivalent to the Schrödinger operator Px = D2

x + Vx(x) for a
certain potential Vx (1.5.2). (Here x = ±∞ correspond to the event horizons.) This does
not, however, provide estimates on Rr that are uniform as ω, λ, k go to infinity.

The main difficulty then is proving a uniform resolvent estimate (see (1.4.8)), valid for
large λ and Reλ� | Imλ|+|ω|2+|ak|2, which in particular guarantees the convergence of the
integral (1.3.1) and Theorem 1.2. A complication arises from the fact that Vx(±∞) = −ω2

±,
where ω± are proportional to (r2

± + a2)ω − ak. No matter how large ω is, one can always
choose k so that one of ω± is small, making it impossible to use standard complex scaling2,
in the case ω = o(k), due to the lack of ellipticity of the rescaled operator at infinity.
To avoid this issue, we use the analyticity of Vx and semiclassical analysis to get certain
control on outgoing solutions at two distant, but fixed, points (Proposition 1.7.1), and then
an integration by parts argument to get an L2 bound between these two points. This is
discussed in §1.7.

Finally, §1.8 contains the proof of Theorem 1.5. We first use the results of §§1.3–1.7 to
reduce the problem to scattering for the Schrödinger operator Px in the regime λ = O(ω2),
k = O(ω) (Proposition 1.8.1). In this case, we apply complex scaling to deform Px near
x = ±∞ to an elliptic operator (Proposition 1.8.2). We then analyse the corresponding
classical flow; it is either nontrapping at zero energy, in which case the usual escape function
construction (as in, for example, [85]) applies (Proposition 1.8.3), or has a unique maximum.
In the latter case we use the methods of [132] designed to handle more general normally
hyperbolic trapped sets and based on commutator estimates in a slightly exotic microlocal
calculus. The argument of [132] has to be modified to use complex scaling instead of an
absorbing potential near infinity (see also [132, Theorem 2]).

It should be noted that, unlike [17] or [103], the construction of Rg(ω) in this chapter does
not use the theorem of Mazzeo–Melrose [87] on the meromorphic continuation of the resolvent
on spaces with asymptotically constant negative curvature (see also [60]). In [17] and [103],
this theorem had to be applied to prove the existence of the meromorphic continuation of
the resolvent for ω in a fixed neighborhood of zero where complex scaling could not be
implemented.
Remark. The results of this chapter also apply if the wave equation is replaced by the
Klein–Gordon equation [78]

(�g +m2)u = 0,

2Complex scaling originated in mathematical physics with the work of Aguilar–Combes [1], Balslev–
Combes, and Simon. It has become a standard tool in chemistry for computing resonances. A microlocal ap-
proach has been developed by Helffer–Sjöstrand, and a more geometric version by Sjöstrand–Zworski [115] —
see that paper for pointers to the literature. Complex scaling was reborn in numerical analysis in 1994 as
the method of “perfectly matched layers” (see [12]). A nice application of the method of complex scaling to
the Schwarzschild–de Sitter case is provided in [34].
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where m > 0 is a fixed constant. The corresponding stationary operator is Pg(ω) + m2ρ2;
when restricted to the space D′k, it is the sum of the two operators (see §1.2)

Pr(ω, k;m) = Pr(ω, k) +m2r2, Pθ(ω;m) = Pθ(ω) +m2a2 cos2 θ.

The proofs in this chapter all go through in this case as well. In particular, the rescaled
radial operator Px introduced in (1.5.2) is a Schrödinger operator with the potential

Vx(x;ω, λ, k;m) = (λ+m2r2)∆r − (1 + α)2((r2 + a2)ω − ak)2.

Since Vx(±∞) is still equal to −ω2
± with ω± defined in (1.5.3), the radial resolvent can be

defined as a meromorphic family of operators on the entire complex plane. Also, the term
m2r2∆r in the operator Px becomes of order O(h2) under the semiclassical rescaling and
thus does not affect the arguments in §§1.7 and1.8.

The only difference in the Klein–Gordon case is the absense of the resonance at zero: 1
is no longer an outgoing solution to the equation Pxu = 0 for ω = k = λ = 0. Therefore,
there is no u0 term in Theorem 1.6, and all solutions to (1.1.1) decay exponentially in the
compact set XK .

1.2 Kerr–de Sitter metric

The Kerr–de Sitter metric is given by the formulas [20]

g = −ρ2
(dr2

∆r

+
dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2
(a dt− (r2 + a2) dϕ)2

+
∆r

(1 + α)2ρ2
(dt− a sin2 θ dϕ)2.

Here M is the mass of the black hole, Λ is the cosmological constant (both of which we
assume to be fixed), and a is the angular speed of rotation (which we assume to be bounded
by some constant, and which is required to be small by most of our theorems);

∆r = (r2 + a2)
(

1− Λr2

3

)
− 2Mr,

∆θ = 1 + α cos2 θ,

ρ2 = r2 + a2 cos2 θ, α =
Λa2

3
.

We also put
A± = ∓∂r∆r(r±) > 0.
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The metric is defined for ∆r > 0; we assume that this happens on an open interval 0 < r− <
r < r+ < ∞. (For a = 0, this is true when 9ΛM2 < 1; it remains true if we take a small
enough.) The variables θ ∈ [0, π] and ϕ ∈ R/2πZ are the spherical coordinates on the sphere
S2. We define the space slice X0 = (r−, r+) × S2; then the Kerr–de Sitter metric is defined
on the spacetime R×X0.

The d’Alembert–Beltrami operator of g is given by

�g =
1

ρ2
Dr(∆rDr) +

1

ρ2 sin θ
Dθ(∆θ sin θDθ)

+
(1 + α)2

ρ2∆θ sin2 θ
(a sin2 θDt +Dϕ)2

−(1 + α)2

ρ2∆r

((r2 + a2)Dt + aDϕ)2.

(Henceforth we denote D = 1
i
∂.) The volume form is

dVol =
ρ2 sin θ

(1 + α)2
dtdrdθdϕ.

If we replace Dt by a number −ω ∈ C, then the operator �g becomes equal to Pg(ω)/ρ2,
where Pg(ω) is the following differential operator on X0:

Pg(ω) = Dr(∆rDr)−
(1 + α)2

∆r

((r2 + a2)ω − aDϕ)2

+
1

sin θ
Dθ(∆θ sin θDθ) +

(1 + α)2

∆θ sin2 θ
(aω sin2 θ −Dϕ)2.

(1.2.1)

We now introduce the separation of variables for the operator Pg(ω). We start with
taking Fourier series in the variable ϕ. For every k ∈ Z, define the space

D′k = {u ∈ D′ | (Dϕ − k)u = 0}. (1.2.2)

This space can be considered as a subspace of D′(X0) or of D′(S2) alone, and

L2(X0) =
⊕
k∈Z

(L2(X0) ∩ D′k);

the right-hand side is the Hilbert sum of a family of closed mutually orthogonal subspaces.
Let Pg(ω, k) be the restriction of Pg(ω) to D′k. Then we can write

Pg(ω, k) = Pr(ω, k) + Pθ(ω)|D′k ,

where

Pr(ω, k) = Dr(∆rDr)−
(1 + α)2

∆r

((r2 + a2)ω − ak)2,

Pθ(ω) =
1

sin θ
Dθ(∆θ sin θDθ) +

(1 + α)2

∆θ sin2 θ
(aω sin2 θ −Dϕ)2

(1.2.3)
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are differential operators in r and (θ, ϕ), respectively.
Next, we introduce a modification of the Kerr-star coordinates (see [30, §5.1]). Fol-

lowing [122], we remove the singularities at r = r± by making the change of variables
(t, r, θ, ϕ)→ (t∗, r, θ, ϕ∗), where

t∗ = t− Ft(r), ϕ∗ = ϕ− Fϕ(r).

Note that ∂t∗ = ∂t and ∂ϕ∗ = ∂ϕ. In the new coordinates, the metric becomes

g = −ρ2
(dr2

∆r

+
dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2
[a dt∗ − (r2 + a2) dϕ∗ + (aF ′t(r)− (r2 + a2)F ′ϕ(r))dr]2

+
∆r

(1 + α)2ρ2
[dt∗ − a sin2 θ dϕ∗ + (F ′t(r)− a sin2 θF ′ϕ(r))dr]2.

The functions Ft and Fϕ are required to be smooth on (r−, r+) and satisfy the following
conditions:

• Ft(r) = Fϕ(r) = 0 for r ∈ Kr = [r− + δr, r+ − δr];

• F ′t(r) = ±(1 + α)(r2 + a2)/∆r + Ft±(r) and F ′ϕ(r) = ±(1 + α)a/∆r + Fϕ±(r), where
Ft± and Fϕ± are smooth at r = r±, respectively;

• for some (a-independent) constant C and all r ∈ (r−, r+),

(1 + α)2(r2 + a2)2

∆r

−∆rF
′
t(r)

2 − (1 + α)2a2 ≥ 1

C
> 0.

Under these conditions, the metric g in the new coordinates is smooth up to the event
horizons r = r± and the space slices

Xt0 = {t∗ = t0 = const} ∩ (R×X0), t0 ∈ R,

are space-like. Let νt be the time-like normal vector field to these surfaces, chosen so that
g(νt, νt) = 1 and 〈dt∗, νt〉 > 0.

We now establish a basic energy estimate for the wave equation in our setting. Let u be a
real-valued function smooth in the coordinates (t∗, r, θ, ϕ∗) up to the event horizons. Define
the vector field T (du) by

T (du) = ∂tu∇gu−
1

2
g(du, du)νt.

Since νt is timelike, the expression g(T (du), νt) is a positive definite quadratic form in du.
For t0 ∈ R, define E(t0)(du) as the integral of this quadratic form over the space slice Xt0

with the volume form induced by the metric.
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Proposition 1.2.1. Take t1 < t2 and let

Ω = {t1 ≤ t∗ ≤ t2} ×X0.

Assume that u is smooth in Ω up to its boundary and solves the wave equation �gu = 0 in
this region. Then

E(t2)(du) ≤ eCe(t2−t1)E(t1)(du)

for some constant Ce independent of t1 and t2.

Proof. We use the method of [123, Proposition 2.8.1]. We apply the divergence theorem to
the vector field T (du) on the domain Ω. The integrals over Xt1 and Xt2 will be equal to
−E(t1) and E(t2). The restriction of the metric to tangent spaces of the event horizons is
nonpositive and the field νt is pointing outside of Ω at r = r±; therefore, the integrals over
the event horizons will be nonnegative. Finally, since �gu = 0, one can prove that div T (du)
is quadratic in du and thus

| div T (du)| ≤ Cg(T (du), νt).

Therefore, the divergence theorem gives

E(t2)− E(t1) ≤ C

∫ t2

t1

E(t0) dt0.

It remains to use Gronwall’s inequality.

The geometric configuration of {t∗ = t1}, {t∗ = t2}, {r = r±}, and νt with respect to
the Lorentzian metric g used in Proposition 1.2.1, combined with the theory of hyperbolic
equations (see [30, Proposition 3.1.1], [71, Theorem 23.2.4], or [123, §§2.8 and 7.7]), makes
it possible to prove that for each f0 ∈ H1(X0), f1 ∈ L2(X0), there exists a unique solution

u(t∗, ·) ∈ C([0,∞);H1(X0)) ∩ C1([0,∞);L2(X0))

to the initial value problem

�gu = 0, u|t∗=0 = f0, ∂t∗u|t∗=0 = f1. (1.2.4)

We are now ready to prove Theorem 1.6. Fix δr > 0 and assume that a is chosen small
enough so that Theorems 1.2–1.5 hold. Assume that s′ > 0 and u is the solution to (1.2.4)
with f0 ∈ H3/2+s′ ∩ E ′(X ′K) and f1 ∈ H1/2+s′ ∩ E ′(X ′K), where X ′K is fixed and compactly
contained in XK . By finite propagation speed (see [123, Theorem 2.6.1 and §2.8]), there
exists a function χ(t) ∈ C∞(0,∞) independent of u and such that χ(t∗) = 1 for t∗ > 1,
and for t∗ ∈ supp(1 − χ), suppu(t∗, ·) ⊂ XK . By Proposition 1.2.1, we can define the
Fourier-Laplace transform

χ̂u(ω) =

∫
eit
∗ωχ(t∗)u(t∗, ·) dt∗ ∈ H3/2+s′(X0), Imω > Ce.



CHAPTER 1. CONSTRUCTION OF RESONANCES FOR BLACK HOLES 10

Put f = ρ2�g(χu) = ρ2[�g, χ]u; then

f ∈ H1/2+s′

comp (R;L2(X0) ∩ E ′(XK)).

Therefore, one can define the Fourier-Laplace transform f̂(ω) ∈ L2 ∩ E ′(XK) for all ω ∈ C,
and we have the estimate∫

〈ω〉2s′+1‖f̂(ω)‖2
L2(X0) dω ≤ C(‖f0‖2

H3/2+s′ + ‖f1‖2
H1/2+s′ ).

where integration is performed over the line {Imω = ν = const} with ν bounded.

Proposition 1.2.2. We have for Imω > Ce,

χ̂u(ω)|XK = Rg(ω)f̂(ω).

Proof. Without loss of generality, we may assume that u ∈ C∞ ∩ D′k for some k ∈ Z; then

Rg(ω)f̂(ω) can be defined on the whole X0 by Theorem 1.1. Fix ω and put

Φ(ω) = eiωFt(r)χ̂u(ω)−Rg(ω, k)f̂(ω) ∈ C∞(X0).

Since ρ2�g(χu) = f , we have

Pg(ω)(eiωFt(r)χ̂u(ω)) = f̂(ω);

therefore, Pg(ω)Φ(ω) = 0. Note also that Φ is smooth inside X0 because of ellipticity of the
operator Pg(ω) on D′k (see [123, §7.4] and the last step of the proof of Theorem 1.1). Now,
if we put

U(t, ·) = e−itωΦ(ω)(·),
then �gU = 0 inside X0. However, by Theorem 1.3, U is smooth in the (r, t∗, θ, ϕ∗) co-
ordinates up to the event horizons and its energy grows in time faster than allowed by
Proposition 1.2.1; therefore, Φ = 0.

We now restrict our attention to the compact XK , where in particular t = t∗ and ϕ = ϕ∗.
By the Fourier Inversion Formula, for t > 1 and ν > Ce,

u(t)|XK = (2π)−1

∫
e−it(ω+iν)Rg(ω + iν)f̂(ω + iν) dω.

Fix positive s < s′. By Theorems 1.4 and 1.5, there exists ν0 > 0 such that zero is the
only resonance with Imω ≥ −ν0. Using the estimates in these theorems, we can deform the
contour of integration above to the one with ν = −ν0. Indeed, by a density argument we
may assume that u ∈ C∞, and in this case, f̂(ω) is rapidly decreasing as Reω →∞ for Imω
fixed. We then get

u(t)|Kr =
1 + α

4π(r2
+ + r2

− + 2a2)
(f̂(0), 1)L2(Kr)

+(2π)−1e−ν0t
∫
e−itωRg(ω − iν0)f̂(ω − iν0) dω.

(1.2.5)
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We find a representation of the first term above in terms of the initial data for u at time
zero. We have

(f̂(0), 1)L2(Kr) =

∫
XK×R

�g(χu) dVol .

Here dVol is the volume form induced by g. Integrating by parts, we get∫
XK×R

�g(χu) dVol = −
∫
t≥0

�g((1− χ)u) dVol =

∫
t=0

∗(du). (1.2.6)

Here ∗ is the Hodge star operator induced by the metric g, with the orientation on X0 and
R×X0 chosen so that ∗(dt) is positively oriented on {t = 0}.

Finally, the L2 norm of the integral term in (1.2.5) can be estimated by

Ce−ν0t
∫
〈ω〉s−s′−1/2‖〈ω〉s′+1/2f̂(ω − iν0)‖L2(Kr) dω

≤ Ce−ν0t‖〈ω〉s′+1/2f̂(ω − iν0)‖L2
ω(R)L2(Kr)

≤ Ce−ν0t(‖f0‖Hs′+3/2 + ‖f1‖Hs′+1/2),

since 〈ω〉s−s′−1/2 ∈ L2. This proves Theorem 1.6.
Remark. In the original coordinates, (t, r, θ, ϕ), the equation �gu = 0 has two solutions
depending only on the time variable, namely, u = 1 and u = t. Even though Theorem 1.6
does not apply to these solutions because we only construct the family of operators Rg(ω)
acting on functions on the compact set XK , it is still interesting to see where our argument
fails if Rg(ω) were well-defined on the whole X0. The key fact is that our Cauchy problem is
formulated in the t∗ variable. Then, for u = t the function f0 = u|t∗=0 behaves like log |r−r±|
near the event horizons and thus does not lie in the energy space H1. As for u = 1, our
theorem gives the correct form of the contribution of the zero resonance, namely, a constant;
however, the value of this constant cannot be given by the integral of ∗(du) over t∗ = 0, as
du = 0. This discrepancy is explained if we look closer at the last equation in (1.2.6); while
integrating by parts, we will get a nonzero term coming from the integral of ∗d(χ(t∗)) over
the event horizons.

1.3 Separation of variables in an abstract setting

In this section, we construct inverses for certain families of operators with separating vari-
ables. Since the method described below can potentially be applied to other situations, we
develop it abstractly, without any reference to the operators of our problem. Similar con-
structions have been used in other settings by Ben-Artzi–Devinatz [11] and Mazzeo–Vasy [88,
§2].

First, let us consider a differential operator

P (ω) = P1(ω) + P2(ω)
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in the variables (x1, x2), where P1(ω) is a differential operator in the variable x1 and P2(ω)
is a differential operator in the variable x2; ω is a complex parameter. If we take H1 and
H2 to be certain L2 spaces in the variables x1 and x2, respectively, then the corresponding
L2 space in the variables (x1, x2) is their Hilbert tensor product H = H1 ⊗H2. Recall that
for any two bounded operators A1 and A2 on H1 and H2, respectively, their tensor product
A1 ⊗ A2 is a bounded operator on H and

‖A1 ⊗ A2‖ = ‖A1‖ · ‖A2‖.

The operator P is now written on H as

P (ω) = P1(ω)⊗ 1H2 + 1H1 ⊗ P2(ω).

We now wish to construct an inverse to P (ω). The method used is an infinite-dimensional
generalization of the following elementary

Proposition 1.3.1. Assume that A and B are two (finite-dimensional) matrices and that
the matrix A ⊗ 1 + 1 ⊗ B is invertible. (That is, no eigenvalue of A is the negative of an
eigenvalue of B.) For λ ∈ C, let RA(λ) = (A+ λ)−1 and RB(λ) = (B − λ)−1. Take γ to be
a bounded simple closed contour in the complex plane such that all poles of RA lie outside of
γ, but all poles of RB lie inside γ; we assume that γ is oriented in the clockwise direction.
Then

(A⊗ 1 + 1⊗B)−1 =
1

2πi

∫
γ

RA(λ)⊗RB(λ) dλ.

The starting point of the method are the inverses3

R1(ω, λ) = (P1(ω) + λ)−1, R2(ω, λ) = (P2(ω)− λ)−1

defined for λ ∈ C. These inverses depend on two complex variables, and we need to specify
their behavior near the singular points:

Definition 1.3.2. Let X be any Banach space, and let W be a domain in C2. We say that
T (ω, λ) is an (ω-nondegenerate) meromorphic map W → X if:

(1) T (ω, λ) is a (norm) holomorphic function of two complex variables with values in X for
(ω, λ) 6∈ Z, where Z is a closed subset of W , called the divisor of T ,

(2) for each (ω0, λ0) ∈ Z, we can write T (ω, λ) = S(ω, λ)/X(ω, λ) near (ω0, λ0), where S is
holomorphic with values in X and X is a holomorphic function of two variables (with
values in C) such that:

3In this section, we do not use the fact that Rj(ω, λ) = (Pj(ω) ± λ)−1, neither do we prove that
R(ω) = P (ω)−1. This step will be done in our particular case in the proof of Theorem 1.1 in the next
section; in fact, R1 will only be a right inverse to P1 + λ. Until then, we merely establish properties of R(ω)
defined by (1.3.1) below.
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• for each ω close to ω0, there exists λ such that X(ω, λ) 6= 0, and

• the divisor of T is given by {X = 0} near (ω0, λ0).

Note that the definition above is stronger than the standard definition of meromorphy
and it is not symmetric in ω and λ. Henceforth we will use this definition when talking about
meromorphic families of operators of two complex variables. It is clear that any derivative
(in ω and/or λ) of a meromorphic family is again meromorphic. Moreover, if T (ω, λ) is
meromorphic and we fix ω, then T is a meromorphic family in λ.

If X is the space of all bounded operators on some Hilbert space (equipped with the
operator norm), then it makes sense to talk about having poles of finite rank:

Definition 1.3.3. Let H be a Hilbert space and let T (ω, λ) be a meromorphic family of
operators on H in the sense of Definition 1.3.2. For (ω0, λ0) in the divisor of T , consider
the decomposition

T (ω0, λ) = TH(λ) +
N∑
j=1

Tj
(λ− λ0)j

.

Here TH is holomorphic near λ0 and Tj are some operators. We say that T has poles of
finite rank if every operator Tj in the above decomposition of every ω-derivative of T near
every point in the divisor is finite-dimensional.

One can construct meromorphic families of operators with poles of finite rank by using
the following generalization of Analytic Fredholm Theory:

Proposition 1.3.4. Assume that T (ω, λ) : H1 → H2, (ω, λ) ∈ C2, is a holomorphic family
of Fredholm operators, where H1 and H2 are some Hilbert spaces. Moreover, assume that
for each ω, there exists λ such that the operator T (ω, λ) is invertible. Then T (ω, λ)−1 is a
meromorphic family of operators H2 → H1 with poles of finite rank. (The divisor is the set
of all points where T is not invertible.)

Proof. We can use the proof of the standard Analytic Fredholm Theory via Grushin prob-
lems, see for example [137, Theorem C.3].

We now go back to constructing the inverse to P (ω). We assume that

(A) Rj(ω, λ), j = 1, 2, are two families of bounded operators on Hj with poles of finite
rank. Here ω lies in a domain Ω ⊂ C and λ ∈ C.

We want to integrate the tensor product R1⊗R2 in λ over a contour γ that separates the
sets of poles of R1(ω, ·) and R2(ω, ·). Let Zj be the divisor of Rj. We call a point ω regular
if the sets Z1(ω) and Z2(ω) given by

Zj(ω) = {λ ∈ C | (ω, λ) ∈ Zj}

do not intersect. The behavior of the contour γ at infinity is given by the following
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Figure 1.1: An admissible contour. The poles of R1 are denoted by circles and the poles of
R2 are denoted by asterisks.

Definition 1.3.5. Let ψ ∈ (0, π) be a fixed angle, and let ω be a regular point. A smooth
simple contour γ on C is called admissible (at ω) if:

• outside of some compact subset of C, γ is given by the rays arg λ = ±ψ, and

• γ separates C into two regions, Γ1 and Γ2, such that sufficiently large positive real
numbers lie in Γ2, and Zj(ω) ⊂ Γj for j = 1, 2.

(Henceforth, we assume that arg λ ∈ [−π, π]. The contour γ and the regions Γj are allowed
to have several connected components.)

Existence of admissible contours and convergence of the integral is guaranteed by the
following condition:

(B) For any compact Kω ⊂ Ω, there exist constants C and R such that for ω ∈ Kω and
|λ| ≥ R,

• for | arg λ| ≤ ψ, we have (ω, λ) 6∈ Z1 and ‖R1(ω, λ)‖ ≤ C/|λ|, and

• for | arg λ| ≥ ψ, we have (ω, λ) 6∈ Z2 and ‖R2(ω, λ)‖ ≤ C/|λ|.

It follows from (B) that there exist admissible contours at every regular point. Take a
regular point ω, an admissible contour γ at ω, and define

R(ω) =
1

2πi

∫
γ

R1(ω, λ)⊗R2(ω, λ) dλ. (1.3.1)

Here the orientation of γ is chosen so that Γ1 always stays on the left. The integral above
converges and is independent of the choice of an admissible contour γ. Moreover, the set
of regular points is open and R is holomorphic on this set. (We may represent R(ω) as a
locally uniform limit of the integral over the intersection of γ with a ball whose radius goes
to infinity.)

The main result of this section is
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Proposition 1.3.6. Assume that H1 and H2 are two Hilbert spaces, and H = H1 ⊗H2 is
their Hilbert tensor product. Let R1(ω, λ) and R2(ω, λ) be two families of bounded operators
on H1 and H2, respectively, for ω ∈ Ω ⊂ C and λ ∈ C. Assume that R1 and R2 satisfy
assumptions (A)–(B) and the nondegeneracy assumption

(C) The set ΩR of all regular points is nonempty.

Then the set of all non-regular points is discrete and the operator R(ω) defined by (1.3.1) is
meromorphic in ω ∈ Ω with poles of finite rank.

The rest of this section contains the proof of Proposition 1.3.6. First, let us establish a
normal form for meromorphic decompositions of families in two variables:

Proposition 1.3.7. Let T (ω, λ) be meromorphic (with values in some Banach space) and
assume that (ω0, λ0) lies in the divisor of T . Then we can write near (ω0, λ0)

T (ω, λ) =
S(ω, λ)

Q(ω, λ)
,

where S is holomorphic and Q is a monic polynomial in λ of degree N and coefficients
holomorphic in ω; moreover, Q(ω0, λ) = (λ− λ0)N . The divisor of T coincides with the set
of zeroes of Q near (ω0, λ0).

Proof. Follows from Definition 1.3.2 and Weierstrass Preparation Theorem.

Proposition 1.3.8. Assume that Qj(ω, λ), j = 1, 2, are two monic polynomials in λ of
degrees Nj with coefficients holomorphic in ω near ω0. Assume also that for some ω, Q1 and
Q2 are coprime as polynomials. Then there exist unique polynomials p1 and p2 of degree no
more than N2− 1 and N1− 1, respectively, with coefficients meromorphic in ω and such that

1 = p1Q1 + p2Q2

when p1 and p2 are well-defined.

Proof. The N1 + N2 coefficients of p1 and p2 solve a system of N1 + N2 linear equations
with fixed right-hand side and the matrix A(ω) depending holomorphically on ω. If ω is
chosen so that Q1 and Q2 are coprime, then the system has a unique solution; therefore,
the determinant of A(ω) is not identically zero. The proposition then follows from Cramer’s
Rule.

We are now ready to prove that R(ω) is meromorphic. It suffices to show that for
each ω0 6∈ ΩR lying in the closure ΩR, ω0 is an isolated non-regular point and R(ω) has
a meromorphic decomposition at ω0 with finite-dimensional principal part. Indeed, in this
case ΩR is open; since it is closed and nonempty by (C), we have ΩR = Ω and the statement
above applies to each ω0.

Let Z1(ω0) ∩ Z2(ω0) = {λ1, . . . , λm}. We choose a ball Ω0 centered at ω0 and disjoint
balls Ul centered at λl such that:
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• for ω ∈ Ω0, the set Z1(ω)∩Z2(ω) is covered by balls Ul and the set Z1(ω)∪Z2(ω) does
not intersect the circles ∂Ul;

• for ω ∈ Ω0 and λ ∈ Ul, we have Rj = Sjl/Qjl, where Sjl are holomorphic and Qjl

are monic polynomials in λ of degree Njl with coefficients holomorphic in ω, and
Qjl(ω0, λ) = (λ− λl)Njl ;

• for ω ∈ Ω0, the set of all roots of Qjl(ω, ·) coincides with Zj(ω) ∩ Ul;

• there exists a contour γ0 that does not intersect any Ul and is admissible for any ω ∈ Ω0

with respect to the sets Zj(ω) \ ∪Ul in place of Zj(ω); moreover, each ∂Ul lies in the
region Γ1 with respect to γ0 (see Definition 1.3.5).

Let us assume that ω ∈ Ω0 is regular. (Such points exist since ω0 lies in the closure of ΩR.)
For every l, the polynomials Q1l(ω, λ) and Q2l(ω, λ) are coprime; we find by Proposition 1.3.8
unique polynomials p1l(ω, λ) and p2l(ω, λ) such that

1 = p1lQ1l + p2lQ2l

and deg p1l < N2l, deg p2l < N1l. The converse is also true: if all coefficients of p1l and p2l

are holomorphic at some point ω for all l, then ω is a regular point. It follows immediately
that ω0 is an isolated non-regular point.

To obtain the meromorphic expansion of R(ω) near ω0, let us take a regular point ω ∈ Ω0

and an admissible contour γ = γ0 + · · ·+ γm, where γ0 is the ω-independent contour defined
above and each γl is a contour lying in Ul. The integral over γ0 is holomorphic near ω0, while∫

γl

R1(ω, λ)⊗R2(ω, λ) dλ

=

∫
γl

S1l(ω, λ)⊗ S2l(ω, λ)

(
p1l(ω, λ)

Q2l(ω, λ)
+
p2l(ω, λ)

Q1l(ω, λ)

)
dλ

=

∫
∂Ul

p1lS1l ⊗R2 dλ =

N2l−1∑
j=0

p1lj(ω)

∫
∂Ul

(λ− λl)jS1l ⊗R2 dλ.

Here p1lj(ω) are the coefficients of p1l as a polynomial of λ− λl; they are meromorphic in ω
and the rest is holomorphic in ω ∈ Ω0.

It remains to prove that R has poles of finite rank. It suffices to show that every derivative
in ω of the last integral above at ω = ω0 has finite rank. Each of these, in turn, is a finite
linear combination of ∫

∂Ul

(λ− λl)j∂aωS1l(ω0, λ)⊗ ∂bωR2(ω0, λ) dλ.

However, since ∂aωS1l(ω0, λ) is holomorphic in λ ∈ Ul, only the principal part of the Laurent
decomposition of ∂bωR2(ω0, λ) at λ = λl will contribute to this integral; therefore, the image
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of each operator in the principal part of Laurent decomposition of R(ω) at ω0 lies in H1⊗V2,
where V2 is a certain finite-dimensional subspace of H2. It remains to show that each of
these images also lies in V1 ⊗ H2, where V1 is a certain finite-dimensional subspace of H1.
This is done by the same argument, using the fact that∫

∂Ul−γl
R1(ω, λ)⊗R2(ω, λ) dλ

can be written in terms of p2l and R1 ⊗ S2l and the integral over ∂Ul is holomorphic at ω0.
The proof of Proposition 1.3.6 is finished.

1.4 Construction of Rg(ω)

As we saw in the previous section, one can deduce the existence of an inverse to Pg = Pr+Pθ
and its properties from certain properties of the inverses to Pr + λ and Pθ − λ for λ ∈ C.
We start with the latter. For a = 0, Pθ is the (negative) Laplace–Beltrami operator for the
round metric on S2; therefore, its eigenvalues are given by λ = l(l + 1) for l ∈ Z, l ≥ 0.
Moreover, if D′k is the space defined in (1.2.2) and there is an eigenfunction of Pθ|D′k with
eigenvalue l(l + 1), then l ≥ k. These observations can be generalized to our case:

Proposition 1.4.1. There exists a two-sided inverse

Rθ(ω, λ) = (Pθ(ω)− λ)−1 : L2(S2)→ H2(S2), (ω, λ) ∈ C2,

with the following properties:
1. Rθ(ω, λ) is meromorphic with poles of finite rank in the sense of Definition 1.3.3 and

it has the following meromorphic decomposition at ω = λ = 0:

Rθ(ω, λ) =
Sθ0(ω, λ)

λ− λθ(ω)
(1.4.1)

where Sθ0 and λθ are holomorphic in a-independent neighborhoods of zero and

Sθ0(0, 0) = −1⊗ 1

4π
, λθ(ω) = O(|ω|2).

2. There exists a constant Cθ such that

‖Rθ(ω, λ)‖L2(S2)∩D′k→L2(S2) ≤
Cθ
|k|2

for |λ| ≤ k2/2, |k| ≥ Cθ|aω|. (1.4.2)

and

‖Rθ(ω, λ)‖L2(S2)∩D′k→L2(S2) ≤
2

| Imλ|
for | Imλ| > Cθ|a|(|aω|+ |k|)| Imω|.

(1.4.3)
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3. For every ψ > 0, there exists a constant Cψ such that

‖Rθ(ω, λ)‖L2(S2)→L2(S2) ≤
Cψ
|λ|

for | arg λ| ≥ ψ, |λ| ≥ Cψ|aω|2. (1.4.4)

Proof. 1. Recall (1.2.3) that Pθ(ω) is a holomorphic family of elliptic second order differential
operators on the sphere. Therefore, for each λ, the operator Pθ(ω) − λ : H2(S2) → L2(S2)
is Fredholm (see for example [123, §7.10]). By Proposition 1.3.4, Rg(ω, λ) is a meromorphic
family of operators L2 → H2.

We now obtain a meromorphic decomposition for Rθ near zero using the framework of
Grushin problems [137, Appendix C]. Let i1 : C→ L2(S2) be the operator of multiplicaton
by the constant function 1 and π1 : H2(S2)→ C be the operator mapping every function to
its integral over the standard measure on the round sphere. Consider the operator A(ω, λ) :
H2 ⊕ C→ L2 ⊕ C given by

A(ω, λ) =

(
Pθ(ω)− λ i1

π1 0

)
.

The kernel and cokernel of Pθ(0) are both one-dimensional and spanned by 1, since this
is the Laplace–Beltrami operator for a certain Riemannian metric on the sphere. (Indeed,
by ellipticity these spaces consist of smooth functions; by self-adjointness, the kernel and
cokernel coincide; one can then apply Green’s formula [123, (2.4.8)] to an element of the
kernel and itself.) Therefore [137, Theorem C.1], the operator B(ω, λ) = A(ω, λ)−1 is well-
defined at (0, 0); then it is well-defined for (ω, λ) in an a-independent neighborhood of zero.
We write

B(ω, λ) =

(
B11(ω, λ) B12(ω, λ)
B21(ω, λ) B22(ω, λ)

)
.

Now, by Schur’s complement formula we have near (0, 0),

Rθ(ω, λ) = B11(ω, λ)−B12(ω, λ)B22(ω, λ)−1B21(ω, λ).

However, B22(ω, λ) is a holomorphic function of two variables, and we can find

B22(ω, λ) =
λ

4π
+O(|ω|2 + |λ|2).

(The ω-derivative vanishes at zero since ∂ωPω(0)|D′0 = 0. To compute the λ-derivative, we
use that B12(0, 0) = i1/4π and B21(0, 0) = π1/4π.) The decomposition (1.4.1) now follows
by Weierstrass Preparation Theorem.

2. We have Pθ(ω) = Pθ(0) + P ′θ(ω), where

P ′θ(ω) =
(1 + α)2aω

∆θ

(−2Dϕ + aω sin2 θ)
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is a first order differential operator and

Pθ(0) =
1

sin θ
Dθ(∆θ sin θDθ) +

(1 + α)2

∆θ sin2 θ
D2
ϕ : H2(S2)→ L2(S2)

satisfies Pθ(0) ≥ k2 on D′k; therefore, if u ∈ H2(S2) ∩ D′k, then

‖u‖L2 ≤ ‖(Pθ(0)− λ)u‖L2

d(λ, k2 + R+)
.

Since
‖P ′θ(ω)‖L2(S2)∩D′k→L2(S2) ≤ 2(1 + α)2|aω|(|aω|+ |k|),

we get

‖u‖L2 ≤ ‖(Pθ(ω)− λ)u‖L2

d(λ, k2 + R+)− C1|aω|(|aω|+ |k|)
, (1.4.5)

provided that the denominator is positive. Here C1 is a global constant.
Now, if |λ| ≤ k2/2, then d(λ, k2 + R+) ≥ k2/2 and

d(λ, k2 + R+)− C1|aω|(|aω|+ |k|) ≥
k2

4
for |k| ≥ 8(1 + C1)|aω|;

together with (1.4.5), this proves (1.4.2).
To prove (1.4.3), introduce

ImPθ(ω) =
1

2
(Pθ(ω)− Pθ(ω)∗) =

2(1 + α)2

∆θ

a Imω(aReω sin2 θ −Dϕ);

we have
‖ ImPθ(ω)‖L2(S2)∩D′k→L2(S2) ≤ 2(1 + α)2|a Imω|(|aω|+ |k|).

However, for u ∈ H2(S2) ∩ D′k,

‖(Pθ(ω)− λ)u‖ · ‖u‖ ≥ | Im((Pθ(ω)− λ)u, u)| ≥ | Imλ| · ‖u‖2 − |(ImPθ(ω)u, u)|
≥ (| Imλ| − 2(1 + α)2|a|(|aω|+ |k|)| Imω|)‖u‖2

and we are done if Cθ ≥ 4(1 + α)2.

3. If | arg λ| ≥ ψ, then d(λ, k2 + R+) ≥ (k2 + |λ|)/C2; here C2 is a constant depending
on ψ. We have then

d(λ, k2 + R+)− C1|aω|(|aω|+ |k|) ≥
1

C2

|λ| − C3|aω|2

for some constant C3, and we are done by (1.4.5).

The analysis of the radial operator Pr is more complicated. In §§1.5–1.7, we prove
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Proposition 1.4.2. There exists a family of operators

Rr(ω, λ, k) : L2
comp(r−, r+)→ H2

loc(r−, r+), (ω, λ) ∈ C2,

with the following properties:
1. For each k ∈ Z, Rr(ω, λ, k) is meromorphic with poles of finite rank in the sense of

Definition 1.3.3, and (Pr(ω, k) + λ)Rr(ω, λ, k)f = f for each f ∈ L2
comp(r−, r+). Also, for

k = 0, Rr admits the following meromorphic decomposition near ω = λ = 0:

Rr(ω, λ, 0) =
Sr0(ω, λ)

λ− λr(ω)
, (1.4.6)

where Sr0 and λr are holomorphic in a-independent neighborhoods of zero and

Sr0(0, 0) =
1⊗ 1

r+ − r−
,

λr(ω) =
i(1 + α)(r2

+ + r2
− + 2a2)

r+ − r−
ω +O(|ω|2).

2. Take δr > 0. Then there exist ψ > 0 and Cr such that for

|λ| ≥ Cr, | arg λ| ≤ ψ, |ak|2 ≤ |λ|/Cr, |ω|2 ≤ |λ|/Cr, (1.4.7)

(ω, λ, k) is not a pole of Rr and we have

‖1KrRr(ω, λ, k)1Kr‖L2→L2 ≤ Cr
|λ|
. (1.4.8)

Also, there exists δr0 > 0 such that, if K+ = [r+ − δr0, r+] and K− = [r−, r− + δr0], then for
each N there exists a constant CN such that under the conditions (1.4.7), we have

‖1K±|r − r±|iA
−1
± (1+α)((r2±+a2)ω−ak)Rr(ω, λ, k)1Kr‖L2→CN (K±) ≤

CN
|λ|N

. (1.4.9)

3. There exists a constant Cω such that Rr(ω, λ, k) does not have any poles for real λ
and real ω with |ω| > Cω|ak|.

4. Assume that Rr has a pole at (ω, λ, k). Then there exists a nonzero solution u ∈
C∞(r−, r+) to the equation (Pr(ω, k) + λ)u = 0 such that the functions

|r − r±|iA
−1
± (1+α)((r2±+a2)ω−ak)u(r)

are real analytic at r±, respectively.
5. Take δr > 0. Then there exists C1r > 0 such that for

Imω > 0, |ak| ≤ |ω|/C1r, | Imλ| ≤ |ω| · Imω/C1r, Reλ ≥ −|ω|2/C1r, (1.4.10)

(ω, λ, k) is not a pole of Rr and we have

‖1KrRr(ω, λ, k)1Kr‖L2→L2 ≤ C1r

|ω| Imω
. (1.4.11)
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Given these two propositions, we can now prove Theorems 1.1–1.4:

Proof of Theorem 1.1. Take k ∈ Z and an arbitrary δr > 0; put H1 = L2(Kr), H2 =
L2(S2) ∩ D′k, R1(ω, λ) = Rr(ω, λ, k), and R2(ω, λ) = Rθ(ω, λ)|D′k ; finally, let the angle ψ
of admissible contours at infinity be chosen as in Proposition 1.4.2. We now apply Propo-
sition 1.3.6. Condition (A) follows from the first parts of Propositions 1.4.1 and 1.4.2.
Condition (B) follows from (1.4.4) and part 2 of Proposition 1.4.2. Finally, condition (C)
holds because every ω ∈ R with |ω| > Cω|ak|, where Cω is the constant from part 3 of
Proposition 1.4.2, is regular. Indeed, Pθ(ω) is self-adjoint and thus has only real eigenvalues.
Now, by Proposition 1.3.6 we can use (1.3.1) to define Rg(ω, k) as a meromorphic family
of operators on L2(XK) ∩ D′k with poles of finite rank. This can be done for any δr > 0;
therefore, Rg(ω, k) is defined as an operator L2

comp(X0) ∩ D′k → L2
loc(X0) ∩ D′k.

Let us now prove that Pg(ω, k)Rg(ω, k)f = f in the sense of distributions for each f ∈
L2

comp. We will use the method of Proposition 1.3.1. Assume that ω is a regular point, so
that Rg(ω, k) is well-defined. By analyticity, we can further assume that ω is real, so that
L2(S2) ∩ D′k has an orthonormal basis of eigenfunctions of Pθ(ω). Then it suffices to prove
that

I = (Rg(ω, k)(fr(r)fθ(θ, ϕ)), Pg(ω)(hr(r)hθ(θ, ϕ))) = (fr, hr) · (fθ, hθ),
where fr, hr ∈ C∞0 (r−, r+), hθ ∈ C∞(S2) ∩ D′k, and fθ ∈ D′k satisfies

Pθ(ω)fθ = λ0fθ, λ0 ∈ R.

Take an admissible contour γ; then

I =
1

2πi

∫
γ

(Rr(ω, λ, k)fr, Pr(ω, k)hr) · (Rθ(ω, λ)fθ, hθ)

+(Rr(ω, λ, k)fr, hr) · (Rθ(ω, λ)fθ, Pθ(ω)hθ) dλ.

However,

Rθ(ω, λ)fθ =
fθ

λ0 − λ
.

It then follows from condition (B) that we can replace γ by a closed bounded contour γ′

which contains λ0, but no poles of Rr. (To obtain γ′, we can cut off the infinite ends of
γ sufficiently far and connect the resulting two endpoints by the arc −ψ ≤ arg λ ≤ ψ; the
integral over the arc can be made arbitrarily small.) Then

I =
1

2πi

∫
γ′

((1− λRr(ω, λ, k))fr, hr) · (Rθ(ω, λ)fθ, hθ)

+(Rr(ω, λ, k)fr, hr) · ((1 + λRθ(ω, λ))fθ, hθ) dλ

=
1

2πi

∫
γ′

(fr, hr) · (Rθ(ω, λ)fθ, hθ) + (Rr(ω, λ, k)fr, hr) · (fθ, hθ) dλ

=
1

2πi

∫
γ′

(fr, hr)(fθ, hθ)

λ0 − λ
dλ = (fr, hr)(fθ, hθ),
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which finishes the proof.
Finally, the operator Pg(ω, k) is the restriction to D′k of the elliptic differential operator

on X0 obtained from Pg(ω) by replacing Dϕ by k in the second term of (1.2.1). Therefore,
by elliptic regularity (see for example [123, §7.4]) the operator Rg(ω, k) acts into H2

loc.

Next, Theorem 1.2 follows from Theorem 1.1, the fact that the operator Pg(ω) is elliptic
on XK for small a (to get H2 regularity instead of L2), and the following estimate on Rg(ω, k)
for large values of k:

Proposition 1.4.3. Fix δr > 0. Then there exists a0 > 0 and a constant Ck such that for
|a| < a0 and |k| ≥ Ck(1 + |ω|), ω is not a pole of Rg(·, k) and we have

‖1XKRg(ω, k)1XK‖L2∩D′k→L2 ≤ Ck
|k|2

. (1.4.12)

Proof. Let ψ,Cr be the constants from part 2 of Proposition 1.4.2 and Cθ, Cψ be the constants
from Proposition 1.4.1. Put λ0 = k2/3; if Ck is large enough, then

|k| > 1 + Cθ|aω|, λ0 > Cψ|aω|2 + Cr(1 + |ω|2).

Take the contour γ consisting of the rays {arg λ = ±ψ, |λ| ≥ λ0} and the arc {|λ| =
λ0, | arg λ| ≤ ψ}. By (1.4.2) and (1.4.4), all poles of Rθ lie inside γ (namely, in the region
{|λ| ≥ λ0, | arg λ| ≤ ψ}), and

‖Rθ(ω, λ)‖L2(S2)∩D′k→L2(S2) ≤
C

|λ|
(1.4.13)

for each λ on γ. Now, suppose that |a| < a0 = (3Cr)
−1/2; then (1.4.7) is satisfied inside γ

and (1.4.12) follows from (1.3.1), (1.4.8), and (1.4.13).

Proof of Theorem 1.3. 1. Fix δr > 0 such that supp f ⊂ XK . Take an admissible contour γ;
then by (1.3.1) and the fact that the considered functions are in D′k,

v± =
1

2πi

∫
γ

(R±r (ω, λ, k)⊗Rθ(ω, λ))f dλ, (1.4.14)

where
R±r (ω, λ, k) = |r − r±|iA

−1
± (1+α)((r2±+a2)ω−ak)Rr(ω, λ, k).

By part 2 of Proposition 1.4.2, we may choose compact sets K± containing r± such that for
each N , there exists a constant CN (depending on ω, k, and γ) such that

‖1K±R±r (ω, λ, k)1Kr‖L2→CN (K±) ≤
CN

1 + |λ|
, λ ∈ γ.
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(The estimate is true over a compact portion of γ since the image of R±r consists of functions
smooth at r = r±, by the construction in §1.5.) Now, by (1.4.4) we get for some constant
C ′N ,

‖R±r (ω, λ, k)⊗Rθ(ω, λ))f‖CN (K±;L2(S2)) ≤
C ′N‖f‖L2

1 + |λ|2
;

by (1.4.14), v± ∈ C∞(K±;L2(S2)).
Now, since (Pr + Pθ)u = f and (assuming that K± ∩ Kr = ∅) f |K±×S2 = 0, we have

(P±r (ω, k) + Pθ(ω))v± = 0 on K± × S2, where

P±r (ω, k) = |r − r±|iA
−1
± (1+α)((r2±+a2)ω−ak)Pr(ω, k)|r − r±|−iA

−1
± (1+α)((r2±+a2)ω−ak)

has smooth coefficients on K± (see 1.5). Then for each N ,

PN
θ v± = (−P±r )Nv± ∈ C∞(K±;L2(S2));

since Pθ is elliptic, we get v± ∈ C∞(K±;H2N(S2)). Therefore, v± ∈ C∞(K± × S2).

2. Let ω be a pole of Rg(ω, k). Then ω is not a regular point; therefore, there exists λ ∈ C
such that (ω, λ) is a pole of both Rr and Rθ. This gives us functions ur(r) and uθ(θ, ϕ) ∈ D′k
such that (Pr(ω, k) + λ)ur = 0 and (Pθ(ω) − λ)uθ = 0. It remains to take u = ur ⊗ uθ and
use part 4 of Proposition 1.4.2.

The following fact will be used in the proof of Theorem 1.4, as well as in §1.8:

Proposition 1.4.4. Fix δr > 0. Let ψ,Cr be the constants from part 2 of Proposition 1.4.2,
Cθ, Cψ be the constants from Proposition 1.4.1, and Ck be the constant from Proposition 1.4.3.
Take ω ∈ C and put

L = (Cr(1 + Ck)
2 + Cψ)(1 + |ω|)2.

Assume that a is small enough so that Proposition 1.4.3 applies and suppose that ω and
l1, l2 > 0 are chosen so that

l1 ≥ Cψ|aω|2, l2 ≥ Cθ|a|(|aω|+ Ck(1 + |ω|))| Imω|, l2 ≤ L sinψ. (1.4.15)

Also, assume that for all λ and k satisfying

|k| ≤ Ck(1 + |ω|), −l1 ≤ Reλ ≤ L, | Imλ| ≤ l2, (1.4.16)

we have the estimate
‖1KrRr(ω, λ, k)1Kr‖L2→L2 ≤ C1 (1.4.17)

for some constant C1 independent of λ and k. Then ω is not a resonance and

‖Rg(ω)‖L2(XK)→L2(XK) ≤ C2

(
1

1 + |ω|2
+

1 + C1(l1 + 1 + |ω|2)

l2
+
C1l2
l1

)
(1.4.18)

for a certain global constant C2.
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Γ1

Γ2

γ1+

γ
1−

γ2+

γ2−

γ3+

γ3−

γ4

Figure 1.2: The admissible contour γ used in Proposition 1.4.4.

Proof. First of all, by Proposition 1.4.3, it suffices to establish the estimate (1.4.18) for the
operator Rg(ω, k), where |k| ≤ Ck(1 + |ω|). Now, by (1.3.1), it suffices to construct an
admissible contour in the sense of Definition 1.3.5 and estimate the norms of Rr and Rθ on
this contour. We take the contour γ composed of:

• the rays γ1± = {arg λ = ±ψ, |λ| ≥ L};

• the arcs γ2± = {| arg λ| ≤ ψ, |λ| = L, ± Imλ ≥ l2};

• the segments γ3± of the lines {Imλ = ±l2} connecting γ2± with γ4;

• the segment γ4 = {Reλ = −l1, | Imλ| ≤ l2}.

Then γ divides the complex plane into two domains; we refer to the domain containing
positive real numbers as Γ2 and to the other domain as Γ1. We claim that Rθ(ω, ·)|D′k has
no poles in Γ1, Rr(ω, ·, k) has no poles in Γ2, and the L2 → L2 operator norm estimates

‖Rθ(ω, λ)‖ ≤ C/|λ|, ‖1KrRr(ω, λ, k)1Kr‖ ≤ C/|λ|, λ ∈ γ1±; (1.4.19)

‖Rθ(ω, λ)|D′k‖ ≤ C/l2, ‖1KrRr(ω, λ, k)1Kr‖ ≤ C/(1 + |ω|2), λ ∈ γ2±; (1.4.20)

‖Rθ(ω, λ)|D′k‖ ≤ C/l2, ‖1KrRr(ω, λ, k)1Kr‖ ≤ C1, λ ∈ γ3±; (1.4.21)

‖Rθ(ω, λ)‖ ≤ C/l1, ‖1KrRr(ω, λ, k)1Kr‖ ≤ C1, λ ∈ γ4 (1.4.22)

hold for some global constant C; then (1.4.18) follows from these estimates and (1.3.1).
First, we prove that Rθ(ω, ·)|D′k has no poles λ ∈ Γ1. First of all, assume that |λ| ≥ L.

Then | arg λ| ≥ ψ and we can apply part 3 of Proposition 1.4.1; we also get the first half
of (1.4.19). Same argument works for Reλ ≤ −l1, and we get the first half of (1.4.22). We
may now assume that |λ| ≤ L and Reλ ≥ −l1; it follows that | Imλ| ≥ l2. But in that case,
we can apply (1.4.3), and we get the first halves of (1.4.20) and (1.4.21).
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Next, we prove that Rr(ω, ·, k) has no poles λ ∈ Γ2. First of all, assume that |λ| ≥ L and
Reλ ≥ 0. Then | arg λ| ≤ ψ and we can apply part 2 of Proposition 1.4.2; we also get the
second halves of (1.4.19) and (1.4.20). Now, in the opposite case, (1.4.16) is satisfied and we
can use (1.4.17) to get the second halves of (1.4.21) and (1.4.22).

Proof of Theorem 1.4. First, we take care of the resonances near zero. By Proposition 1.4.3,
we can assume that k is bounded by some constant. Next, if ω = 0 and a = 0, then Rg(ω, k)
only has a pole for k = 0, and in the latter case, λ = 0 is the only common pole of Rθ(0, ·)
and Rr(0, ·, 0). (In fact, the poles of Rθ(0, ·)|D′k are given by λ = l(l + 1) for l ≥ |k|; an
integration by parts argument shows that Rr(0, ·, k) cannot have poles with Reλ > 0.) The
sets of poles of the resolvents Rθ(ω, λ)|D′k and Rr(ω, λ, k) depend continuously on a in the
sense that, if there are no poles of one of these resolvents for (ω, λ) in a fixed compact set
for a = 0, then this is still true for a small enough. It follows from here and the first parts
of Propositions 1.4.1 and 1.4.2 that there exists εω, ελ > 0 such that for a small enough,

• Rg(ω, k) does not have poles in {|ω| ≤ εω} unless k = 0;

• if |ω| ≤ εω, then all common poles of Rθ(ω, ·)|D′0 and Rr(ω, ·, 0) lie in {|λ| ≤ ελ};

• the decompositions (1.4.1) and (1.4.6) hold for |ω| ≤ εω, |λ| ≤ ελ;

• we have λr(ω) 6= λθ(ω) for 0 < |ω| ≤ εω.

It follows immediately that ω = 0 is the only pole of Rg in {|ω| ≤ εω}. To get the meromor-
phic decomposition, we repeat the argument at the end of §1.3 in our particular case. Note
that for small ω 6= 0,

Rg(ω, 0) =
1

2πi

∫
γ

Rr(ω, λ, 0)⊗Rθ(ω, λ)|D′0 dλ+ Hol(ω)

Here γ is a small contour surrounding λθ(ω), but not λr(ω); the integration is done in the
clockwise direction; Hol denotes a family of operators holomorphic near zero. By (1.4.1)
and (1.4.6), we have

Rg(ω, 0) = Hol(ω) +
1

2πi

∫
γ

Sr0(ω, λ)⊗ Sθ0(ω, λ)

(λ− λr(ω))(λ− λθ(ω))
dλ

= Hol(ω) +
1

λr(ω)− λθ(ω)

1

2πi

∫
γ

(Sr0(ω, λ)⊗ Sθ0(ω, λ))

(
1

λ− λr(ω)
− 1

λ− λθ(ω)

)
dλ

= Hol(ω) +
1

λr(ω)− λθ(ω)
Sr0(ω, λθ(ω))⊗ Sθ0(ω, λθ(ω))

= Hol(ω) +
i(1⊗ 1)

4π(1 + α)(r2
+ + r2

− + 2a2)ω
.

Now, let us consider the case |ω| > εω, Imω > 0. We will apply Proposition 1.4.4 with
l1 = |ω|2/C1r, l2 = |ω| Imω/C1r. Here C1r is the constant in Proposition 1.4.2. Then (1.4.15)
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is true for small a and (1.4.17) follows from (1.4.16) for small a by part 5 of Proposition 1.4.2,
with C1 = C1r/(|ω| Imω). It remains to use (1.4.18).

Finally, assume that ω is a real k-resonance and |ω| > εω. Then by Proposition 1.4.3,
and part 3 of Proposition 1.4.2, if a is small enough, then the operator Rr(ω, ·, k) cannot
have a pole for λ ∈ R. However, the operator Pθ(ω) is self-adjoint and thus only has real
eigenvalues, a contradiction.

1.5 Construction of the radial resolvent

In this section, we prove Proposition 1.4.2, except for part 2, which is proved in §1.7. We
start with a change of variables that maps (r−, r+) to (−∞,∞):

Proposition 1.5.1. Define x = x(r) by

x =

∫ r

r0

ds

∆r(s)
. (1.5.1)

(Here r0 ∈ (r−, r+) is a fixed number.) Then there exists a constant R0 such that for
±x > R0, we have r = r± ∓ F±(e∓A±x), where F±(w) are real analytic on [0, e−A±R0) and
holomorphic in the discs {|w| < e−A±R0} ⊂ C.

Proof. We concentrate on the behavior of x near r+. It is easy to see that −A+x(r) =
ln(r+ − r) +G(r), where G is holomorphic near r = r+. Exponentiating, we get

w = e−A+x = (r+ − r)eG(r).

It remains to apply the inverse function theorem to solve for r as a function of w near
zero.

After the change of variables r → x, we get Pr(ω, k) + λ = ∆−1
r Px(ω, λ, k), where

Px(ω, λ, k) = D2
x + Vx(x;ω, λ, k),

Vx = λ∆r − (1 + α)2((r2 + a2)ω − ak)2.
(1.5.2)

(We treat r and ∆r as functions of x now.) We put

ω± = (1 + α)((r2
± + a2)ω − ak), (1.5.3)

so that Vx(±∞) = −ω2
±. Also, by Proposition 4.1, we get

Vx(x) = V±(e∓A±x), ±x > R0, (1.5.4)

where V±(w) are functions holomorphic in the discs {|w| < e−A±R0}.
We now define outgoing functions:
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Definition 1.5.2. Fix ω, k, λ. A function u(x) (and the corresponding function of r) is
called outgoing at ±∞ iff

u(x) = e±iω±xv±(e∓A±x), (1.5.5)

where v±(w) are holomorphic in a neighborhood of zero. We call u(x) outgoing if it is
outgoing at both infinities.

Let us construct certain solutions outgoing at one of the infinities:

Proposition 1.5.3. There exist solutions u±(x;ω, λ, k) to the equation Pxu± = 0 of the
form

u±(x;ω, λ, k) = e±iω±xv±(e∓A±x;ω, λ, k),

where v±(w;ω, λ, k) is holomorphic in {|w| < W±} and

v±(0;ω, λ, k) =
1

Γ(1− 2iω±A
−1
± )

. (1.5.6)

These solutions are holomorphic in (ω, λ) and are unique unless ν = 2iω±A
−1
± is a positive

integer.

Proof. We only construct the function u+. Let us write the Taylor series for v+ at zero:

v+(w) =
∑
j≥0

vjw
j.

Put w = e−A+x; then the equation Pxu+ = 0 is equivalent to

((A+wDw − ω+)2 + Vx)v± = 0.

By (1.5.2) and Proposition 1.5.1, Vx is a holomorphic function of w for |w| < W+. If
Vx =

∑
j≥0 Vjw

j is the corresponding Taylor series, then we get the following system of
linear equations on the coefficients vj:

jA+(2iω+ − jA+)vj +
∑

0<l≤j

Vlvj−l = 0, j > 0. (1.5.7)

If ν is not a positive integer, then this system has a unique solution under the condition
v0 = Γ(1−ν)−1. This solution can be uniquely holomorphically continued to include the cases
when ν is a positive integer. Indeed, one defines the coefficients v0, . . . , vν by Cramer’s Rule
using the first ν equations in (1.5.7) (this can be done since the zeroes of the determinant of
the corresponding matrix match the poles of the gamma function), and the rest are uniquely
determined by the remaining equations in the system (1.5.7).

We now prove that the series above converges in the disc {|w| < W+}. We take ε > 0;
then |Vj| ≤ M(W+ − ε)−j for some constant M . Then one can use induction and (1.5.7) to
see that |vj| ≤ C(W+−ε)−j for some constant C. Therefore, the Taylor series for v converges
in the disc {|w| < W+ − ε}; since ε was arbitrary, we are done.
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The condition (1.5.6) makes it possible for u± to be zero for certain values of ω±. However,
we have the following

Proposition 1.5.4. Assume that one of the solutions u± is identically zero. Then every
solution u to the equation Pxu = 0 is outgoing at the corresponding infinity.

Proof. Assume that u+(x;ω0, λ0, k0) ≡ 0. (The argument for u− is similar.) Put ν =
2iω0+A

−1
+ ; by (1.5.6), it has to be a positive integer. Similarly to Proposition 1.5.3, we can

construct a nonzero solution u1 to the equation Pxu1 = 0 with

u1(x) = e−iω0+xṽ1(e−A+x)

and ṽ1 holomorphic at zero. We can see that u1(x) = eiω0+xv1(e−A+x), where v1(w) = wν ṽ1(w)
is holomorphic; therefore, u1 is outgoing. Note that u1(x) = o(eiω0+x) as x→ +∞.

Now, since u+(x;ω0, λ0, k0) ≡ 0, we can define

u2(x) = lim
ω→ω0

Γ(1− 2iω+A
−1
+ )u+(x;ω, λ0, k0);

it will be an outgoing solution to the equation Pxu2 = 0 and have u2(x) = eiω0+x(1 + o(1)) as
x→ +∞. We have constructed two linearly independent outgoing solutions to the equation
Pxu = 0; since this equation only has a two-dimensional space of solutions, every its solution
must be outgoing.

The next statement follows directly from the definition of an outgoing solution and will
be used in later sections:

Proposition 1.5.5. Fix δr > 0 and let Kx be the image of the set Kr = (r− + δr, r+ − δr)
under the change of variables r → x. Assume that R0 is chosen large enough so that
Proposition 1.5.1 holds and Kx ⊂ (−R0, R0). Let u(x) ∈ H2

loc(R) be any outgoing function
in the sense of Definition 1.5.2 and assume that f = Pxu is supported in Kx. Then:

1. u can be extended holomorphically to the two half-planes {±Re z > R0} and satisfies
the equation Pzu = 0 in these half-planes, where Pz = D2

z + Vx(z) and Vx(z) is well-defined
by (1.5.4).

2. If γ is a contour in the complex plane given by Im z = F (Re z), x− ≤ Re z ≤ x+, and
F (x) = 0 for |x| ≤ R0, then we can define the restriction to γ of the holomorphic extension
of u by

uγ(x) = u(x+ iF (x))

and uγ satisfies the equation Pγuγ = f , where

Pγ =

(
1

1 + iF ′(x)
Dx

)2

+ Vx(x+ iF (x)).

3. Assume that γ is as above, with x± = ±∞, and F ′(x) = c = const for large |x|.
Then uγ(x) = O(e∓ Im((1+ic)ω±)x) as x→ ±∞. As a consequence, if Im((1 + ic)ω±) > 0, then
uγ(x) ∈ H2(R).
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We are now ready to prove Proposition 1.4.2.

Proof of part 1. Given the functions u±, define the operator Sx(ω, λ, k) on R by its Schwartz
kernel

Sx(x, x
′;ω, λ, k) = u+(x)u−(x′)[x > x′] + u−(x)u+(x′)[x < x′].

The operator Sx(ω, λ) acts L2
comp(R) → H2

loc(R) and PxSx = W (ω, λ, k), where the Wron-
skian

W (ω, λ, k) = u+(x;ω, λ, k) · ∂xu−(x;ω, λ, k)− u−(x;ω, λ, k) · ∂xu+(x;ω, λ, k)

is constant in x. Moreover, W (ω, λ, k) = 0 if and only if u+(x;ω, λ, k) and u−(x;ω, λ, k) are
linearly dependent as functions of x. Also, the image of Sx consists of outgoing functions.

Now, we define the radial resolvent Rr(ω, λ, k) = Rx(ω, λ, k)∆r, where

Rx(ω, λ, k) =
Sx(ω, λ, k)

W (ω, λ, k)
. (1.5.8)

It is clear that Rr is a meromorphic family of operators L2
comp → H2

loc and (Pr + λ)Rr is the
identity operator. We now prove that Rx, and thus Rr, has poles of finite rank. Fix k and
take (ω0, λ0) ∈ {W = 0}; we need to prove that for every l, the principal part of the Laurent
decomposition of ∂lωRx(ω0, λ, k) at λ = λ0 consists of finite-dimensional operators. We use
induction on l. One has Px(ω, λ, k)Rx(ω, λ, k) = 1; differentiating this identity l times in ω,
we get

Px(ω0, λ, k)∂lωRx(ω0, λ, k) = δl01 +
l∑

m=1

cml∂
m
ω Px(ω0, λ, k)∂l−mω Rx(ω0, λ, k).

(Here cml are some constants.) The right-hand side has poles of finite rank by the induction
hypothesis. Now, consider the Laurent decomposition

∂lωRx(ω0, λ, k) = Q(λ) +
N∑
j=1

Rj

(λ− λ0)j
.

Here Q is holomorphic at λ0. Multiplying by Px, we get

N∑
j=1

Px(ω0, λ, k)Rj

(λ− λ0)j
∼

N∑
j=1

Lj
(λ− λ0)j

up to operators holomorphic at λ0. Here Lj are some finite-dimensional operators. We then
have

Px(ω0, λ0, k)RN = LN ,

Px(ω0, λ0, k)RN−1 = LN−1 − (∂λPx(ω0, λ0, k))RN , . . .
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Each of the right-hand sides has finite rank and the kernel of Px(ω0, λ0, k) is two-dimensional;
therefore, each Rj is finite-dimensional as required. (We also see immediately that the image
of each Rj consists of smooth functions.)

Finally, we establish the decomposition at zero. As in part 1 of Proposition 1.4.1, it
suffices to compute Sx(0, 0, 0) and the first order terms in the Taylor expansion of W at
(0, 0, 0). We have u±(x; 0, 0, 0) = 1 for all x; therefore, Sx(x, x

′; 0, 0, 0) = 1. Next, put
uω±(x) = ∂ωu±(x; 0, 0, 0) and uλ±(x) = ∂λu±(x; 0, 0, 0). By differentiating the equation
Pxu± = 0 in ω and λ and recalling the boundary conditions at ±∞, we get

∂2
xuλ±(x) = ∆r,

uλ±(x) = vλ±(e∓A±x), ±x� 0;

∂2
xuω±(x) = 0,

uω±(x) = ±i(1 + α)(r2
± + a2)x+ vω±(e∓A±x), ±x� 0,

for some functions vλ±, vω± real analytic at zero. We then find

∂λW (0, 0, 0) = ∂x(u−λ − u+λ) =

∫ ∞
−∞

∆r dx = r+ − r−,

∂ωW (0, 0, 0) = ∂x(u−ω − u+ω) = −i(1 + α)(r2
+ + r2

− + 2a2).

Proof of part 3. Assume that ω and λ are both real and Rr has a pole at (ω, λ, k). Let u(x)
be the corresponding resonant state; we know that it has the asymptotics

u±(x) = e±iω±xU±(1 +O(e∓A±x)), x→ ±∞;

∂xu±(x) = e±iω±xU±(±iω± +O(e∓A±x)), x→ ±∞

for some nonzero constants U±. Since Vx(x;ω, λ, k) is real-valued, both u and ū solve the
equation (D2

x+Vx(x))u = 0. Then the Wronskian Wu(x) = u ·∂xū− ū ·∂xu must be constant;
however,

Wu(x)→ ∓2iω±|U±|2 as x→ ±∞.

Then we must have ω+ω− ≤ 0; it follows immediately that |ω| = O(|ak|).

Proof of part 4. First, assume that neither of u± is identically zero. Then the resolvent Rx,
and thus Rr, has a pole iff the functions u± are linearly dependent, or, in other words, if
there exists a nonzero outgoing solution u(x) to the equation Pxu = 0. Now, if one of u±,
say, u+, is identically zero, then by Proposition 1.5.4, u− will be an outgoing solution at
both infinities.

Proof of part 5. Assume that u(x) is outgoing and Px(ω, λ, k)u = f ∈ L2(Kx). Since Imω >
0, we have Imω± > 0 and thus u ∈ H2(R).

First, assume that | argω− π/2| < ε, where ε > 0 is a constant to be chosen later. Then

ReVx(x) = (1 + α)2(r2 + a2)2(Imω)2 + Reλ ·∆r − (1 + α)2((r2 + a2) Reω − ak)2;
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using (1.4.10), we can choose ε and C1r so that ReVx(x) ≥ |ω|2/C > 0 for all x ∈ R. Then

‖u‖L2(R) · ‖f‖L2(R) ≥ Re

∫
ū(x)(D2

x + Vx(x))u(x) dx

≥
∫

ReVx(x)|u|2 dx ≥ C−1|ω|2‖u‖2
L2(R)

and (1.4.11) follows.
Now, assume that | argω − π/2| ≥ ε. Then

ImVx(x) = −2(1 + α)2((r2 + a2) Reω − ak)(r2 + a2) Imω + Imλ ·∆r;

it follows from (1.4.10) that we can choose C1r so that the sign of ImVx(x) is constant in x
(positive if argω > π/2 and negative otherwise) and, in fact, | ImVx(x)| ≥ |ω| Imω/C > 0
for all x. Then (assuming that ImVx(x) > 0)

‖u‖L2(R) · ‖f‖L2(R) ≥ Im

∫
ū(x)(D2

x + Vx(x))u(x) dx

=

∫
ImVx(x)|u|2 dx ≥ C−1|ω| Imω‖u‖2

L2(R)

and (1.4.11) follows.

1.6 Semiclassical preliminaries for radial analysis

In this section, we list certain facts from semiclassical analysis needed in the further analysis
of our radial operator. For a general introduction to semiclassical analysis, the reader is
referred to [137].

Let a(x, ξ) belong to the symbol class

Sm = {a(x, ξ) ∈ C∞(R2) | sup
x,ξ
〈ξ〉|β|−m|∂αx∂

β
ξ a(x, ξ)| ≤ Cαβ for all α, β}.

Here m ∈ R and 〈ξ〉 =
√

1 + |ξ|2. Following [137, §8.6], we define the corresponding semi-
classical pseudodifferential operator aw(x, hDx) by the formula

aw(x, hDx)u(x) =
1

2πh

∫
e
i
h

(x−y)ηa

(
x+ y

2
, η

)
u(y) dydη.

Here h > 0 is the semiclassical parameter. We denote by Ψm the class of all semiclassical
pseudodifferential operators with symbols in Sm. Introduce the semiclassical Sobolev spaces
H l
h ⊂ D′(R) with the norm ‖u‖Hl

h
= ‖〈hDx〉lu‖L2 ; then for a ∈ Sm, we have

‖aw(x, hDx)‖Hl
h→H

l−m
h
≤ C,
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where C is a constant depending on a, but not on h. Also, if a(x, ξ) ∈ C∞0 (R2), then

‖aw(x, hDx)‖L2(R)→L∞(R) ≤ Ch−1/2, (1.6.1)

where C is a constant depending on a, but not on h. (See [137, Theorem 7.10] for the proof.)
General facts on multiplication of pseudodifferential operators can be found in [137, §8.6].

We will need the following: for a ∈ Sm and b ∈ Sn, 4

if supp a ∩ supp b = ∅, then aw(x, hDx)b
w(x, hDx) = OL2→HN

h
(h∞) for all N ; (1.6.2)

aw(x, hDx)b
w(x, hDx) = (ab)w(x, hDx) +OΨm+n−1(h), (1.6.3)

[aw(x, hDx), b
w(x, hDx)] = −ih{a, b}w(x, hDx) +OΨm+n−2(h2). (1.6.4)

Here {·, ·} is the Poisson bracket, defined by {a, b} = ∂ξa · ∂xb− ∂ξb · ∂xa. Also, if A ∈ Ψm,
then the adjoint operator A∗ also lies in Ψm and its symbol is the complex conjugate of the
symbol of A.

One can study pseudodifferential operators on manifolds [137, Appendix E], and on
particular on the circle S1 = R/2πZ. If a(x, ξ) = a(ξ) is a symbol on T ∗S1 that is independent
of x, then aw(hDx) is a Fourier series multiplier modulo O(h∞): for each N ,

if u(x) =
∑
j∈Z

uje
ijx, then a(hDx)u(x) =

∑
j∈Z

a(hj)uje
ijx +OHN

h
(h∞)‖u‖L2 . (1.6.5)

In the next three propositions, we assume that P (h) ∈ Ψm and P (h) = pw(x, hDx) +
OΨl:skds−ellipticm−1(h), where p(x, ξ) ∈ Sm.

Proposition 1.6.1. (Elliptic estimate) Suppose that the function χ ∈ S0 is chosen so that
|p| ≥ 〈ξ〉m/C > 0 on suppχ for some h-independent constant C. Also, assume that either
the set suppχ or its complement is precompact. Then there exists a constant C1 such that
for each u ∈ Hm

h ,

‖χw(x, hDx)u‖Hm
h
≤ C1‖P (h)u‖L2 +O(h∞)‖u‖L2 . (1.6.6)

Proof. The proof follows the standard parametrix construction. We find a sequence of sym-
bols qj(x, ξ;h) ∈ S−m−j, j ≥ 0, such that for

QN(h) =
∑

0≤j≤N

hjqwj (x, hDx),

we get
(QN(h)P (h)− 1)χw(x, hDx) = OΨ−N−1(hN+1); (1.6.7)

applying this operator equation to u, we prove the proposition.
We can take any q0 ∈ Ψ−m such that q0 = p−1 near suppχ; such a symbol exists under our

assumptions. The rest of qj can be constructed by induction using the equation (1.6.7).

4We write A(h) = OX(hk) for some Fréchet space X, if for each seminorm ‖ · ‖X of X, there exists a
constant C such that ‖A(h)‖X ≤ Chk. We write A(h) = OX(h∞) if A(h) = OX(hk) for all k.
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Proposition 1.6.2. (G̊arding inequalities) Suppose that χ ∈ C∞0 (R2).
1. If Re p ≥ 0 near suppχ, then there exists a constant C such that for every u ∈ L2,

Re(P (h)χwu, χwu) ≥ −Ch‖χwu‖2
L2 −O(h∞)‖u‖2

L2 . (1.6.8)

2. If Re p ≥ 2ε > 0 near suppχ for some constant ε > 0, then for h small enough and
every u ∈ L2,

Re(P (h)χwu, χwu) ≥ ε‖χwu‖2
L2 −O(h∞)‖u‖2

L2 . (1.6.9)

Proof. 1. Take χ1 ∈ C∞0 (R2;R) such that χ1 = 1 near suppχ, but Re p ≥ 0 near suppχ1.
Then, apply the standard sharp G̊arding inequality [137, Theorem 4.24] to the operator
χw1 P (h)χw1 and the function χwu, and use (1.6.2).

2. Apply part 1 of this proposition to the operator P (h)− 2ε.

Proposition 1.6.3. (Exponentiation of pseudodifferential operators) Assume that G ∈ C∞0 (R2),
s ∈ R, and define the operator esG

w
: L2 → L2 as

esG
w

=
∑
j≥0

(sGw)j

j!
.

Assume that |s| is bounded by an h-independent constant. Then:
1. esG

w ∈ Ψ0 is a pseudodifferential operator.
2. esG

w
P (h)e−sG

w
= P (h) + ish(HpG)w +OL2→L2(h2).

Proof. 1. See for example [137, Theorem 8.3] (with m(x, ξ) = 1). The full symbol of esG
w

can be recovered from the evolution equation satisfied by this family of operators; we see
that it is equal to 1 outside of a compact set.

2. It suffices to differentiate both sides of the equation in s, divide them by h, and
compare the principal symbols.

1.7 Analysis near the zero energy

In this section, we prove part 2 of Proposition 1.4.2. Take h > 0 such that Reλ = h−2. Put

µ̃ = h2 Imλ, k̃ = hk, ω̃ = hω, ω̃± = hω±;

then (1.4.7) implies that

|µ| ≤ εr, |ak̃| ≤ εr, |ω̃| ≤ εr, |ω̃±| ≤ εr, (1.7.1)

where εr > 0 and h can be made arbitrarily small by choice of Cr and ψ. If Px is the operator
in (1.5.2), then Px = h−2P̃x, where

P̃x(h; ω̃, µ̃, k̃) = h2D2
x + Ṽx(x; ω̃, µ̃, k̃),

Ṽx(x; ω̃, µ̃, k̃) = (1 + iµ̃)∆r − (1 + α)2((r2 + a2)ω̃ − ak̃)2.
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Now, we use Proposition 1.5.5. Let u be an outgoing function in the sense of Defini-
tion 1.5.2 and assume that f = P̃xu is supported in Kx. Then u satisfies (1.5.5) for |x| > R0

and some functions v±. Fix x+ > R0 and consider the function

v1(y) = v+(e−A+(x++iy);ω, λ, k), y ∈ R. (1.7.2)

This is a 2π/A+-periodic function; we can think of it as a function on the circle. It follows
from the differential equation satisfied by v+ together with Cauchy-Riemann equations that
Q(h)v1(y) = 0, where

Q(h; ω̃, µ̃, k̃) = (−ihDy + ω̃+)2 + Ṽx(x+ + iy; ω̃, µ̃, k̃).

Let q(y, η) be the semiclassical symbol of Q:

q(y, η) = (−iη + ω̃+)2 + Ṽx(x+ + iy).

For small h, the function v1(y) has to be (semiclassically) microlocalized on the set {q = 0}.
Since the symbol q is complex-valued, in a generic situation this set will consist of isolated
points. Also, since v1 is the restriction to a certain circle of the function v+, which is
holomorphic inside this circle, it is microlocalized in {η ≤ 0}. Therefore, if the equation
q(y, η) = 0 has only one root with η ≤ 0, then the function v1 has to be microlocalized at
this root. If furthermore q̄ satisfies Hörmander’s hypoellipticity condition, one can obtain an
asymptotic decomposition of v1 in powers of h. We will only need a weak corollary of such
decomposition; here is a self-contained proof of the required estimates:

Proposition 1.7.1. Assume that x+ > R0 is chosen so that:

• the equation q(y, η) = 0, y ∈ S1, has exactly one root (y0, η0) such that η0 < 0;

• the equation q(y, η) = 0 has no roots with η = 0;

• the condition i{q, q̄} < 0 is satisfied at (y0, η0);

• Re(η0 + iω̃+) < 0.

(If all of the above hold, we say that we have vertical control at x+ and (y0, η0) is called the
microlocalization point.) Let η(y) be the family of solutions to q(y, η(y)) = 0 with η(y0) = η0.
Then for each N , each χ(y, η) ∈ C∞0 that is equal to 1 near (y0, η0), and h small enough, we
have

‖(1− χw(y, hDy))v1‖HN
h

= O(h∞)‖v1‖L2 , (1.7.3)

‖(hDy − η(y))v1‖HN
h

= O(h)‖v1‖L2 , (1.7.4)

‖v1‖L2 ≤ Ch1/4|v1(y0)|, (1.7.5)

|(hDy − η0)v1(y0)| ≤ Ch1/2‖v1‖L2 , (1.7.6)

Re

(
h∂xu+(x+ + iy0)

u+(x+ + iy0)

)
≤ − 1

C
< 0. (1.7.7)

Similar statements are true for u+ replaced by u−, with the opposite inequality sign in (1.7.7).
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Proof. (1.7.3): We know that

inf{η | q(y, η) = 0, (y, η) 6= (y0, η0)} > 0.

Therefore, we can decompose 1 = χ + χ+ + χ0, where χ+ depends only on the η variable,
is supported in {η > 0}, and is equal to 1 for large positive η and near every root of the
equation q(y, η) = 0 with η > 0. Since v+ is holomorphic at zero, its Taylor series provides
the Fourier series for v1; it then follows from (1.6.5) that

‖χw+(y, hDy)v1‖HN
h

= O(h∞)‖v1‖L2 .

Next, the symbol q is elliptic near suppχ0; therefore, by Proposition 1.6.1 (whose proof
applies without changes to our case), since Q(h)v1 = 0, we have

‖χw0 (y, hDy)v1‖HN
h

= O(h∞)‖v1‖L2 .

This finishes the proof.

(1.7.4): Take a small cutoff χ as above, and factor q = (η − η(y))q1, where q1(y, η) is
nonzero near suppχ. We then find a compactly supported symbol r1 with r1q1 = 1 near
suppχ. Now, we have

‖χw(y, hDy)(r
w
1 (y, hDy)q

w
1 (y, hDy)− 1)(hDy − η(y))v1‖HN

h
= O(h)‖v1‖L2 ,

‖(1− χw(y, hDy))(r
w
1 (y, hDy)q

w
1 (y, hDy)− 1)(hDy − η(y))v1‖HN

h
= O(h∞)‖v1‖L2 ,

‖rw1 (y, hDy)(q
w
1 (y, hDy)(hDy − η(y))−Q(h))v1‖HN

h
= O(h)‖v1‖L2 .

It remains to add these up.

(1.7.5): We cut off v1 to make it supported in a small ε-neighborhood of y0. Put f =
(h∂y − iη(y))v1; we know that ‖f‖L2 ≤ Ch‖v1‖L2 . Now, put

Φ(y) =

∫ y

y0

η(y′) dy′.

The condition i{q, q̄}|(y0,η0) < 0 is equivalent to

Im ∂yη(y0) > 0;

it follows that
Im(Φ(y)− Φ(y′)) ≥ β((y − y0)2 − (y′ − y0)2) (1.7.8)

for some β > 0, |y − y0| < ε, and y′ between y and y0. (To see that, represent the left-hand
side as an integral.) Now,

v1(y) = eiΦ(y)/hv1(y0) + h−1

∫ y

y0

ei(Φ(y)−Φ(y′))/hf(y′) dy′.
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Let Tf(y) be the second term in the sum above; it suffices to prove that

‖Tf‖L2(y0−ε,y0+ε) ≤ Ch−1/2‖f‖L2(y0−ε,y0+ε).

This can be reduced to the inequalities

sup
0≤y−y0<ε

∫ y

y0

|ei(Φ(y)−Φ(y′))/h| dy′ = O(h1/2),

sup
0≤y′−y0<ε

∫ y0+ε

y′
|ei(Φ(y)−Φ(y′))/h| dy = O(h1/2).

and similar inequalities for the case y, y′ < y0. We now use (1.7.8); after a change of variables,
it suffices to prove that

sup
y>0

∫ y

0

e(y′)2−y2 dy′ <∞, sup
y′>0

∫ ∞
y′

e(y′)2−y2 dy <∞.

To prove the first of these inequalities, make the change of variables y′ = ys; then the integral
becomes ∫ 1

0

yey
2(s2−1) ds.

However, yey
2(s2−1) ≤ C(1− s2)−1/2, and the integral of the latter converges.

After the change of variables y = y′ + s, the integral of the second inequality above
becomes ∫ ∞

0

e−2y′s−s2 ds.

This can be estimated by
∫
e−s

2
ds.

(1.7.6): Let χ ∈ C∞0 (R2) have χ = 1 near (y0, η0). Combining (1.6.1) and (1.7.4) with

‖(1− χw(y, hDy))(hDy − η(y))v1‖L∞ = O(h∞)‖v1‖L2 ,

we get ‖(hDy − η(y))v1‖L∞ = O(h1/2)‖v1‖L2 ; it remains to take y = y0.
(1.7.7): Follows immediately from (1.7.5), (1.7.6), (1.7.2), Cauchy-Riemann equations,

and the fact that Re(η0 + iω̃+) < 0.

If P̃x were a semiclassical Schrödinger operator with a strictly positive potential, then a
standard integration by parts argument would give us ‖u‖L2 ≤ C‖P̃xu‖L2 on any interval
for each function u satisfying the condition (1.7.7) at the right endpoint of this interval and
the opposite condition at its left endpoint. We now generalize this argument to our case.
Assume that we have vertical control at the points x±, ±x± > R0, and let (y±, η±) be the
corresponding microlocalization points. Let γ be a contour in the z plane; we say that we
have horizontal control on γ if:

• γ ∩ {|Re z| ≤ R0} ⊂ R;
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xX0−X0
x+x−

x+ + iy+

x− + iy−
γ

γ

Figure 1.3: A contour with horizontal control.

• the endpoints of γ are z± = x± + iy±;

• γ is given by Im z = F (Re z), where F is a smooth function and F ′(x±) = 0;

• Re[(1 + iF ′(x))Ṽx(x+ iF (x))] ≥ 1
C1
> 0 for all x.

Now, let u be as in the beginning of this section and define uγ(x), x− ≤ x ≤ x+, by
Proposition 1.5.5. Then P̃γuγ = f , where

P̃γ =

(
1

1 + iF ′(x)
hDx

)2

+ Ṽx(x+ iF (x)).

If we have vertical control at the endpoints of γ, then by (1.7.7),

±Re(uγ(x±)h∂xuγ(x±)) ≤ −|uγ(x±)|2/C < 0.

Now, assume that we have horizontal control on γ. Then we can integrate by parts to get∫ x+

x−

Re(uγ(1 + iF ′(x))f) dx =

∫ x+

x−

Re(uγ · (1 + iF ′(x))P̃γuγ) dx

=

∫ x+

x−

Re
|hDxuγ|2

1 + iF ′(x)
dx+

∫ x+

x−

Re[(1 + iF ′(x))Ṽx(x+ iF (x))] · |uγ|2 dx

−h2 Re(uγ∂xuγ)|x+x=x− ≥
1

C1

(‖uγ‖2
L2 + h(|uγ(x+)|2 + |uγ(x−)|2)).

(1.7.9)

Therefore,
‖uγ‖L2 ≤ C‖f‖L2 .

It follows that the operator Rx from (1.5.8) is correctly defined and

‖1KxRx1Kx‖L2→L2 ≤ Ch2,

This proves the estimate (1.4.8) under the assumptions made above.
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We now prove (1.4.9). We concentrate on the estimate onK+; the case ofK− is considered
in a similar fashion. First of all, it follows from (1.7.9) that

|uγ(x+)| ≤ Ch−1/2‖f‖L2 . (1.7.10)

Now, assume that we have vertical control at every point of the interval I+ = [x+, x+ + 1]
and let (y(x), η(x)), x ∈ I+, be the corresponding microlocalization points. Let vx(z) =
e−iω+zu(z) and put v2(x) = vx(x+ iy(x)); then

|v2(x+)| ≤ CeIm(ω+z+)|uγ(x+)|. (1.7.11)

Now, by Proposition 1.7.1, we have

|h∂x ln |v2(x)| − η(x)| ≤ Ch3/4, x ∈ I+. (1.7.12)

Integrating (1.7.12) and combining it with (1.7.10) and (1.7.11), we see that if

Im(ω̃+z+) +

∫ x++1

x+

η(x) dx < −2δ0 (1.7.13)

for some δ0 > 0, then |v2(x+ + 1)| ≤ Ce−δ0/h‖f‖L2 . Next, v2(x+ + 1) is the value of v at the
microlocalization point; therefore, by Proposition 1.7.1 and (1.6.1),

sup
y∈R
|vx(x+ + 1 + iy)| ≤ Ch−1/4e−δ0/h‖f‖L2 .

Finally, recall that vx(z) = vw(e−A+z), where the function vw(w) is holomorphic inside the
disc Bw = {|w| ≤ e−A+(x++1)}. The change of variables w → r is holomorphic by Proposi-
tion 1.5.1; let Kw

+ be the image of K+ under this change of variables. If δr0 is small enough,
then Kw

+ lies in the interior of Bw; then by the maximum principle and Cauchy estimates
on derivatives, we can estimate ‖vw‖CN (Kw

+) for each N by O(h∞)‖f‖L2 . This completes the

proof of (1.4.9) if the conditions above are satisfied.
To prove part 2 of Proposition 1.4.2, it remains to establish both vertical and horizontal

control in our situation:

Proposition 1.7.2. Assume that δr > 0. Then there exist εr and x±, ±x± > R0, such that
under the conditions (1.7.1),

• we have vertical control at every point of the intervals I+ = [x+, x+ + 1] and I− =
[x− − 1, x−];

• we have horizontal control on a certain contour γ;

• the inequality (1.7.13) (and its analogue on I−) holds.
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Proof. Let us first assume that ak̃ = µ̃ = ω̃ = 0. Then ω̃± = 0 and q(y, η) = −η2 + ∆r(x+ +
iy). Therefore, if we choose x+ large enough, there exists exactly one solution (y0, η0) to the
equation q(y, η) = 0 with η ≤ 0, and this solution has y0 = 0. It is easy to verify that in that
case we have vertical control on I+. Similarly one can choose the point x−; moreover, we
can assume that Kr ⊂ (x−, x+) after the change of variables r → x. Next, since Ṽx = ∆r, we
can take γ to be the interval [x−, x+] of the real line. The condition (1.7.13) holds because
η(x) < 0 for every x and ω̃± = 0.

Now, fix x± as above. The parameters of our problem are a, varying in a compact set, Λ
and M , both fixed, and ak̃, µ̃, ω̃. By the implicit function theorem, if the last three param-
eters are small enough, the (open) conditions of vertical control and the condition (1.7.13)
are still satisfied, yielding y± close to zero. Then one can take the contour γ defined by
Im z = F (Re z), where F = 0 near Kr, F (x±) = y±, and F is small in C∞. For small values
of ak̃, µ̃, ω̃, we will still have horizontal control on this γ, proving the proposition.

1.8 Resonance free strip

In this section, we prove Theorem 1.5. First of all, by Proposition 1.4.4, it suffices to prove

Proposition 1.8.1. Fix δr > 0, εe > 0, and a large constant C ′. Then there exist constants
a0 > 0 and C ′′ such that for

|Reλ|+ k2 ≤ C ′|Reω|2, |a| < a0, |Reω| ≥ 1/C ′′,

| Imω| ≤ 1/C ′′, | Imλ| ≤ |Reω|/C ′′

we have
‖1KrRr(ω, λ, k)1Kr‖L2→L2 ≤ C ′′|ω|εe−1.

Indeed, we take C ′ large enough so that C2
k(1 + |ω|)2 +L ≤ C ′|ω|2/2; then, we put l1 = L

and l2 = |Reω|/C ′′.
Next, we reformulate Proposition 1.8.1 in semiclassical terms. Without loss of generality,

we may assume that Reω > 0. Put h = (Reω)−1 and consider the rescaled operator

P̃x = h2Px = h2D2
x + (λ̃+ ihµ̃)∆r − (1 + α)2((r2 + a2)(1 + ihν)− ak̃)2.

Here Px is the operator in (1.5.2) and

λ̃ = h2 Reλ, k̃ = hk, µ̃ = h Imλ, ν = Imω.

Then it suffices to prove that for h small enough and under the conditions

|λ̃| ≤ C ′, |k̃| ≤ C ′, |µ̃| ≤ 1/C ′′, |ν| ≤ 1/C ′′, (1.8.1)

for each f(x) ∈ L2 ∩ E ′(Kx) and solution u(x) to the equation P̃xu = f which is outgoing in
the sense of Definition 1.5.2, we have

‖u‖L2(Kx) ≤ Ch−1−εe‖f‖L2 . (1.8.2)



CHAPTER 1. CONSTRUCTION OF RESONANCES FOR BLACK HOLES 40

R R+ 1

−R−R− 1

Figure 1.4: The contour used for complex scaling.

(Here Kx is the image of Kr = (r− + δr, r+ − δr) under the change of variables r → x.) We

write P̃x = h2D2
x + Ṽ0 + ihṼ1, where

Ṽ0 = λ̃∆r − (1 + α)2(r2 + a2 − ak̃)2,

Ṽ1 = µ̃∆r − ν(1 + α)2(r2 + a2)((r2 + a2)(2 + ihν)− 2ak̃)2.

We note that Ṽ0 is real-valued and ‖Ṽ1‖L∞ ≤ C/C ′′ for some global constant C.

We now apply the method of complex scaling. (This method was first developed by
Aguilar and Combes in [1]; see [115] and the references there for more recent developments.)
Consider the contour γ in the complex plane given by Im x = F (Rex), with F defined by

F (x) =


0, |x| ≤ R;

F0(x−R), x ≥ R;

−F0(−x−R), x ≤ −R.
(1.8.3)

Here R > R0 is large and F0 ∈ C∞0 (0,∞) is a fixed function such that F ′0 ≥ 0 and F ′′0 ≥ 0
for all x and F ′0(x) = 1 for x ≥ 1. (We could use a contour which forms an arbitrary fixed
angle θ̃ ∈ (0, π/2) with the horizonal axis for large x; we choose the angle π/4 to simplify
the formulas.) Now, let u be an outgoing solution to the equation P̃xu = f ∈ L2∩E ′(Kx), as
above. By Proposition 1.5.5, we can define the restriction uγ of u to γ and P̃γuγ = f , where

P̃γ =

(
h

1 + iF ′(x)
Dx

)2

+ Ṽ0(x+ iF (x)) + ihṼ1(x+ iF (x)).

Also, for a and h small enough, uγ lies in H2(R). Therefore, in order to prove (1.8.2), it is
enough to show that for each uγ ∈ H2(R), we have

‖uγ‖L2(R) ≤ Ch−1−εe‖P̃γuγ‖L2(R). (1.8.4)
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Let p0 and pγ0 be the semiclassical principal symbols of P̃x and P̃γ:

p0(x, ξ) = ξ2 + Ṽ0(x),

pγ0(x, ξ) =
ξ2

(1 + iF ′(x))2
+ Ṽ0(x+ iF (x)).

The key property of the operator P̃γ, as opposed to P̃x, is ellipticity at infinity, which follows

from the fact that Ṽ0(±∞) = −ω̃2
0±, where

ω̃0± = (1 + α)(r2
± + a2 − ak̃) ≥ 1/C > 0

if a is small enough. Certain other properties of the symbol pγ0 can be derived using only the

behavior of Ṽ0 near infinity given by (1.5.4); we state them for a general class of potentials:

Proposition 1.8.2. Assume that V (x), x > 0, is a real-valued potential such that for x > R0,
we have V (x) = V+(e−A+x) for a certain constant A+ > 0 and a function V+(w) holomorphic
in {|w| < e−A+R0}; assume also that V+(0) < 0. Let F (x) be as in (1.8.3), for R > R0, and
put

p(x, ξ) = ξ2 + V (x),

pγ(x, ξ) =
ξ2

(1 + iF ′(x))2
+ V (x+ iF (x)).

Then there exists a constant Cc such that for R large enough and δ > 0 small enough,

if x ≥ R + 1, then |pγ(x, ξ)| ≥ 1/Cc > 0, (1.8.5)

if |pγ(x, ξ)| ≤ e−A+R, then Im pγ(x, ξ) ≤ 0, (1.8.6)

if |pγ(x, ξ)| ≤ δ, then |p(x, ξ)| ≤ Ccδ, |∇(Re pγ − p)(x, ξ)| ≤ Ccδ. (1.8.7)

Similar facts hold if V is defined on x < 0 instead.

Proof. Without loss of generality, we assume that A+ = 1 and V+(0) = −1. First of all, if
x ≥ R + 1, then

pγ(x, ξ) = −iξ2/2 + V (x+ iF (x)) = −iξ2/2− 1 +O(e−R).

For R large enough, we then get |pγ(x, ξ)| ≥ 1/2, thus proving (1.8.5).
For the rest of the proof, we may assume that R ≤ x ≤ R+1. Then, since F ′0 is increasing,

we get 0 ≤ F (x) ≤ F ′(x). Suppose that |pγ(x, ξ)| ≤ δ; then

ξ2

(1 + iF ′(x))2
= −V (x+ iF (x)) +O(δ)

= −V (x)(1 +O(δ + e−RF (x))) = 1 +O(δ + e−R).

(1.8.8)
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Taking the arguments of both sides, we get

F ′(x) ≤ C(δ + e−RF (x)) ≤ Cδ + Ce−RF ′(x).

Then for R large enough,
|pγ(x, ξ)| ≤ δ → F ′(x) ≤ Cδ.

This proves (1.8.7), if we note that F ′′ is bounded and

Re pγ(x, ξ)− p(x, ξ) = ξ2G1(F ′(x)2) +G2(F (x), x)

for certain smooth functions G1 and G2 that are equal to zero at F ′ = 0 and F = 0,
respectively.

Now, putting δ = e−R and taking the arguments and then the absolute values of both
sides of (1.8.8), we get for |pγ| ≤ δ,

F ′(x) = O(e−R), ξ2 = 1 +O(e−R).

Therefore,

Im pγ(x, ξ) = −2F ′(x) +O(e−R(F (x) + F ′(x))) = F ′(x)(−2 +O(e−R)),

which proves (1.8.6).

Now, we study the trapping properties of the Hamiltonian flow of p0 at the zero energy:

Proposition 1.8.3. There exist constants CV and δV such that for a small enough and every
λ̃, k̃ satisfying (1.8.1), at least one of the three dynamical cases below holds:

(1) Ṽ0 ≤ −δV everywhere;

(2) {|Ṽ0| ≤ δV } = [x1, x2] t [x3, x4], where −CV ≤ x1 < x2 < x3 < x4 ≤ CV and Ṽ ′0 ≥ 1/CV
on [x1, x2], Ṽ ′0 ≤ −1/CV on [x3, x4];

(3) {Ṽ0 ≥ −δV } = [x1, x2] with |xj| ≤ CV , Ṽ ′′0 ≤ −1/CV on [x1, x2].

Proof. First of all, if λ̃ is small enough or λ̃ < 0, then we have Ṽ0 < 0 everywhere and
therefore case (1) holds for δV small enough. Therefore, we may assume that 1/C ≤ λ̃ ≤ C
for some constant C. Now, we write

Ṽ0(x) = GV (r)(FV (r)− λ̃−1),

GV (r) = λ̃(1 + α)2(r2 + a2 − ak̃)2,

FV (r) =
∆r

(1 + α)2(r2 + a2 − ak̃)2
.
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Figure 1.5: Three cases for the potential Ṽ0 and its Hamiltonian flow near the zero energy.
The horizontal lines correspond to Ṽ0 = ±δV .

Note that 1/C ≤ GV (r) ≤ C for a small enough, some constant C, and all r. As for FV ,
there exists ε > 0 such that for a small enough, ∂rFV (r) ≥ 1/C > 0 for r ≤ 3M − ε,
∂rFV (r) ≤ −1/C < 0 for r ≥ 3M + ε, and ∂2

rFV (r) ≤ −1/C < 0 for |r − 3M | ≤ ε.
Indeed, this is true for a = 0 and follows for small a by a perturbation argument. Let
r0 ∈ [3M − ε, 3M + ε] be the point where FV achieves its maximal value. Take small δ1 > 0;
then we have one of the following three cases, each of which in turn implies the corresponding
case in the statement of this proposition:

(1) FV (r0)− λ̃−1 ≤ −δ1. Then Ṽ0(x) < −δV for all x and δV > 0 small enough.

(2) FV (r0) − λ̃−1 ≥ δ1. Then for δ2 < δ1/2, {|FV − λ̃−1| ≤ δ2} = [x1, x2] t [x3, x4], where
x2 < x3, xj are bounded by a global constant (since λ̃ is bounded from above), and
∂rFV (r) > 1/Cδ > 0 for x ∈ [x1, x2], ∂rFV (r) < −1/Cδ < 0 for x ∈ [x3, x4]. Here Cδ is a
constant depending on δ1, but not on δ2. It follows that for δ2 small enough depending
on δ1, we have Ṽ ′0(x) > 0 for x ∈ [x1, x2] and Ṽ ′0(x) < 0 for x ∈ [x3, x4]; also, for δV small

enough, we have {|Ṽ0| ≤ δV } ⊂ [x1, x2] t [x3, x4].

(3) |FV (r0) − λ̃−1| < δ1. Then {FV − λ̃−1 > −δ1} = [x1, x2] with ∂2
rFV (r) < −1/C < 0 for

x ∈ [x1, x2]. For δ1 small enough, we then get Ṽ ′′0 < −1/C < 0 for x ∈ [x1, x2], and for

δV small enough, we have {Ṽ0 ≥ −δV } ⊂ [x1, x2].

We are now ready to prove (1.8.4) and, therefore, Theorem 1.5. Fix R large enough so
that Proposition 1.8.2 holds. The first two cases are in Proposition 1.8.3 are nontrapping;
it follows that there exists an escape function G ∈ C∞0 (R2) such that Hp0G < 0 on {|p0| ≤
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δV /2} ∩ {|x| ≤ R + 2}. In the third case, we have hyperbolic trapping with the trapped

set consisting of a single point (x0, 0), where x0 is the point where Ṽ0 achieves its maximal
value; therefore, there still exists an escape function G ∈ C∞0 (R2) such that Hp0G ≤ 0 on
{|p0| ≤ δV /2} ∩ {|x| ≤ R + 2} and Hp0G < 0 on {|p0| ≤ δV /2} ∩ {|x| ≤ R + 2} \ U(x0, 0),
where U is a neighborhood of (x0, 0) which can be made arbitrarily small by the choice of
G (see [56, Proposition A.6]). Now, given Proposition 1.8.2, we can choose δ0 > 0 such that

Im pγ0 ≤ 0 on {|pγ0| ≤ δ0} (1.8.9)

and for cases (1) and (2) of Proposition 1.8.3, we have

HRe pγ0G ≤ −1/C < 0 on {|pγ0| ≤ δ0}, (1.8.10)

and for case (3) of Proposition 1.8.3, we have

HRe pγ0G ≤ 0 on {|pγ0| ≤ δ0},
HRe pγ0G ≤ −1/C < 0 on {|pγ0| ≤ δ0} \ U(x0, 0).

(1.8.11)

Armed with these inequalities, we can handle the nontrapping cases even without re-
quiring that µ and ν be small. The statement below follows the method initially developed
in [85] and is a special case of the results in [34, Chapter 6]; however, we choose to present
the proof in our simple case:

Proposition 1.8.4. Assume that either case (1) or case (2) of Proposition 1.8.3 holds. Then
for λ̃ and k̃ bounded by C ′, µ̃ and ν bounded by some constant, and h small enough, we have

‖uγ‖L2 ≤ Ch−1‖P̃γuγ‖L2 (1.8.12)

for each uγ ∈ H2(R).

Proof. Take χ ∈ C∞0 (R2) such that suppχ ⊂ {|pγ0| < δ0}, but χ = 1 near {pγ0 = 0}. Next,
take s > 0, to be chosen later, and put

P̃γ,s = esG
w

P̃γe
−sGw , uγ,s = esG

w

χwuγ.

Take χ1 ∈ C∞0 (R2) supported in {|pγ0| < δ0}, but such that χ1 = 1 near suppχ. Then by
part 1 of Proposition 1.6.3 and (1.6.2),

‖(1− χw1 )uγ,s‖ = O(h∞)‖uγ‖. (1.8.13)

(In the proof of the current proposition, as well as the next one, we only use L2 norms.)
Also, for some s-dependent constant C,

C−1‖χwuγ‖ ≤ ‖uγ,s‖ ≤ C‖uγ‖.
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Now, by part 2 of Proposition 1.6.3, we have

P̃γ,s = P̃γ0 + ihV1 + ish(Hpγ,0G)w +O(h2).

Here P̃γ0 is the principal part of P̃γ (without V1) and the constant in O(h2) depends on s.
We then have

Im(P̃γ,sχ
w
1 uγ,s, χ

w
1 uγ,s) = Im(P̃γ0χ

w
1 uγ,s, χ

w
1 uγ,s) + hRe(V1χ

w
1 uγ,s, χ

w
1 uγ,s)

+sh((HRe pγ,0G)wχw1 uγ,s, χ
w
1 uγ,s) +O(h2)‖χw1 uγ,s‖2.

By (1.8.9) and part 1 of Proposition 1.6.2,

Im(P̃γ0χ
w
1 uγ,s, χ

w
1 uγ,s) ≤ Ch‖χw1 uγ,s‖2 +O(h∞)‖uγ‖2.

Next, by (1.8.10) and part 2 of Proposition 1.6.2,

((HRe pγ,0G)wχw1 uγ,s, χ
w
1 uγ,s) ≤ −C−1‖χw1 uγ,s‖2 +O(h∞)‖uγ‖2.

Adding these up, we get

Im(P̃γ,sχ
w
1 uγ,s, χ

w
1 uγ,s) ≤ −h(C−1

1 s− C1 −O(h))‖χw1 uγ,s‖2 +O(h∞)‖uγ‖2.

Here the constants in O(·) depend on s, but the constant C1 does not. Therefore, if we
choose s large enough and h-independent, then for small h we have the estimate

‖χw1 uγ,s‖2 ≤ Ch−1‖P̃γ,sχw1 uγ,s‖ · ‖χw1 uγ,s‖+O(h∞)‖uγ‖2.

Together with (1.8.13), this gives

‖χwuγ‖2 ≤ Ch−1‖P̃γuγ‖ · ‖uγ‖+ Ch−1‖[P̃γ, χw]uγ‖ · ‖uγ‖+O(h∞)‖uγ‖2.

Applying Proposition 1.6.1 to estimate (1− χw)uγ and the commutator term above, we get
the estimate (1.8.12).

Remark. The method described above can actually be used to obtain a logarithmic res-
onance free region; however, since we expect the resonances generated by trapping to lie
asymptotically on a lattice as in [103], we only go a fixed amount deep into the complex
plane.

The third case in Proposition 1.8.3 is where trapping occurs, and we analyse it as in [132]:
(See also [18] for a different method of solving the same problem.)

Proposition 1.8.5. Assume that case (3) in Proposition 1.8.3 holds, and fix εe > 0. Then
for λ̃ and k̃ bounded by C ′ and for µ̃, ν, h small enough, we have

‖uγ‖L2 ≤ Ch−1−εe‖P̃γuγ‖L2 (1.8.14)

for each uγ ∈ H2(R).
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Proof. First, we establish [132, Lemma 4.1] in our case. Let x0 be the point where Ṽ0 achieves

its maximum value. We may assume that |p0(x0, 0)| = |Ṽ0(x0)| < δ0/2; otherwise, we are in
one of the two nontrapping cases. Put

ξ̃(x) = sgn(x− x0)

√
Ṽ0(x0)− Ṽ0(x);

since Ṽ ′′0 (x0) < 0, it is a smooth function. Then, define the functions ϕ±(x, ξ) = ξ ∓ ξ̃(x).
We have

Hp0ϕ±(x, ξ) = ∓c(x, ξ)ϕ±(x, ξ),

where c(x, ξ) = 2∂xξ̃(x) is greater than zero near the trapped point (x0, 0). Also, {ϕ+, ϕ−} =
c(x, ξ). Next, take h̃ > h and large C0 > 0, let χ0 ≥ 0 be supported in a small neighborhood
of (x0, 0) with χ0 = 1 near this point, and define the modified escape function [132, (4.6)]

G1(x, ξ) = −χ0(x, ξ) log
ϕ2
−(x, ξ) + h/h̃

ϕ2
+(x, ξ) + h/h̃

+ C0 log(1/h)G(x, ξ).

Here G is an escape function satisfying (1.8.11). We can write

HRe pγ,0G1 = −2χ0c

(
ϕ2
−

ϕ2
− + h/h̃

+
ϕ2

+

ϕ2
+ + h/h̃

)
−(Hp0χ0) log

ϕ2
− + h/h̃

ϕ2
+ + h/h̃

+ C0 log(1/h)HRe pγ0G(x, ξ).

(1.8.15)

Take χ1 supported in {|pγ0| < δ0}, but equal to 1 near {pγ0 = 0}. Then one can use the
uncertainty principle [132, §4.2] to show that if χ2 is supported inside {χ0 = 1}, but χ2 = 1
near (x0, 0), then for each v ∈ L2,

((HRe pγ,0G1)wχw1 v, χ
w
1 v) ≤ (−C−1h̃+O(h̃2))‖χw2 v‖2 +O(log(1/h))‖(1− χw2 )χw1 v‖2

−C0C
−1 log(1/h)‖(1− χw2 )χw1 v‖2 +O(C0h log(1/h))‖χw1 v‖2 +O(h∞)‖v‖2

≤ −(C−1h̃−O(h̃2 + C0h log(1/h)))‖χw2 v‖2

−(C0C
−1 log(1/h)−O(C0h log(1/h) + log(1/h)))‖(1− χw2 )χw1 v‖2 +O(h∞)‖v‖2.

If we fix C0 large enough and h̃ small enough and assume that h small enough, then

((HRe pγ,0G1)wχw1 v, χ
w
1 v) ≤ −C−1 log(1/h)‖(1− χw2 )χw1 v‖2 − C−1h̃‖χw1 v‖2 +O(h∞)‖v‖2.

Next, we conjugate by exponential pseudodifferential weights. First of all, one can prove
that

‖Gw
1 ‖L2→L2 ≤ C log(1/h);

therefore,
‖esGw1 ‖L2→L2 ≤ h−C|s|.
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Let χ be supported in {χ1 = 1}, but χ = 1 near {pγ0 = 0}, and

Pγ,s = esG
w
1 Pγe

−sGw1 , uγ,s = esG
w
1 χwuγ;

then [132, §4.3]

Pγ,s = Pγ + ish(Hpγ0G1)w +O(s2h̃h+ sh3/2h̃3/2 + h2).

Therefore, since Im pγ0 = 0 near suppχ2,

Im(P̃γ,sχ
w
1 uγ,s, χ

w
1 uγ,s) = Im(P̃γ0χ

w
1 uγ,s, χ

w
1 uγ,s) + hRe(V1χ

w
1 uγ,s, χ

w
1 uγ,s)

+shRe((HRe pγ,0G1)wχw1 uγ,s, χ
w
1 uγ,s) +O(s2hh̃+ sh3/2h̃3/2 + h2)‖χw1 uγ,s‖2

≤ O(h)‖(1− χw2 )χw1 uγ,s‖2 + h‖V1‖L∞‖χw1 uγ,s‖2 − C−1sh log(1/h)‖(1− χw2 )χw1 uγ,s‖2

−C−1shh̃‖χw1 uγ,s‖2 +O(s2hh̃+ sh3/2h̃3/2 + h2)‖χw1 uγ,s‖2 +O(h∞)‖uγ‖2.

Here P̃γ0 is the principal part of P̃γ, as before. If we choose s small enough independently
of h, then for small h,

Im(P̃γ,sχ
w
1 uγ,s, χ

w
1 uγ,s) ≤ −C1sh log(1/h)‖(1− χw2 )χw1 uγ,s‖2

−h(C−1sh̃− ‖V1‖L∞)‖χw1 uγ,s‖2 +O(h∞)‖uγ‖2.

Now, ‖V1‖L∞ can be made very small by choosing µ̃ and ν small enough. Then, we get

‖χwuγ‖2 ≤ Ch−1−Cs‖uγ‖ · ‖Pγχwuγ‖+O(h∞)‖uγ‖2.

By proceeding as in the end of Proposition 1.8.4, we get (1.8.14), provided that s is small
enough.
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Chapter 2

Asymptotic distribution of resonances
for Kerr–de Sitter black holes

2.1 Introduction

Quasi-normal modes (QNMs) of black holes are a topic of continued interest in theoretical
physics: from the classical interpretation as ringdown of gravitational waves [21] to the recent
investigations in the context of string theory [74]. The ringdown plays a role in experimental
projects aimed at the detection of gravitational waves, such as LIGO [3]. See [79] for an
overview of the vast physics literature on the topic and [13, 135] for some more recent
developments.

In this chapter we consider the Kerr–de Sitter model of a rotating black hole and assume
that the speed of rotation a is small; for a = 0, one gets the stationary Schwarzschild–
de Sitter black hole. The de Sitter model corresponds to assuming that the cosmological
constant Λ is positive, which is consistent with the current Lambda-CDM standard model
of cosmology.

A rigorous definition of quasi-normal modes for Kerr–de Sitter black holes was given
using the scattering resolvent in Chapter 1. In Theorem 2.1 below we give an asymptotic
description of QNMs in a band of any fixed width, that is, for any bounded decay rate. The
result confirms the heuristic analogy with the Zeeman effect: the high multiplicity modes
for the Schwarzschild black hole split.

Theorem 2.2 confirms the standard interpretation of QNMs as complex frequencies of
exponentially decaying gravitational waves; namely, we show that the solutions of the scalar
linear wave equation in the Kerr–de Sitter background can be expanded in terms of QNMs.

In the mathematics literature quasi-normal modes of black holes were studied by Bache-
lot, Motet-Bachelot, and Pravica [8, 9, 10, 99] using the methods of scattering theory. QNMs
of Schwarzschild–de Sitter metric were then investigated by Sá Barreto–Zworski [103], result-
ing in the lattice of pseudopoles given by (2.1.3) below. For this case, Bony–Häfner [17] estab-
lished polynomial cutoff resolvent estimates and a resonance expansion, Melrose–Sá Barreto–
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Vasy [90] obtained exponential decay for solutions to the wave equation up to the event hori-
zons, and Dafermos–Rodnianski [33] used physical space methods to obtain decay of linear
waves better than any power of t.

Quasi-normal modes for Kerr–de Sitter were rigorously defined in Chapter 1 and expo-
nential decay beyond event horizons was proved in [46]. Vasy [128] has recently obtained
a microlocal description of the scattering resolvent and in particular recovered the results
of Chapter 1 and [46] on meromorphy of the resolvent and exponential decay; see [128,
Appendix] for how his work relates to Chapter 1. The crucial component for obtaining ex-
ponential decay was the work of Wunsch–Zworski [132] on resolvent estimates for normally
hyperbolic trapping.

We add that there have been many papers on decay of linear waves for Schwarzschild and
Kerr black holes — see [4, 16, 30, 29, 41, 42, 52, 53, 121, 122, 125] and references given there.
In that case the cosmological constant is 0 (unlike in the de Sitter case, where it is positive),
and the methods of scattering theory are harder to apply because of an asymptotically
Euclidean infinity.

Theorem 2.1. Fix the mass M of the black hole and the cosmological constant Λ. (See
§2.2.1 for details.) Then there exists a constant a0 > 0 such that for |a| < a0 and each ν0,
there exist constants Cω, Cm

1 such that the set of quasi-normal modes ω satisfying

Reω > Cω, Imω > −ν0 (2.1.1)

coincides modulo O(|ω|−∞) with the set of pseudopoles

ω = F(m, l, k), m, l, k ∈ Z, 0 ≤ m ≤ Cm, |k| ≤ l. (2.1.2)

(Since the set of QNMs is symmetric with respect to the imaginary axis, one also gets an
asymptotic description for Reω negative. Also, by Theorem 1.4, all QNMs lie in the lower
half-plane.) Here F is a complex valued classical symbol2 of order 1 in the (l, k) variables,
defined and smooth in the cone {m ∈ [0, Cm], |k| ≤ l} ⊂ R3. The principal symbol F0 of F
is real-valued and independent of m; moreover,

F =

√
1− 9ΛM2

3
√

3M
[(l + 1/2)− i(m+ 1/2)] +O(l−1) for a = 0, (2.1.3)

(∂kF0)(m,±k, k) =
(2 + 9ΛM2)a

27M2
+O(a2). (2.1.4)

The pseudopoles (2.1.2) can be computed numerically; we have implemented this com-
putation in a special case l − |k| = O(1) and compared the pseudopoles with the QNMs

1As in Chapter 1, the indices ω,m, . . . next to constants, symbols, operators, and functions do not imply
differentiation.

2Here ‘symbol’ means a microlocal symbol as in for example [123, §8.1]. For the proofs, however, we will
mostly use semiclassical symbols, as defined in §2.3.1.
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computed by the authors of [13]. The results are described in §2.B. One should note that
the quantization condition of [103] was stated up to O(l−1) error, while Theorem 2.1 has error
O(l−∞); we demonstrate numerically that increasing the order of the quantization condition
leads to a substantially better approximation.

Another difference between (2.1.2) and the quantization condition of [103] is the extra
parameter k, resulting from the lack of spherical symmetry of the problem. In fact, for a = 0
each pole in (2.1.3) has multiplicity 2l + 1; for a 6= 0 this pole splits into 2l + 1 distinct
QNMs, each corresponding to its own value of k, the angular momentum with respect to the
axis of rotation. (The resulting QNMs do not coincide for small values of a, as illustrated
by (2.1.4)). In the physics literature this is considered an analogue of the Zeeman effect.

Since the proof of Theorem 2.1 only uses microlocal analysis away from the event horizons,
it implies estimates on the cutoff resolvent polynomial in ω (Proposition 2.2.4). Combining
these with the detailed analysis away from the trapped set (and in particular near the
event horizons) by Vasy [128], we obtain estimates on the resolvent on the whole space
(Proposition 2.2.3). These in turn allow a contour deformation argument leading to an
expansion of waves in terms of quasinormal modes. Such expansions have a long tradition
in scattering theory going back to Lax–Phillips and Vainberg — see [120] for the strongly
trapping case and for references.

For Schwarzschild-de Sitter black holes a full expansion involving infinite sums over quasi-
normal modes was obtained in [17] (see also [23] for simpler expansions involving infinite sums
over resonances). The next theorem presents an expansion of waves for Kerr–de Sitter black
holes in the same style as the Bony–Häfner expansion:

Theorem 2.2. Under the assumptions of Theorem 2.1, take ν0 > 0 such that for some
ε > 0, every QNM ω has | Imω + ν0| > ε. (Such ν0 exists and can be chosen arbitrarily
large, as the imaginary parts of QNMs lie within O(|a|+ l−1) of those in (2.1.3).) Then for
s large enough depending on ν0, there exists a constant C such that every solution u to the
Cauchy problem on the Kerr–de Sitter space

�gu = 0, u|t∗=0 = f0 ∈ Hs(X−δ), ∂t∗u|t∗=0 = f1 ∈ Hs−1(X−δ), (2.1.5)

where X−δ = (r− − δ, r+ + δ) × S2 is the space slice, t∗ is the time variable, and δ > 0 is a
small constant (see §2.2.1 for details), satisfies for t∗ > 0,

‖u(t∗)− Πν0(f0, f1)(t∗)‖H1(X−δ) ≤ Ce−ν0t
∗
(‖f0‖Hs + ‖f1‖Hs−1). (2.1.6)

Here
Πν0(f0, f1)(t∗) =

∑
Im ω̂>−ν0

e−it
∗ω̂

∑
0≤j<Jω̂

(t∗)jΠω̂,j(f0, f1); (2.1.7)

the outer sum is over QNMs ω̂, Jω̂ is the algebraic multiplicity of ω̂ as a pole of the scattering
resolvent, and Πω̂,j are finite rank operators mapping Hs(X−δ) ⊕ Hs−1(X−δ) → C∞(X−δ).
Moreover, for |ω̂| large enough (that is, for all but a finite number of QNMs in the considered
strip), Jω̂ = 1, Πω̂,0 has rank one, and

‖Πω̂,0‖Hs(X−δ)⊕Hs−1(X−δ)→H1(X−δ) ≤ C|ω̂|N−s.
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Here N is a constant depending on ν0, but not on s; therefore, the series (2.1.7) converges
in H1 for s > N + 2.

The proofs start with the Teukolsky separation of variables already used in Chapter 1,
which reduces our problem to obtaining quantization conditions and resolvent estimates for
certain radial and angular operators (Propositions 2.2.6 and 2.2.7). These conditions are
stated and used to obtain Theorems 2.1 and 2.2 in §2.2. Also, at the end of §2.2.2 we
present the separation argument in the simpler special case a = 0, for convenience of the
reader.

In the spherically symmetric case a = 0, the angular problem is the eigenvalue problem
for the Laplace–Beltrami operator on the round sphere. For a 6= 0, the angular operator Pθ
is not selfadjoint; however, in the semiclassical scaling it is an operator of real principal type
with completely integrable Hamiltonian flow. We can then use some of the methods of [65]
to obtain a microlocal normal form for h2Pθ; since our perturbation is O(h), we are able to
avoid using analyticity of the coefficients of Pθ. The quantization condition we get is global,
similarly to [130]. The proof is contained in §2.4; it uses various tools from semiclassical
analysis described in §2.3.

To complete the proof of the angular quantization condition, we need to extract informa-
tion about the joint spectrum of h2Pθ and hDϕ from the microlocal normal form; for that,
we formulate a Grushin problem for several commuting operators. The problem that needs
to be overcome here is that existence of joint spectrum is only guaranteed by exact commu-
tation of the original operators, while semiclassical methods always give O(h∞) errors. This
complication does not appear in [65, 66] as they study the spectrum of a single operator,
nor in earlier works [22, 130] on joint spectrum of differential operators, as they use spec-
tral theory of selfadjoint operators. Since this part of the construction can be formulated
independently of the rest, we describe Grushin problems for several operators in an abstract
setting in Appendix 2.A.

The radial problem is equivalent to one-dimensional semiclassical potential scattering.
The principal part of the potential is real-valued and has a unique quadratic maximum; the
proof of the quantization condition follows the methods developed in [27, 100, 110]. In [27],
the microlocal behavior of the principal symbol near a hyperbolic critical point is studied in
detail; however, only self-adjoint operators are considered and the phenomenon that gives
rise to resonances in our case does not appear. The latter phenomenon is studied in [100]
and [110]; our radial quantization condition, proved in §2.5, can be viewed as a consequence
of [100, Theorems 2 and 4]. However, we do not compute the scattering matrix, which
simplifies the calculations; we also avoid using analyticity of the potential near its maximum
and formulate the quantization condition by means of real microlocal analysis instead of the
action integral in the complex plane. As in [100], we use analyticity of the potential near
infinity and the exact WKB method to relate the microlocal approximate solutions to the
outgoing condition at infinity; however, the construction is somewhat simplified compared
to [100, Sections 2 and 3] using the special form of the potential.

It would be interesting to see whether our statements still hold if one perturbs the metric,
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or if one drops the assumption of smallness of a. Near the event horizons, we rely on §1.7,
which uses a perturbation argument (thus smallness of a) and analyticity of the metric
near the event horizons. Same applies to §2.5.2 of the present chapter; the exact WKB
construction there requires analyticity and Proposition 2.5.2 uses that the values ω± defined
in (2.5.9) are nonzero, which might not be true for large a. However, it is very possible
that the construction of the scattering resolvent of [128] can be used instead. The methods
of [128] are stable under rather general perturbations, see [128, §2.7], and apply in particular
to Kerr–de Sitter black holes with a satisfying [128, (6.12)].

A more serious problem is the fact that Theorem 2.1 is a quantization condition, and
thus is expected to hold only when the geodesic flow is completely integrable, at least on
the trapped set. For large a, the separation of variables of §2.2.2 is still valid, and it is
conceivable that the global structure of the angular integrable system in §2.4.2 and of the
radial barrier-top Schrödinger operator in §2.5.1 would be preserved, yielding Theorem 2.1
in this case. Even then, the proof of Theorem 2.2 no longer applies as it relies on having
gaps between the imaginary parts of resonances, which might disappear for large a.

However, a generic smooth perturbation of the metric supported near the trapped set
will destroy complete integrability and thus any hope of obtaining Theorem 2.1. One way of
dealing with this is to impose the condition that the geodesic flow is completely integrable
on the trapped set. In principle, the global analysis of [130] together with the methods
for handling O(h) nonselfadjoint perturbations developed in §2.4 and Appendix 2.A should
provide the quantization condition in the direction of the trapped set, while the barrier-
top resonance analysis of §2.5.3 should handle the transversal directions. However, without
separation of variables one might need to merge these methods and construct a normal form
at the trapped set which is not presented here.

Another possibility is to try to establish Theorem 2.2 without a quantization condition,
perhaps under the (stable under perturbations) assumption that the trapped set is nor-
mally hyperbolic as in [132]. However, this will require to rethink the contour deformation
argument, as it is not clear which contour to deform to when there is no stratification of
resonances by depth, corresponding to the parameter m in Theorem 2.1.

2.2 Proofs of Theorems 2.1 and 2.2

2.2.1 Properties of the metric

First of all, we define Kerr–de Sitter metric and briefly review how solutions of the wave
equation are related to the scattering resolvent; see also §1.2 and [128, §6]. The metric is
given by

g = −ρ2
(dr2

∆r

+
dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2
(a dt− (r2 + a2) dϕ)2

+
∆r

(1 + α)2ρ2
(dt− a sin2 θ dϕ)2.
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Here θ ∈ [0, π] and ϕ ∈ R/2πZ are the spherical coordinates on S2 and r, t take values in
R; M is the mass of the black hole, Λ is the cosmological constant, and a is the angular
momentum;

∆r = (r2 + a2)
(

1− Λr2

3

)
− 2Mr, ∆θ = 1 + α cos2 θ,

ρ2 = r2 + a2 cos2 θ, α =
Λa2

3
.

The metric in the (t, r, θ, ϕ) coordinates is defined for ∆r > 0; we assume that this happens
on an open interval r ∈ (r−, r+), where r± are two of the roots of the fourth order polynomial
equation ∆r(r) = 0. The metric becomes singular at r = r±; however, this apparent singu-
larity goes away if we consider the following version of the Kerr-star coordinates (see [30,
§5.1] and [122]):

t∗ = t− Ft(r), ϕ∗ = ϕ− Fϕ(r), (2.2.1)

with the functions Ft, Fϕ blowing up like c± log |r− r±| as r approaches r±. One can choose
Ft, Fϕ so that the metric continues smoothly across the surfaces {r = r±}, called event
horizons, to

X̃−δ = Rt ×X−δ, X−δ = (r− − δ, r+ + δ)× S2,

with δ > 0 is a small constant. Moreover, the surfaces {t∗ = const} are spacelike, while
the surfaces {r = const} are timelike for r ∈ (r−, r+), spacelike for r 6∈ [r−, r+], and null
for r ∈ {r−, r+}. See 1.2, [46, §1.1], or [128, §6.4] for more information on how to construct
Ft, Fϕ with these properties.

Let �g be the d’Alembert–Beltrami operator of the Kerr–de Sitter metric. Take f ∈
Hs−1(X̃−δ) for some s ≥ 1, and furthermore assume that f is supported in {0 ≤ t∗ ≤ 1}.
Then, since the boundary of X̃−δ is spacelike and every positive time oriented vector at
∂X̃−δ points outside of X̃−δ, by the theory of hyperbolic equations (see for example [30,

Proposition 3.1.1] or [123, Sections 2.8 and 7.7]) there exists unique solution u ∈ Hs
loc(X̃−δ)

to the problem
�gu = f, suppu ⊂ {t∗ ≥ 0}. (2.2.2)

We will henceforth consider the problem (2.2.2); the Cauchy problem (2.1.5) can be reduced
to (2.2.2) as follows. Assume that u solves (2.1.5) with some f0 ∈ Hs(X−δ), f1 ∈ Hs−1(X−δ).
Take a function χ ∈ C∞(R) such that suppχ ⊂ {t∗ > 0} and supp(1− χ) ⊂ {t∗ < 1}; then
χ(t∗)u solves (2.2.2) with f = [�g, χ]u supported in {0 ≤ t∗ ≤ 1} and the Hs−1 norm of f
is controlled by ‖f0‖Hs + ‖f1‖Hs−1 .

Since the metric is stationary, there exists a constant Ce such that every solution u
to (2.2.2) grows slower than e(Ce−1)t∗ ; see Proposition 1.2.1. Therefore, the Fourier–Laplace
transform

û(ω) =

∫
eiωt

∗
u(t∗) dt∗
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is well-defined and holomorphic in {Imω ≥ Ce}. Here both u(t∗) and u(ω) are functions on
X−δ. Moreover, if f̂(ω) is the Fourier–Laplace transform of f , then

Pg(ω)û(ω) = ρ2f̂(ω), Imω ≥ Ce, (2.2.3)

where Pg(ω) is the stationary d’Alembert–Beltrami operator, obtained by replacing Dt∗

with −ω in ρ2�g. (The ρ2 factor will prove useful in the next subsection.) Finally, since f

is supported in {0 ≤ t∗ ≤ 1}, the function f̂(ω) is holomorphic in the entire C, and

‖〈ω〉s−1f̂(ω)‖Hs−1

〈ω〉−1 (X−δ)
≤ C‖f‖Hs−1(X̃−δ)

(2.2.4)

for Imω bounded by a fixed constant. Here Hs−1
h , h > 0, is the semiclassical Sobolev

space, consisting of the same functions as Hs−1, but with norm ‖〈hD〉s−1f‖L2 instead of
‖〈D〉s−1f‖L2 .

If Pg(ω) was, say, an elliptic operator, then the equation (2.2.3) would have many solu-
tions; however, because of the degeneracies occuring at the event horizons, the requirement
that û ∈ Hs acts as a boundary condition. This situation was examined in detail in [128]; the
following proposition follows from [128, Theorem 1.2 and Lemma 3.1] (see Proposition 1.2.2
for the cutoff version):

Proposition 2.2.1. Fix ν0 > 0. Then for s large enough depending on ν0, there exists a
family of operators (called the scattering resolvent)

R(ω) : Hs−1(X−δ)→ Hs(X−δ), Imω ≥ −ν0,

meromorphic with poles of finite rank and such that for u solving (2.2.2), we have

û(ω) = R(ω)f̂(ω), Imω ≥ Ce. (2.2.5)

Note that even though we originally defined the left-hand side of (2.2.5) for Imω ≥ Ce,
the right-hand side of this equation makes sense in a wider region Imω ≥ −ν0, and in fact
in the entire complex plane if f is smooth. The idea now is to use Fourier inversion formula

u(t∗) =
1

2π

∫
Imω=Ce

e−iωt
∗
R(ω)f̂(ω) dω (2.2.6)

and deform the contour of integration to {Imω = −ν0} to get exponential decay via the
e−iωt

∗
factor. We pick up residues from the poles of R(ω) when deforming the contour;

therefore, one defines quasi-normal modes as the poles of R(ω).
Our ability to deform the contour and estimate the resulting integral depends on having

polynomial resolvent estimates. To formulate these, let us give the technical

Definition 2.2.2. Let h > 0 be a parameter and R(ω;h) : H1 → H2, ω ∈ U(h) ⊂ C, be a
meromorphic family of operators, with Hj Hilbert spaces. Let also Ω(h) ⊂ U(h) be open and
Z(h) ⊂ C be a finite subset; we allow elements of Z(h) to have multiplicities. We say that
the poles of R in Ω(h) are simple with a polynomial resolvent estimate and given modulo
O(h∞) by Z(h), if for h small enough, there exist maps Q and Π from Z(h) to C and the
algebra of bounded operators H1 → H2, respectively, such that:
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• for each ω̂′ ∈ Z(h), ω̂ = Q(ω̂′) is a pole of R, |ω̂ − ω̂′| = O(h∞), and Π(ω̂′) is a rank
one operator;

• there exists a constant N such that ‖Π(ω̂′)‖H1→H2 = O(h−N) for each ω̂′ ∈ Z(h) and,
moreover,

R(ω;h) =
∑

ω̂′∈Z(h)

Π(ω̂′)

ω −Q(ω̂′)
+OH1→H2(h

−N), ω ∈ Ω(h).

In particular, every pole of R in Ω(h) lies in the image of Q.

The quantization condition and resolvent estimate that we need to prove Theorems 2.1
and 2.2 are contained in

Proposition 2.2.3. Fix ν0 > 0 and let h > 0 be a parameter. Then for a small enough
(independently of ν0), the poles of R(ω) in the region

| Imω| < ν0, h
−1 < |Reω| < 2h−1, (2.2.7)

are simple with a polynomial resolvent estimate and given modulo O(h∞) by

ω = h−1Fω(m,hl, hk;h), m, l, k ∈ Z,
0 ≤ m ≤ Cm, C

−1
l ≤ hl ≤ Cl, |k| ≤ l.

(2.2.8)

Here Cm and Cl are some constants and Fω(m, l̃, k̃;h) is a classical symbol:

Fω(m, l̃, k̃;h) ∼
∑
j≥0

hjFωj (m, l̃, k̃).

The principal symbol Fω0 is real-valued and independent of m; moreover,

Fω(m, l̃, k̃;h) =

√
1− 9ΛM2

3
√

3M
(l̃ + h/2− ih(m+ 1/2)) +O(h2) for a = 0,

(∂k̃F
ω
0 )(m,±k̃, k̃) =

(2 + 9ΛM2)a

27M2
+O(a2).

Finally, if we consider R(ω) as a family of operators between the semiclassical Sobolev spaces
Hs−1
h → Hs

h, then the constant N in Definition 2.2.2 is independent of s.

Theorem 2.1 follows from the here almost immediately. Indeed, since R(ω) is independent
of h, each Fωj is homogeneous in (l̃, k̃) variables of degree 1 − j; we can then extend this

function homogeneously to the cone |k̃| ≤ l̃ and define the (non-semiclassical) symbol

F(m, l, k) ∼
∑
j≥0

Fωj (m, l, k).
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Note that F(m, l, k) = h−1Fω(m,hl, hk;h) +O(h∞) whenever C−1
l ≤ hl ≤ Cl. We can then

cover the region (2.1.1) for large Cω with the regions (2.2.7) for a sequence of small values
of h to see that QNMs in (2.1.1) are given by (2.1.2) modulo O(|ω|−∞).

Now, we prove Theorem 2.2. Let u be a solution to (2.2.2), with f ∈ Hs−1 and s large
enough. We claim that one can deform the contour in (2.2.6) to get

u(t∗) = i
∑

Im ω̂>−ν0

Resω=ω̂[e−iωt
∗
R(ω)f̂(ω)] +

1

2π

∫
Imω=−ν0

e−iωt
∗
R(ω)f̂(ω) dω. (2.2.9)

The series in (2.2.9) is over QNMs ω̂; all but a finite number of them in the region {Imω >
−ν0} are equal toQ(ω̂′) for some ω̂′ given by (2.1.2) and the residue in this case is e−iω̂t

∗
Π(ω̂′)

f̂(ω̂). Here Q and Π are taken from Definition 2.2.2. Now, by (2.2.4), we have

‖Π(ω̂′)f̂(ω̂)‖H1 ≤ C〈ω̂〉N−s‖f‖Hs−1 ;

‖R(ω)f̂(ω)‖H1 ≤ C〈ω〉N−s‖f‖Hs−1 , Imω = −ν0,

for some constant N independent of s; therefore, for s large enough, the series in (2.2.9) con-
verges in H1 and the H1 norm of the integral in (2.2.9) can be estimated by Ce−ν0t

∗‖f‖Hs−1 ,
thus proving Theorem 2.2.

To prove (2.2.9), take small h > 0. There are O(h−2) QNMs in the region (2.2.7);
therefore, by pigeonhole principle we can find ω0(h) ∈ [h−1, 2h−1] such that there are no
QNMs h2-close to the segments

γ±(h) = {Reω = ±ω0(h), −ν0 ≤ Imω ≤ Ce}.

Then ‖R(ω)f̂(ω)‖H1 = O(hs−N−4) on γ±(h); we can now apply the residue theorem to the
rectangle formed from γ±(h) and segments of the lines {Imω = Ce}, {Imω = −ν0}, and
then let h→ 0.

2.2.2 Separation of variables

First of all, using [128, (A.2), (A.3)], we reduce Proposition 2.2.3 to the following3

Proposition 2.2.4. Take δ > 0 and put

Kδ = (r− + δ, r+ − δ)× S2, Rg(ω) = 1KδR(ω)1Kδ : L2(Kδ)→ H2(Kδ).

Then for a small enough4 and fixed ν0, the poles of Rg(ω) in the region (2.2.7) are simple
with a polynomial resolvent estimate L2 → L2 and given modulo O(h∞) by (2.2.8).

3One could also try to apply the results of [38] here, but we use the slightly simpler construction of [128,
Appendix], exploiting the fact that we have information on the exact cutoff resolvent.

4The smallness of a is implied in all following statements.
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Furthermore, by [128, Proposition A.1] the family of operators Rg(ω) coincides with
the one constructed in Theorem 1.2, if the functions Ft, Fϕ in (2.2.1) are chosen so that
(t, ϕ) = (t∗, ϕ∗) in Rt × Kδ. We now review how the construction of Rg(ω) in Chapter 1
works and reduce Proposition 2.2.4 to two separate spectral problems in the radial and
the angular variables. For the convenience of reader, we include the simpler separation of
variables procedure for the case a = 0 at the end of this section.

First of all, the operator Pg(ω) is invariant under the rotation ϕ 7→ ϕ+ s; therefore, the
spaces D′k = Ker(Dϕ− k) of functions of angular momentum k ∈ Z are invariant under both
Pg(ω) and Rg(ω). In Chapter 1, we construct Rg(ω) by piecing together the restrictions
Rg(ω, k) = Rg(ω)|D′k for all k. Then, Proposition 2.2.4 follows from

Proposition 2.2.5. Under the assumptions of Proposition 2.2.4, there exists a constant Ck
such that for each k ∈ Z,

(1) if h|k| > Ck, then Rg(ω, k) has no poles in the region (2.2.7) and its L2 → L2 norm is
O(|k|−2); (This is a reformulation of Proposition 1.4.3.)

(2) if h|k| ≤ Ck, then the poles of Rg(ω, k) in the region (2.2.7) are simple with a polynomial
resolvent estimate L2 → L2 and given modulo O(h∞) by (2.2.8), with this particular value
of k.

Now, we recall from §1.2 that the restriction of Pg(ω) to D′k has the form5 Pr(ω, k) +
Pθ(ω)|D′k , where

Pr(ω, k) = Dr(∆rDr)−
(1 + α)2

∆r

((r2 + a2)ω − ak)2,

Pθ(ω) =
1

sin θ
Dθ(∆θ sin θDθ) +

(1 + α)2

∆θ sin2 θ
(aω sin2 θ −Dϕ)2

(2.2.10)

are differential operators in r and (θ, ϕ), respectively. Then Rg(ω, k) is constructed in the
proof of Theorem 1.1 using a certain contour integral (1.3.1)and the radial and angular
resolvents

Rr(ω, λ, k) : L2
comp(r−, r+)→ H2

loc(r−, r+),

Rθ(ω, λ) : L2(S2)→ H2(S2), λ ∈ C;

Rr is a certain right inverse to Pr(ω, k) + λ, while Rθ is the inverse to Pθ(ω) − λ; we
write Rθ(ω, λ, k) = Rθ(ω, λ)|D′k . Recall that both Rr and Rθ are meromorphic families of
operators, as defined in Definition 1.3.2; in particular, for a fixed value of ω, these families
are meromorphic in λ with poles of finite rank. By definition of Rg(ω, k), a number ω ∈ C is
a pole of this operator if and only if there exists λ ∈ C such that (ω, λ, k) is a pole of both
Rr and Rθ.

5The operator Pg(ω) of Chapter 1 differs from the operator used in this chapter by the conjugation done
in [128, Appendix]; however, the two coincide in Kδ.
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Now, for small h > 0 we put

ω̃ = hReω, ν̃ = Imω, λ̃ = h2 Reλ, µ̃ = h Imλ, k̃ = hk; (2.2.11)

the assumptions of Proposition 2.2.5(2) imply that 1 ≤ ω̃ ≤ 2, |ν̃| ≤ ν0, and |k̃| ≤ Ck.
Moreover, Proposition 1.4.4 suggests that under these assumptions, all values of λ for which
(ω, λ, k) is a pole of both Rr and Rθ have to satisfy |λ̃|, |µ̃| ≤ Cλ, for some constant Cλ.

We are now ready to state the quantization conditions and resolvent estimates for Rr

and Rθ; the former is proved in §2.5 and the latter, in §2.4.

Proposition 2.2.6 (Radial lemma). Let Cλ be a fixed constant and put Kr = (r−+δ, r+−δ).
Then the poles of 1KrRr(ω, λ, k)1Kr as a function of λ, in the region

1 < ω̃ < 2, |ν̃| < ν0, |k̃| < Ck, |λ̃|, |µ̃| < Cλ, (2.2.12)

are simple with polynomial resolvent estimate L2 → L2 (in the sense of Definition 2.2.2) and
given modulo O(h∞) by

λ̃+ ihµ̃ = F r(m, ω̃, ν̃, k̃;h), m ∈ Z, 0 ≤ m ≤ Cm, (2.2.13)

for some constant Cm. The principal part F r0 of the classical symbol F r is real-valued,
independent of m and ν̃, and

F r =

[
ih(m+ 1/2) +

3
√

3M√
1− 9ΛM2

(ω̃ + ihν̃)

]2

+O(h2) for a = 0,

F r0 (ω̃, k̃) =
27M2

1− 9ΛM2
ω̃2 − 6ak̃ω̃

1− 9ΛM2
+O(a2).

In particular, for ω, k satisfying (2.2.12), every pole λ satisfies λ̃ > ε for some constant
ε > 0.

Proposition 2.2.7 (Angular lemma). Let Cθ be a fixed constant. Then the poles of Rθ(ω, λ, k)
as a function of λ in the region

1 < ω̃ < 2, |ν̃| < ν0, |k̃| < Ck, C
−1
θ < λ̃ < Cθ, |µ̃| < Cθ, (2.2.14)

are simple with polynomial resolvent estimate L2 → L2 and given modulo O(h∞) by

λ̃+ ihµ̃ = F θ(hl, ω̃, ν̃, k̃;h), l ∈ Z, max(|k̃|, C−1
l ) ≤ hl ≤ Cl, (2.2.15)

for some constant Cl. The principal part F θ0 of the classical symbol F θ is real-valued, inde-
pendent of ν̃, and

F θ = l̃(l̃ + h) +O(h∞) for a = 0.

Moreover, F θ0 (±k̃, ω̃, k̃) = (1+α)2(k̃−aω̃)2, ∂l̃F θ0 (±k̃, ω̃, k̃) = ±2k̃+O(a2), and consequently,
∂k̃F θ0 (±k̃, ω̃, k̃) = −2aω̃ +O(a2).
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Figure 2.1: The contour γ and interaction between radial poles (denoted by dots) and angular
poles (denoted by asterisks).

Combining Propositions 2.2.6 and 2.2.7 with the results of Chapter 1, we get

Proof of Proposition 2.2.5. We let Fω(m, l̃, k̃;h) be the solution ω̃ + ihν̃ to the equation

F r(m, ω̃, ν̃, k̃;h) = F θ(l̃, ω̃, ν̃, k̃;h). (2.2.16)

We can see that this equation has unique solution by writing F r − F θ = F ′ + ihF ′′ and
examining the principal parts of the real-valued symbols F ′,F ′′ for a = 0.

The idea now is to construct an admissible contour in the sense of Definition 1.3.5; e.g.
a contour that separates the sets of poles (in the variable λ) of Rr and Rθ from each other;
then (1.3.1) provides a formula for Rg(ω, k), which can be used to get a resolvent estimate.
We will use the method of proof of Proposition 1.4.4. Take the contour γ introduced there,
for l2 = Cλh

−1, l1 = L = Cλh
−2, and Cλ some large constant. Then we know that all

angular poles are to the right of γ (in Γ2). Moreover, the only radial poles to the right of γ
lie in the domain {| Imλ| ≤ l2, |λ| ≤ L} and they are contained in the set {λr0, . . . , λrCm} for

some constant Cm, where λrm(ω, k) is the radial pole corresponding to h−2F r(m, ω̃, ν̃, k̃;h).
In particular, those radial poles are contained in

Uλ = {C−1
θ < λ̃ < Cθ, |µ̃| ≤ Cθ},
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for some constant Cθ.
Assume that ω is not a pole of Rg(ω, k); then we can consider the admissible contour

composed of γ and the circles γm, 0 ≤ m ≤ Cm, enclosing λrm(ω, k), but none of the other
poles of Rr or Rθ. Using the meromorphic decomposition of Rr at λrm and letting its principal
part be Πr

m/(λ− λrm), we get

Rg(ω, k) =
∑
m

Πr
m(ω, k)⊗Rθ(ω, λ

r
m(ω, k), k) +

1

2πi

∫
γ

Rr(ω, λ, k)⊗Rθ(ω, λ, k) dλ. (2.2.17)

Here we only include the poles λrm lying to the right of γ; one might need to change l1 in
the definition of γ a little bit in case some λrm comes close to γ. The integral in (2.2.17) is
holomorphic and bounded polynomially in h, by the bounds for Rr given by Proposition 2.2.6,
together with the estimates in the proof of Proposition 1.4.4.

Now, the poles of Rθ in Uλ are given by (2.2.15); let λθl (ω, k) be the pole corresponding to
h−2F θ(hl, ω̃, ν̃, k̃;h) and Πθ

l /(λ−λθl ) be the principal part of the corresponding meromorphic
decomposition. Then the resolvent estimates on Rθ given by Proposition 2.2.7 together
with (2.2.17) imply

Rg(ω, k) = Hol(ω) +
∑
m,l

Πr
m(ω, k)⊗ Πθ

l (ω, k)

λrm(ω, k)− λθl (ω, k)
. (2.2.18)

Here Hol(ω) is a family of operators holomorphic in ω and bounded polynomially in h.
Moreover,

λrm(ω, k)− λθl (ω, k) = h−2(F r(m, ω̃, ν̃, k̃;h)−F θ(hl, ω̃, ν̃, k̃;h)) +O(h∞); (2.2.19)

therefore, the equation λrm(ω, k)− λθl (ω, k) = 0 is an O(h∞) perturbation of (2.2.16) and it
has a unique solution ωm,l(k), which is O(h∞) close to h−1Fω(m,hl, k̃;h). Finally, in the
region (2.2.7) we can write by (2.2.18)

Rg(ω, k) = Hol(ω) +
∑
m,l

Πm,l(k)

ω − ωm,l(k)
,

with Hol(ω) as above and Πm,l(k) being the product of a coefficient polynomially bounded
in h with (Πr

m ⊗ Πθ
l )(ωm,l(k), k); this finishes the proof.

Finally, let us present the simplified separation of variables for the case a = 0, namely
the Schwarzschild–de Sitter metric:

g =
∆r

r2
dt2 − r2

∆r

dr2 − r2(dθ2 + sin2 θ dϕ2),

∆r = r2
(

1− Λr2

3

)
− 2Mr.
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Note that dθ2 + sin2 θ dϕ2 is just the round metric on the unit sphere. The metric decouples
without the need to take Fourier series in ϕ; the stationary d’Alembert–Beltrami operator
has the form Pg(ω) = Pr(ω) + Pθ, where

Pr(ω) = Dr(∆rDr)−
r4

∆r

ω2,

Pθ =
1

sin θ
Dθ(sin θDθ) +

D2
ϕ

sin2 θ
.

Here Pθ is the Laplace–Beltrami operator on the round sphere; it is self-adjoint (thus no
need for the contour integral construction of §1.3) and is known to have eigenvalues l(l+ 1),
where l ≥ 0. Each such eigenvalue has multiplicity 2l + 1, corresponding to the values
−l, . . . , l of the ϕ-angular momentum k. The angular Lemma 2.2.7 follows immediately.
(We nevertheless give a more microlocal explanation in this case at the end of §2.4.1.) One
can now decompose L2 into an orthogonal sum of the eigenspaces of Pθ; on the space Vλ
corresponding to the eigenvalue λ = l(l + 1), we have

Pg(ω)|Vλ = Pr(ω) + λ.

Therefore, the only problem is to show the radial Lemma 2.2.6 in this case, which is in
fact no simpler than the general case. (Note that we take a different path here than [103]
and [17], using only real microlocal analysis near the trapped set, which immediately gives
polynomial resolvent bounds.)

2.3 Preliminaries

2.3.1 Pseudodifferential operators and microlocalization

First of all, we review the classes of semiclassical pseudodifferential operators on manifolds
and introduce notation used for these classes; see [137, Sections 9.3 and 14.2] or [39] for more
information.

For k ∈ R, we consider the symbol class Sk(Rn) consisting of functions a(x, ξ;h) smooth
in (x, ξ) ∈ R2n and satisfying the following growth conditions: for each compact set K ⊂ Rn

and each pair of multiindices α, β, there exists a constant CαβK such that

|∂αx∂
β
ξ a(x, ξ;h)| ≤ CαβK〈ξ〉k−|β|, x ∈ K, ξ ∈ Rn, h > 0.

If we treat R2n as the cotangent bundle to Rn, then the class Sk is invariant under changes of
variables; this makes it possible, given a manifold M , to define the class Sk(M) of symbols
depending on (x, ξ) ∈ T ∗M .

If k ∈ R and aj(x, ξ) ∈ Sk−j(M), j = 0, 1, . . . , is a sequence of symbols, then there exists
the asymptotic sum

a(x, ξ;h) ∼
∑
j≥0

hjaj(x, ξ); (2.3.1)
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i.e., a symbol a(x, ξ;h) ∈ Sk(M) such that for every J = 0, 1, . . . ,

a(x, ξ;h)−
∑

0≤j<J

hjaj(x, ξ) ∈ hJSk−J .

The asymptotic sum a is unique modulo the class h∞S−∞ of symbols all of whose derivatives
decay faster than hN〈ξ〉−N for each N on any compact set in x. If a is given by an asymptotic
sum of the form (2.3.1), then we call it a classical symbol and write a ∈ Skcl(M). We call
a0(x, ξ) the principal part of the symbol a(x, ξ;h).

Let Ψk(M) be the algebra of (properly supported) semiclassical pseudodifferential op-
erators on M with symbols in Sk(M). If Hm

h,loc(M), m ∈ R, consists of functions lo-

cally lying in the semiclassical Sobolev space, then every element of Ψk(M) is continuous
Hm
h,loc(M) → Hm−k

h,loc (M) with every operator seminorm being O(1) as h → 0. Let Ψk
cl(M)

be the algebra of operators with symbols in Skcl(M) and Ψcl(M) be the union of Ψk
cl for all

k. Next, let the operator class h∞Ψ−∞(M) correspond to the symbol class h∞S−∞(M); it
can be characterized as follows: A ∈ h∞Ψ−∞(M) if and only if for each N , A is continuous
H−Nh,loc(M)→ HN

h,loc(M), with every operator seminorm being O(hN). The full symbol of an

element of Ψk(M) cannot be recovered as a function on T ∗M ; however, if A ∈ Ψk
cl(M), then

the principal symbol of A is an invariantly defined function on the cotangent bundle. If M
is an open subset of Rn, then we can define the full symbol of a pseudodifferential operator
modulo h∞S−∞; we will always use Weyl quantization.

We now introduce microlocalization; see also [137, §8.4] and [117, §3]. Define U ⊂ T ∗M to
be conic at infinity, if there exists a conic set V ⊂ T ∗M such that the symmetric difference
of U and V is bounded when restricted to every compact subset of M . For a ∈ Sk(M)
and U ⊂ T ∗M open and conic at infinity, we say that a is rapidly decaying on U , if for
every V ⊂ U closed in T ∗M , conic at infinity, and with compact projection onto M , every
derivative of a decays on V faster than hN〈ξ〉−N for every N . We say that A ∈ Ψk(M)
vanishes microlocally on U if its full symbol (in any coordinate system) is rapidly decaying
on U . If A,B ∈ Ψk(M), then we say that A = B microlocally on U , if A − B vanishes
microlocally on U .

For A ∈ Ψk(M), we define the semiclassical wavefront set WFh(A) ⊂ T ∗M as follows:
(x, ξ) 6∈ WFh(A) if and only if A vanishes microlocally on some neighborhood of (x, ξ).
The set WFh(A) is closed; however, it need not be conic at infinity. Next, we say that A
is compactly microlocalized, if there exists a compact set K ⊂ T ∗M such that A vanishes
microlocally on T ∗M \ K. We denote by Ψcomp(M) the set of compactly microlocalized
operators. Here are some properties of microlocalization:

• If A vanishes microlocally on U1 and U2, then it vanishes microlocally on U1 ∪ U2.

• The set of pseudodifferential operators vanishing microlocally on some open and conic
at infinity U ⊂ T ∗M is a two-sided ideal; so is the set of operators with wavefront set
contained in some closed V ⊂ T ∗M . In particular, WFh(AB) ⊂WFh(A) ∩WFh(B).
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• A vanishes microlocally on the whole T ∗M if and only if it lies in h∞Ψ−∞.

• If A vanishes microlocally on U , then WFh(A) ∩ U = ∅; the converse is true if U is
bounded. However,6 A does not necessarily vanish microlocally on the complement of
WFh(A); for example, the operator A = e−1/h lies in Ψ0 and has an empty wavefront
set, yet it does not lie in h∞Ψ−∞.

• The set Ψcomp forms a two-sided ideal and it lies in Ψ−N for every N .

• Each A ∈ Ψcomp vanishes microlocally on the complement of WFh(A).

• Let A ∈ Ψk
cl(M) and let its symbol in some coordinate system have the form (2.3.1);

introduce
V =

⋃
j≥0

supp aj.

Then A vanishes microlocally on some open set U if and only if U ∩ V = ∅; A is
compactly microlocalized if V is bounded, and WFh(A) is the closure of V .

We now consider microlocally defined operators. Let U ⊂ T ∗M be open. A local pseudodif-
ferential operator A on U is, by definition, a map

B 7→ [A ·B] ∈ Ψcomp(M)/h∞Ψ−∞(M), B ∈ Ψcomp(M), WFh(B) ⊂ U,

such that:

• WFh([A ·B]) ⊂WFh(B).

• If B1, B2 ∈ Ψcomp(M) and WFh(Bj) ⊂ U , then [A · (B1 +B2)] = [A ·B1] + [A ·B2].

• If C ∈ Ψk(M), then [A ·B]C = [A · (BC)].

We denote by Ψloc(U) the set of all local operators on U . Note that a local operator is
only defined modulo an h∞Ψ−∞ remainder. If A ∈ Ψk(M), then the corresponding local

operator Ã is given by [Ã · B] = AB mod h∞Ψ−∞; we say that A represents Ã. For
M = Rn and U ⊂ T ∗M , there is a one-to-one correspondence between local operators
and their full symbols modulo h∞; the symbols of local operators are functions a(x, ξ;h)
smooth in (x, ξ) ∈ U all of whose derivatives are uniformly bounded in h on compact
subsets of U . In fact, for a symbol a(x, ξ;h), the corresponding local operator is defined
by [A · B] = (a#b)w(x, hDx), where b(x, ξ;h) is the full symbol of B ∈ Ψcomp; since b is
compactly supported inside U modulo O(h∞) and a is defined on U , we can define the symbol
product a#b uniquely modulo O(h∞). In particular, a classical local operator A ∈ Ψloc

cl (M)
is uniquely determined by the terms of the decomposition (2.3.1) of its full symbol. Note

6This issue can be avoided if we consider WFh(A) as a subset of the fiber compactified cotangent bundle
T ∗M , as in [128, §2.1]. Then an operator is compactly microlocalized if and only if its wavefront set does
not intersect the fiber infinity.
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that U is not required to be conic at infinity, and we do not impose any conditions on the
growth of a as ξ →∞.

Local operators form a sheaf of algebras; that is, one can multiply local operators defined
on the same set, restrict a local operator to a smaller set, and reconstruct a local operator
from its restrictions to members of some finite open covering of U . This makes it possible
to describe any local operator A ∈ Ψloc(U) on a manifold using its full symbols in various
coordinate charts. For A ∈ Ψloc(U), one can define its wavefront set WFh(A) as follows:
(x0, ξ0) 6∈ WFh(A) if and only if the full symbol of A is O(h∞) in some neighborhood of

(x0, ξ0). If A ∈ Ψk represents Ã ∈ Ψloc, then WFh(A) = WFh(Ã); in general, wavefront sets
of local operators obey WFh(A + B) ⊂ WFh(A) ∪WFh(B) and WFh(AB) ⊂ WFh(A) ∩
WFh(B).

Finally, we study microlocalization of arbitrary operators. Let M1 and M2 be two mani-
folds. An h-dependent family of (properly supported) operators A(h) : C∞(M1) → D′(M2)
is called tempered, or polynomially bounded, if for every compact K1 ⊂ M1, there exist
N and C such that for any u ∈ C∞0 (K1), ‖A(h)u‖H−Nh (M2) ≤ Ch−N‖u‖HN

h
. Note that the

composition of a tempered operator with an element of Ψk is still tempered. We can also
treat distributions on M2 as operators from a singleton to M2.

For a tempered family A(h), we define its wavefront set WFh(A) ⊂ T ∗(M1 × M2) as
follows: (x, ξ; y, η) 6∈WFh(A), if and only if there exist neighborhoods U1(x, ξ) and U2(y, η)
such that for every Bj ∈ Ψcomp(Mj) with WFh(Bj) ⊂ Uj, we have B2A(h)B1 ∈ h∞Ψ−∞. We
say that A1 = A2 microlocally in some open and bounded U ⊂ T ∗M , if WFh(A1−A2)∩U = ∅.
Also, A(h) is said to be compactly microlocalized, if there exist Cj ∈ Ψcomp(Mj) such that
A(h)−C2A(h)C1 ∈ h∞Ψ−∞. In this case, all operator norms ‖A(h)‖

H
N1
h →H

N2
h

are equivalent

modulo O(h∞); if any of these norms is O(hr) for some constant r, we write ‖A(h)‖ = O(hr).
Here are some properties:

• If A is compactly microlocalized, then WFh(A) is compact. The converse, however,
need not be true.

• If A ∈ Ψk(M), then the two definitions of compact microlocalization of A (via its
symbol and as a tempered family of operators) agree; the wavefront set of A as a
tempered family of operators is just {(x, ξ;x, ξ) | (x, ξ) ∈WFh(A)}.

• If A1, A2 are two tempered operators and at least one of them is either compactly
microlocalized or pseudodifferential, then the product A2A1 is a tempered operator,
and

WFh(A2A1) ⊂WFh(A1) ◦WFh(A2)

= {(x, ξ; z, ζ) | ∃(y, η) : (x, ξ; y, η) ∈WFh(A1), (y, η; z, ζ) ∈WFh(A2)}.

Moreover, if both A1, A2 are compactly microlocalized, so is A2A1.

Let us quote the following microlocalization fact for oscillatory integrals, which is the starting
point for the construction of semiclassical Fourier integral operators used in §2.3.3:
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Proposition 2.3.1. Assume that M is a manifold, U ⊂M×Rm is open, ϕ(x, θ) is a smooth
real-valued function on U , with x ∈ M and θ ∈ Rm, and a(x, θ) ∈ C∞0 (U). Then the family
of distributions

u(x) =

∫
Rm

eiϕ(x,θ)/ha(x, θ) dθ

is compactly microlocalized and

WFh(u) ⊂ {(x, ∂xϕ(x, θ)) | (x, θ) ∈ supp a, ∂θϕ(x, θ) = 0}.

2.3.2 Ellipticity and formal functional calculus

Assume that U ⊂ T ∗M is open and A ∈ Ψloc
cl (U). We say that A is (semiclassically) elliptic

on U if its principal symbol does not vanish on U . Under this condition, there exists unique
operator A−1 ∈ Ψloc

cl (U) such that A−1A,AA−1 = I as local operators. The next proposition
provides the form of the symbol of A−1; it is based on the standard parametrix construction:

Proposition 2.3.2. Fix a coordinate system on M . Assume that A ∈ Ψloc
cl (U) is elliptic

and has the full symbol a ∼ a0 + ha1 + h2a2 + . . . . Then A−1 has the full symbol b ∼
b0 + hb1 + h2b2 + . . . , where each bj is a linear combination with constant coefficients of the
terms of the form

a−M−1
0

M∏
m=1

∂αmx ∂βmξ alm . (2.3.2)

Here the (multi)indices αm, βm, lm satisfy the condition

M∑
m=1

|αm| =
M∑
m=1

|βm| = j −
M∑
m=1

lm.

Furthermore, we can assume that |αm|+ |βm|+ lm > 0 for all m.

Proof. We call (2.3.2) an expression of type (Mα,Mβ, L), where Mα,Mβ, L are the sums of
|αm|, |βm|, and lm, respectively. If f is an expression of type (Mα,Mβ, L), then we can prove

by induction that ∂αx∂
β
ξ f is an expression of type (Mα + |α|,Mβ + |β|, L). Now, we write the

equation a#b = 1; the principal term gives b0 = a−1
0 , and the next terms give that each bj is

the sum of expressions of type (j−L, j−L,L), by induction and the formula for the symbol
product a#b.

Let A ∈ Ψk
cl; we say that it is elliptic on an open conic at infinity U ⊂ T ∗M in the class

Ψk (or microlocally elliptic), if its principal symbol a0 satisfies |a0(x, ξ)| ≥ 〈ξ〉k/C(K) for
(x, ξ) in any given closed conic at infinity K ⊂ U with compact projection onto M , and
some constant C(K) depending on K. In this case, the full symbol of A−1 satisfies the
decay conditions of the class Ψ−k in U . In particular, if A ∈ Ψk

cl is elliptic in the class Ψk

everywhere, then we can define A−1 ∈ Ψ−kcl for h small enough.
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We now construct functional calculus of local real principal pseudodifferential operators.
For this, we use holomorphic functional calculus [45, §7.3]; another approach would be via
almost analytic continuation [39, Chapter 8]. First, assume that A ∈ Ψcomp

cl (M) has com-
pactly supported Schwartz kernel. In particular, the principal symbol a0 of A is compactly
supported; let K ⊂ C be the image of a0. Let f(z) be holomorphic in a neighborhood Ω of
K, and let γ ⊂ Ω be a contour such that K lies inside of γ. For each h, the operator A is
bounded L2 → L2; for h small enough, its spectrum lies inside of γ. Then we can define the
operator f(A) by the formula

f(A) =
1

2πi

∮
γ

f(z)(z − A)−1 dz.

For z ∈ γ, the operator z − A is elliptic in the class Ψ0; therefore, (z − A)−1 ∈ Ψ0
cl(M). It

follows that f(A) ∈ Ψ0
cl(M). By Proposition 2.3.2, the full symbol of f(A) (in any coordinate

system) is the asymptotic sum

∞∑
j=0

hj
2j∑

M=0

f (M)(a0(x, ξ))bjM(x, ξ). (2.3.3)

Here a ∼ a0 +ha1 + . . . is the full symbol of A; bjM are the functions resulting from applying
certain nonlinear differential operators to a0, a1, . . . .

Now, assume that U ⊂ T ∗M is open and A ∈ Ψloc
cl (U) has real-valued principal symbol

a0. Then the formula (2.3.3) can be used to define an operator f [A] ∈ Ψloc
cl (U) for any

f ∈ C∞(R). Note that the principal symbol of (z − A)−1 is (z − a0)−1; therefore, the
principal symbol of f [A] is f ◦a0. The constructed operation posesses the following properties
of functional calculus:

Proposition 2.3.3. Assume that U ⊂ T ∗M is open, A ∈ Ψloc
cl (U), and f, g ∈ C∞(R). Then:

1. WFh(f [A]) ⊂ a−1
0 (supp f), where a0 is the principal symbol of A.

2. If f(t) =
∑K

j=0 fjt
j is a polynomial, then f [A] = f(A), where f(A) =

∑
j fjA

j.
3. (f + g)[A] = f [A] + g[A] and (fg)[A] = f [A]g[A].
4. If B ∈ Ψloc

cl (U) and [A,B] = 0, then [f [A], B] = 0.
The identities in parts 2—4 are equalities of local operators; in particular, they include

the h∞Ψ−∞ error. In fact, the operator f [A] is only defined uniquely modulo h∞Ψ−∞.

Proof. 1. Follows immediately from (2.3.3).

2. Take an open set V compactly contained in U ; then there exists Ã ∈ Ψcomp
cl (M) such

that A = Ã microlocally on V . Since f is entire and Ã is compactly microlocalized, we can
define f(Ã) by means of holomorphic functional calculus; it is be a pseudodifferential operator

representing f [Ã]. Now, f(A) = f(Ã) microlocally on V by properties of multiplication

of pseudodifferential operators and f [A] = f [Ã] microlocally on V by (2.3.3); therefore,
f(A) = f [A] microlocally on V . Since V was arbitrary, we have f(A) = f [A] microlocally
on the whole U .
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3. We only prove the second statement. It suffices to show that for every coordinate
system on M , the full symbols of (fg)[A] and f [A]g[A] are equal. However, the terms in the
asymptotic decomposition of the full symbol of (fg)[A]− f [A]g[A] at (x, ξ) only depend on
the derivatives of the full symbol of A at (x, ξ) and the derivatives of f and g at a0(x, ξ).
Therefore, it suffices to consider the case when f and g are polynomials. In this case, we
can use the previous part of the proposition and the fact that f(A)g(A) = (fg)(A).

4. This is proven similarly to the previous part, using the fact that [A,B] = 0 yields
[f(A), B] = 0 for every polynomial f .

Finally, under certain conditions on the growth of f and the symbol of A at infinity, f [A]
is a globally defined operator:

Proposition 2.3.4. Assume that A ∈ Ψk
cl(M), with k ≥ 0, and that A is elliptic in the class

Ψk outside of a compact subset of T ∗M . Also, assume that f ∈ C∞(R) is a symbol of order
s, in the sense that for each l, there exists a constant Cl such that

|f (l)(t)| ≤ Cl〈t〉s−l, t ∈ R.

Then f [A] is represented by an operator in Ψsk
cl (M).

Proof. We use (2.3.3); by Proposition 2.3.2, the symbol bjM lies in SkM−j. Since f is a
symbol of order s, f (M) is a symbol of order s−M . Then, since a0 ∈ Sk is elliptic outside of
a compact set and k ≥ 0, we have f (M) ◦ a0 ∈ Sk(s−M). It follows that each term in (2.3.3)
lies in Ssk−j; therefore, this asymptotic sum gives an element of Ψsk

cl .

2.3.3 Quantizing canonical transformations

Assume that M1 and M2 are two manifolds of the same dimension. Recall that the symplectic
form ωSj on T ∗Mj is given by ωSj = dσSj , where σSj = ξ dx is the canonical 1-form. We let
Kj ⊂ T ∗Mj be compact and assume that Φ : T ∗M1 → T ∗M2 is a symplectomorphism defined
in a neighborhood of K1 and such that Φ(K1) = K2. Then the form σS1 −Φ∗σS2 is closed; we
say that Φ is an exact symplectomorphism if this form is exact. Define the classical action
over a closed curve in T ∗Mj as the integral of σSj over this curve; then Φ is exact if and
only if for each closed curve γ in the domain of Φ, the classical action over γ is equal to the
classical action over Φ ◦ γ. We can quantize exact symplectomorphisms as follows:

Proposition 2.3.5. Assume that Φ is an exact symplectomorphism. Then there exist h-
dependent families of operators

B1 : D′(M1)→ C∞0 (M2), B2 : D′(M2)→ C∞0 (M1)

such that:
1. Each Bj is compactly microlocalized and has operator norm O(1); moreover, WFh(B1)

is contained in the graph of Φ and WFh(B2) is contained in the graph of Φ−1.
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2. The operators B1B2 and B2B1 are equal to the identity microlocally near K2×K2 and
K1 ×K1, respectively.

3. For each P ∈ Ψcl(M1), there exists Q ∈ Ψcl(M2) that is intertwined with P via B1

and B2:
B1P = QB1, PB2 = B2Q

microlocally near K1×K2 and K2×K1, respectively. Similarly, for each Q ∈ Ψcl(M2) there
exists P ∈ Ψcl(M1) intertwined with it. Finally, if P and Q are intertwined via B1 and B2

and p and q are their principal symbols, then p = q ◦ Φ near K1.
If the properties 1–3 hold, we say that the pair (B1, B2) quantizes the canonical transfor-

mation Φ near K1 ×K2.

Proof. We take B1, B2 to be semiclassical Fourier integral operators associated with Φ and
Φ−1, respectively; their symbols are taken compactly supported and elliptic in a neighbor-
hood of K1×K2. The existence of globally defined elliptic symbols follows from the exactness
of Φ; the rest follows from calculus of Fourier integral operators. See [62, Chapter 8] or [130,
Chapter 2] for more details.

Note that the operators B1 and B2 quantizing a given canonical transformation are not
unique. In fact, if Xj ∈ Ψcomp

cl (Mj) are elliptic near Kj and Yj ∈ Ψcomp
cl (Mj) are their inverses

near Kj, then (X2B1X1, Y1B2Y2) also quantizes Φ; moreover, P is intertwined with Q via
the new pair of operators if and only if X1PY1 is intertwined with Y2QX2 via (B1, B2).

We now study microlocal properties of Schrödinger propagators. Take A ∈ Ψcomp
cl (M)

with compactly supported Schwartz kernel and let a0 be its principal symbol; we assume
that a0 is real-valued. In this case the Hamiltonian flow exp(tHa0), t ∈ R, is a family
of symplectomorphisms defined on the whole T ∗M ; it is the identity outside of supp a0.
Moreover, exp(tHa0) is exact; indeed, if V = Ha0 , then by Cartan’s formula

LV σS = d(iV σ
S) + iV d(σS) = d(iV σ

S − a0)

is exact. Therefore,
dt exp(tV )∗σS = exp(tV )∗LV σS

is exact and exp(tV )∗σS − σS is exact for all t.
For each t, define the operator exp(itA/h) as the solution to the Schrödinger equation

hDt exp(itA/h) = A exp(itA/h) = exp(itA/h)A

in the algebra of bounded operators on L2(M), with the initial condition exp(i0A/h) = I.
Such a family exists since A is a bounded operator on L2(M) for all h. Here are some of its
properties (see also [137, Chapter 10]):

Proposition 2.3.6. 1. The operator exp(itA/h) − I is compactly microlocalized and has
operator norm O(1).
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2. If A,B ∈ Ψcomp
cl have real-valued principal symbols and [A,B] = O(h∞), then

[exp(itA/h), B] = O(h∞), exp(it(A+B)/h) = exp(itA/h) exp(itB/h) +O(h∞).

(We do not specify the functional spaces as the estimated families of operators are compactly
microlocalized, so all Sobolev norms are equivalent.) In particular, if B = O(h∞), then the
propagators of A and A+B are the same modulo O(h∞).

3. Let P ∈ Ψcl and take

Pt = exp(itA/h)P exp(−itA/h).

Then Pt is pseudodifferential and its full symbol depends smoothly on t. The principal symbol
of Pt is p0 ◦ exp(tHa0), where p0 is the principal symbol of P ; moreover,

WFh(Pt) = exp(−tHa0)(WFh(P )).

4. Let K ⊂ T ∗M be a compact set invariant under the Hamiltonian flow of a0. If
X ∈ Ψcomp

cl is equal to the identity microlocally near K, then the pair

(X exp(−itA/h), X exp(itA/h))

quantizes the canonical transformation exp(tHa0) near K × K. Moreover, if P,Q ∈ Ψcomp
cl

are intertwined via these two operators, then Q = exp(−itA/h)P exp(itA/h) microlocally
near K.

5. Assume that V is a compactly supported vector field on M , and let exp(tV ) : M →M
be the corresponding flow, defined for all t; denote by exp(tV )∗ the pull-back operator, acting
on functions on M . Let K ⊂ T ∗M be compact and invariant under the flow of V , and
X ∈ Ψcomp

cl have real-valued principal symbol and be equal to the identity microlocally near
K; consider (hV/i)X ∈ Ψcomp

cl . Then for each t,

exp(it(hV/i)X/h) = exp(tV )∗

microlocally near K ×K.
The statements above are true locally uniformly in t.

Proof. 1. First, take u ∈ L2(M); then, since the principal symbol of A is real-valued, we
have ‖A− A∗‖L2→L2 = O(h) and thus

Dt‖ exp(itA/h)u‖2
L2 = h−1((A− A∗) exp(itA/h)u, exp(itA/h)u)L2 = O(‖ exp(itA/h)u‖2

L2);

therefore, exp(itA/h) is tempered:

‖ exp(itA/h)‖L2→L2 = O(eC|t|).

The rest follows from the identity

exp(itA/h) = I +
it

h
A+

i

h
A

∫ t

0

(t− s) exp(isA/h) ds · i
h
A.
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2. We have

Dt(exp(itA/h)B exp(−itA/h)) = h−1 exp(itA/h)[A,B] exp(−itA/h) = O(h∞);

this proves the first identity. The second one is proved in a similar fashion:

Dt(exp(−it(A+B)/h) exp(itA/h) exp(itB/h)) = O(h∞).

3. We construct a family P̃t of classical pseudodifferential operators, each equal to P
microlocally outside of a compact set, solving the initial-value problem

DtP̃t = h−1[A, P̃t] +O(h∞), P̃0 = P +O(h∞).

For that, we can write a countable system of equations on the components of the full symbol
of P̃t. In particular, if p(t) is the principal symbol of P̃t, we get

∂tp(t) = {a0, p(t)} = Ha0p(t);

it follows that p(t) = p0 ◦ exp(tHa0). Similarly we can recover the wavefront set of P̃t from
that of P . Now,

∂t(exp(−itA/h)P̃t exp(itA/h)) = O(h∞);

therefore, Pt = P̃t +O(h∞).
4. Since X is compactly microlocalized, so are the operators B1 = X exp(−itA/h) and

B2 = X exp(itA/h). Next, if Y2, Y1 ∈ Ψcomp
cl , then

Y2B1Y1 = Y2X(exp(−itA/h)Y1 exp(itA/h)) exp(−itA/h);

using our knowledge of the wavefront set of the operator in brackets, we see that this is
O(h∞) if

WFh(Y2) ∩ exp(tHa0) WFh(Y1) = ∅.

Therefore, WFh(B1) is contained in the graph of exp(tHa0); similarly, WFh(B2) is contained
in the graph of exp(−tHa0). Next,

B1B2 = X(exp(−itA/h)X exp(itA/h));

however, the operator in brackets is the identity microlocally near K, as X is the identity
microlocally near K and K is invariant under exp(tHa0). Therefore, B1B2 is the identity
microlocally near K. The intertwining property is proved in a similar fashion.

5. We have

∂t(exp(tV X) exp(−tV )∗) = exp(tV X)V (X − I) exp(−tV )∗ = O(h∞)

microlocally near K ×K.



CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF RESONANCES 71

Finally, we consider the special case a0 = 0; in other words, we study exp(itA), where
A ∈ Ψcomp

cl . Since the associated canonical transformation is the identity, it is not unexpected
that exp(itA) is a pseudodifferential operator:

Proposition 2.3.7. Let a1 be the principal symbol of A. Then:
1. exp(itA) − I ∈ Ψcomp

cl and the principal symbol of exp(itA) equals eita1. Moreover, if
A1 = A2 microlocally in some open set, then exp(itA1) = exp(itA2) microlocally in the same
set.

2. For any P ∈ Ψcomp
cl , we have the following asymptotic sum:

exp(itA)P exp(−itA) ∼
∑
j≥0

(it adA)jP

j!
,

where adAQ = [A,Q] for every Q.
3. If U ⊂ T ∗M is connected and exp(iA) = I microlocally in U , then A = 2πl microlocally

in U , where l is an integer constant.

Proof. 1. We can find a family of pseudodifferential operators Bt solving

∂tBt = iABt +O(h∞), B0 = I,

by subsequently finding each member of the asymptotic decomposition of the full symbol of
Bt. Then

∂t(exp(−itA)Bt) = O(h∞);

therefore, exp(itA) = Bt +O(h∞). The properties of Bt can be verified directly.
2. Follows directly from the equation

∂t(exp(itA)P exp(−itA)) = i adA(exp(itA)P exp(−itA)).

3. By calculating the principal symbol of exp(iA), we see that a1 has to be equal to
2πl in U for some constant l ∈ Z. Subtracting this constant, we reduce to the case when
A = O(h). However, if A = O(hN) for some N ≥ 1, then exp(iA) = I + iA + O(hN+1); by
induction, we get A = O(hN) microlocally in U for all N .

2.3.4 Integrable systems

Assume that M is a two-dimensional manifold and p1, p2 are two real-valued functions defined
on an open set U ⊂ T ∗M such that:

• {p1, p2} = 0;

• for p = (p1, p2) : U → R2 and each ρ ∈ p(U), the set p−1(ρ) is compact and connected.
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We call such p an integrable system. Note that if V ⊂ R2 is open and intersects p(U),
and F : V → R2 is a diffeomorphism onto its image, then F (p) is an integrable system on
p−1(V ).

We say that an integrable system p : U → R2 is nondegenerate on U , if the differentials of
p1 and p2 are linearly independent everywhere on U . The following two propositions describe
the normal form for nondegenerate integrable systems:

Proposition 2.3.8. Assume that the integrable system p is nondegenerate on U . Then:
1. For each ρ ∈ p(U), the set p−1(ρ) ⊂ T ∗M is a Lagrangian torus. Moreover, the family

of diffeomorphisms
φt = exp(t1Hp1 + t2Hp2), t = (t1, t2) ∈ R2,

defines a transitive action of R2 on p−1(ρ). The kernel of this action is a rank two lattice
depending smoothly on ρ; we call it the periodicity lattice (at ρ).

2. For each ρ0 ∈ p(U), there exists a neighborhood V (ρ0) and a diffeomorphism F : V →
R2 onto its image such that the nondegenerate integrable system F (p) has periodicity lattice
2πZ2 at every point. Moreover, if the Hamiltonian flow of p2 is periodic with minimal period
2π, we can take the second component of F (p) to be p2.

3. Assume that V ⊂ p(U) is open and connected and F1, F2 : V → R2 are two maps
satisfying the conditions of part 2. Then there exist A ∈ GL(2,Z) and b ∈ R2 such that
F2 = A · F1 + b.

Proof. This is a version of Arnold–Liouville theorem; see [43, §1] for the proof.

Proposition 2.3.9. Assume that p : U → R2, p′ : U ′ → R2, are nondegenerate integrable
systems with periodicity lattices 2πZ2 at every point; here U ⊂ T ∗M , U ′ ⊂ T ∗M ′. Take
ρ0 ∈ p(U) ∩ p′(U ′). Then:

1. There exists a symplectomorphism Φ from a neighborhood of p−1(ρ0) in T ∗M onto a
neighborhood of (p′)−1(ρ0) in T ∗M ′ such that p = p′ ◦ Φ.

2. Φ is exact, as defined in §2.3.3, if and only if∫
γj

σS =

∫
γ′j

σ′S, j = 1, 2,

where γj and γ′j are some fixed (2π-periodic) Hamiltonian trajectories of pj on p−1(ρ0) and
p′j on (p′)−1(ρ0), respectively.

Proof. Part 1 again follows from Arnold–Liouville theorem. For part 2, we use that the closed
1-form σS − Φ∗σ′S on a tubular neighborhood of p−1(ρ0) is exact if and only if its integral
over each γj is zero. Since γj lie in p−1(ρ0) and the restriction of dσS = ωS to p−1(ρ0) is zero,
we may shift γj to make both of them start at a fixed point (x0, ξ0) ∈ p−1(ρ0). Similarly, we
may assume that both γ′j start at Φ(x0, ξ0). But in this case γ′j = Φ ◦ γj and∫

γj

σS − Φ∗σ′S =

∫
γj

σS −
∫
γ′j

σ′S,
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which finishes the proof.

Next, we establish normal form for one-dimensional Hamiltonian systems with one de-
generate point. For that, consider R2

x,ξ with the standard symplectic form dξ ∧ dx, and
define ζ = (x2 + ξ2)/2; then ζ has unique critical point at zero and its Hamiltonian flow is
2π-periodic.

Proposition 2.3.10. Assume that p(x, ξ) is a real-valued function defined on an open subset
of R2 and for some A ∈ R,

• the set KA = {p ≤ A} is compact;

• p has exactly one critical point (x0, ξ0) in KA, p(x0, ξ0) < A, and the Hessian of p at
(x0, ξ0) is positive definite.

Then there exists a smooth function F on the segment [p(x0, ξ0), A], with F ′ > 0 everywhere
and F (p(x0, ξ0)) = 0, and a symplectomorphism Ψ from KA onto the disc {ζ ≤ F (A)} ⊂ R2

such that F (p) = ζ ◦ Ψ. Moreover, F ′(p(x0, ξ0)) = (det∇2p(x0, ξ0))−1/2. If p depends
smoothly on some parameter Z, then F and Ψ can be chosen locally to depend smoothly on
this parameter as well.

Proof. Without loss of generality, we may assume that p(x0, ξ0) = 0. Recall that in one di-
mension, symplectomorphisms are diffeomorphisms that preserve both area and orientation.
By Morse lemma, there exists an orientation preserving diffeomorphism Θ from a neighbor-
hood of (x0, ξ0) onto a neighborhood of the origin such that p = ζ ◦ Θ. Using the gradient
flow of p, we can extend Θ to a diffeomorphism from KA to the disc {ζ ≤ A} such that
p = ζ ◦Θ. Let J be the Jacobian of Θ−1; then the integral of J inside the disc {ζ ≤ a} is a
smooth function of a. Therefore, there exists unique function F smooth on [0, A] such that
F ′ > 0 everywhere, F (0) = 0, and the integral of J inside the disc {F (ζ) ≤ a}, that is, the
area of Θ−1({F (ζ) ≤ a}) = {F (p) ≤ a} ⊂ KA, is equal to 2πa.

Let Θ̃ be a diffeomorphism from KA onto {ζ ≤ F (A)} such that F (p) = ζ◦Θ̃ (constructed

as in the previous paragraph, taking F (p) in place of p) and let J̃ be the Jacobian of Θ̃−1.
We know that for 0 ≤ a ≤ F (A), the integral of J̃ − 1 over {ζ ≤ a} is equal to 0. Introduce
polar coordinates (r, ϕ); then there exists a smooth function ψ such that J̃ = 1 + ∂ϕψ (see
Proposition 2.4.7). The transformation

Ψ̃ : (r, ϕ) 7→ (r, ϕ+ ψ)

is a diffeomorphism from {ζ ≤ F (A)} to itself and has Jacobian J̃ ; it remains to put

Ψ = Ψ̃ ◦ Θ̃. To compute F ′(p0(x0, ξ0)), we can compare the Hessians of F (p) and ζ ◦ Φ at
(x0, ξ0).

The function F is uniquely determined by p and thus will depend smoothly on Z. As
for Ψ, we first note that Θ̃ was constructed using Morse lemma and thus can be chosen
locally to depend smoothly on Z (see for example [137, Proof of Theorem 3.15]). Next,
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we can fix ψ by requiring that it integrates to zero over each circle centered at the origin
(see Proposition 2.4.7); then ψ, and thus Ψ̃, will depend smoothly on Z.

2.4 Angular problem

2.4.1 Outline of the proof

Consider the semiclassical differential operators (using the notation of (2.2.11))

P1(ω̃, ν̃;h) = h2Pθ(ω) =
1

sin θ
(hDθ)(∆θ sin θ · hDθ)

+
(1 + α)2

∆θ sin2 θ
(a(ω̃ + ihν̃) sin2 θ − hDϕ)2,

P2(h) = hDϕ

on the sphere S2. Then (ω, λ, k) is a pole of Rθ if and only if (λ̃ + ihµ̃, k̃) lies in the joint
spectrum of the operators (P1, P2) (see Definition 2.A.1). For a = 0, P1 is the Laplace–
Beltrami operator on the round sphere (multiplied by −h2); therefore, the joint spectrum
of (P1, P2) is given by the spherical harmonics (l̃(l̃ + h), k̃), k̃, l̃ ∈ hZ, |k̃| ≤ l̃ (see for
example [123, §8.4]). In the end of this subsection, we give a short description of which parts
of the angular problem are simplified for a = 0. For general small a, we will prove that the
joint spectrum is characterized by the following

Proposition 2.4.1. Let ω̃, ν̃ satisfy (2.2.14); we suppress dependence of the operators and
symbols on these parameters. Consider7

K̃ = {(λ̃, k̃) | C−1
θ ≤ λ̃ ≤ Cθ, λ̃ ≥ (1 + α)2(k̃ − aω̃)2} ⊂ R2,

K̃± = {(λ̃, k̃) ∈ K̃ | (1 + α)(k̃ − aω̃) = ±
√
λ̃}.

Then there exist functions G±(λ̃, k̃;h) such that:

1. G± is a complex valued classical symbol in h, smooth in a fixed neighborhood of K̃.
For (λ̃, k̃) near K̃ and |µ̃| ≤ Cθ, we can define G±(λ̃ + ihµ̃, k̃) by means of an asymptotic
(analytic) Taylor series for G± at (λ̃, k̃).

2. For a = 0, G±(λ̃, k̃;h) = −h/2 +
√
λ̃+ h2/4∓ k̃.

3. G−(λ̃, k̃;h)−G+(λ̃, k̃;h) = 2k̃.
4. Let F± be the principal symbol of G±. Then F± is real-valued, ∂λ̃F± > 0 and ∓∂k̃F± >

0 on K̃, and F±|K̃± = 0.

5. For h small enough, the set of elements (λ̃ + ihµ̃, k̃) of the joint spectrum of (P1, P2)

satisfying (2.2.14) lies within O(h) of K̃ and coincides modulo O(h∞) with the set of solutions

7The spectral set K̃ used here should not be confused with the trapped set K̃ used in Chapter 4.
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k̃

√
λ̃
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−1/2

θ

C
1/2
θ

Figure 2.2: The joint spectrum and the set K̃.

to the quantization conditions

k̃ ∈ hZ, G±(λ̃+ ihµ̃, k̃) ∈ hN;

here N is the set of nonnegative integers. Note that the conditions G+ ∈ Z and G− ∈ Z
are equivalent; however, we also require that both G+ and G− be nonnegative. Moreover, the
corresponding joint eigenspaces are one-dimensional.

Proposition 2.2.7 follows from the proof of Proposition 2.4.1. In fact, the symbol F θ(l̃, ω̃, ν̃,
k̃;h) is defined as the solution λ̃+ ihµ̃ to the equation

G+(λ̃+ ihµ̃, k̃, ω̃ + ihν̃;h) = l̃ − k̃;

this proves part (1) of Definition 2.2.2. The resolvent estimates are an immediate corollary
of the ones stated in Proposition 2.4.8 below. The decomposition of F θ0 at a = 0 follows
from Proposition 2.4.4.

We now give the schema of the proof of Proposition 2.4.1. Let pj0 be the principal symbol
of Pj; note that both p10 and p20 are real-valued; also, define p = (p10, p20) : T ∗S2 → R2. In

§2.4.2, we construct the principal parts F± of the quantization symbols globally in K̃, and
show that the intersection of the image of p with {C−1

θ ≤ λ̃ ≤ Cθ} is exactly K̃. Using the
theory of integrable systems described in §2.3.4, we then construct local symplectomorphisms
conjugating (F±(p), p20) away from K̃∓ to the system (ζ, η) on T ∗M, where M = Rx × S1

y

is called the model space, (ξ, η) are the momenta corresponding to (x, y), and

ζ =
x2 + ξ2

2
.

Note that the integrable system (ζ, η) is nondegenerate on {ζ > 0} with periodicity lattice
2πZ2, and dζ = 0 on {ζ = 0}.

Next, we take (λ̃0, k̃0) ∈ K̃ and show that joint eigenvalues in a certain h-independent
neighborhood of this point are given by a quantization condition. For this, we first use
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Egorov’s theorem and the symplectomorphisms constructed in §2.4.2 to conjugate P1, P2 mi-
crolocally near p−1(λ̃0, k̃0) to some pseudodifferential operators Q1, Q2 onM. The principal
symbols of Qj are real-valued functions of (ζ, η) only; in §2.4.3, we use Moser averaging to
further conjugate Q1, Q2 by elliptic pseudodifferential operators so that the full symbols of
Qj depend only on (ζ, η). In §2.4.4, we use spectral theory to construct a local Grushin
problem for (Q1, Q2), which we can conjugate back to a local Grushin problem for (P1, P2);
then, we can apply the results of Appendix 2.A to obtain local quantization conditions
(Proposition 2.4.8). To pass from these local conditions to the global one, we use

Proposition 2.4.2. Assume that Gj(λ̃, k̃;h) are two complex-valued classical symbols in h
defined in some open set U ⊂ R2, their principal symbols are both equal to some real-valued
F (λ̃, k̃), with ∂λ̃F 6= 0 everywhere and {F ≥ 0} convex, and solution sets to quantization
conditions

k̃ ∈ hZ, Gj(λ̃+ ihµ̃, k̃) ∈ hN

in the region (λ̃, k̃) ∈ U , µ̃ = O(1) coincide modulo O(h∞). Then G1−G2 = hl+O(h∞) on
{F ≥ 0} for some constant l ∈ Z. Moreover, if {F = 0} ∩ U 6= ∅, then l = 0.

Proof. Assume that (λ̃1, k̃1) ∈ {F ≥ 0}. Then for every h, there is a solution (λ̃(h) +
ihµ̃(h), k̃(h)) to the quantization conditions within O(h) of (λ̃1, k̃1); we know that

Gj(λ̃(h) + ihµ̃(h), k̃(h)) ∈ hZ +O(h∞), j = 1, 2,

and thus (G1−G2)(λ̃(h)+ihµ̃(h), k̃(h)) = hl(h)+O(h∞), for some l(h) ∈ Z. Since G1−G2 =
O(h) in particular in C1, we have

|(G1 −G2)(λ̃1, k̃1)− hl(h)| = O(h2).

Therefore, l(h) is constant for h small enough and it is equal to the difference of subprincipal
symbols of G1 and G2 at (λ̃1, k̃1). It follows that l(h) is independent of (λ̃1, k̃1); we can
subtract it from one of the symbols to reduce to the case when G1 − G2 = O(h2). The
analysis in the beginning of this proof then shows that

‖G1 −G2‖C(F≥0) = O(h‖G1 −G2‖C1(F≥0) + h∞).

Arguing by induction, we get G1 − G2 = O(hN) for all N . The last statement follows
directly by taking solutions to the quantization conditions with Gj = 0 and requiring that
they satisfy the quantization conditions G3−j ≥ 0.

We can now cover K̃ by a finite family of open sets, on each of which there exists a local
quantization condition. Using Proposition 2.4.2 and starting from K̃±, we can modify the
local quantization conditions and piece them together to get unique (modulo h∞) global G±.

The joint spectrum of (P1, P2) in a neighborhood of K̃ is then given by the global quantization
condition; the joint spectrum outside of this neighborhood, but satisfying (2.2.14), is empty
by part 2 of Proposition 2.4.8.
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Also, the principal symbol of G− −G+ is equal to 2k̃; therefore, G− −G+ − 2k̃ is equal
to lh̃ for some fixed l ∈ Z. However, G± depend smoothly on a and thus it is enough to
prove that l = 0 for a = 0; in the latter case, the symbols G± are computed explicitly from
the spectrum of Laplacian on the round sphere. (Without such a reference point, one would
need to analyse the subprincipal symbols of G± using the Maslov index.) This finishes the
proof of Proposition 2.4.1.

Finally, let us outline the argument in the special case a = 0 and indicate which parts of
the construction are simplified. The formulas below are not used in the general argument;
we provide them for the reader’s convenience. The principal symbol p10 of P1 is just the
square of the norm on T ∗S2 generated by the round metric:

p10 = ξ2
θ +

ξ2
ϕ

sin2 θ
.

The set p−1(λ̃, k̃) consists of all cotangent vectors with length
√
λ̃ and momentum k̃; there-

fore

(1) for λ̃ ≤ k̃2 (corresponding to the complement of K̃), the set p−1(λ̃, k̃) is empty;

(2) for k̃ = ±
√
λ̃ (corresponding to K̃±), the set p−1(λ̃, k̃) is a circle, consisting of covectors

tangent to the equator with length
√
λ̃ and direction determined by the choice of sign;

(3) for λ̃ > k̃2 (corresponding to the interior of K̃), the set p−1(λ̃, k̃) is a Liouville torus.

The principal parts F± of the quantization symbols, constructed in Proposition 2.4.4, can

be computed explicitly: F± =
√
λ̃ ∓ k̃ (see the proof of part 2 of this Proposition). Then

F−1
± (ζ, η) = (ζ ± η)2. For ±k̃ > 0, the canonical transformation Φ± from Proposition 2.4.5

can be taken in the form

(θ, ϕ, ξθ, ξϕ) 7→ (x, y, ξ, η)

= ((2p10)1/2(
√
p10 ± ξϕ)−1/2 cos θ, ϕ+G,−21/2(

√
p10 ± ξϕ)−1/2 sin θξθ, ξϕ);

(2.4.1)

here (x, y, ξ, η) are coordinates on T ∗M, with M = Rx × S1
y the model space. The function

G : T ∗S2 → S1 here is given by

(
√
p10 ± ξϕ) cosG = p

1/2
10 sin θ ± ξϕ

sin θ
, (
√
p10 ± ξϕ) sinG = ∓ cos θξθ.

In fact, the maps Φ± defined in (2.4.1) extend smoothly to the poles {sin θ = 0} of the sphere
and satisfy the conditions of Proposition 2.4.5 on the complement of the opposite equator

{θ = π/2, ξθ = 0, ξϕ = ∓
√
λ̃}.

One can then conjugate the operators P1, P2 to some model operators Q1, Q2 as in Propo-
sition 2.4.6. To bring the subprincipal terms in Qj to normal form, one still needs Moser
averaging. Once the normal form of Proposition 2.4.6 is obtained, it is possible to use the
ellipticity of p − (λ̃, k̃) away from p−1(λ̃, k̃) (as in Proposition 2.A.5) and spectral theory
to obtain the quantization condition. The Grushin problem construction of §2.4.4 and Ap-
pendix 2.A.1 is not needed, as the operator P1 is self-adjoint.
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2.4.2 Hamiltonian flow

Let (θ, ϕ) be the spherical coordinates on S2 and let (ξθ, ξϕ) be the corresponding momenta.
Note that ξθ is defined away from the poles {sin θ = 0}, while ξϕ is well-defined and smooth
on the whole T ∗S2. In the (θ, ϕ, ξθ, ξϕ) coordinates, the principal symbols of P2 and P1 are
p20 = ξϕ and

p10(θ, ϕ, ξθ, ξϕ) = ∆θξ
2
θ +

(1 + α)2

∆θ sin2 θ
(ξϕ − aω̃ sin2 θ)2.

Since p10 does not depend on ϕ, we have

{p10, p20} = 0.

We would like to apply the results of §2.3.4 on integrable Hamiltonian systems to establish a
normal form for p = (p10, p20). First of all, we study the points where the integrable system
p is degenerate:

Proposition 2.4.3. For a small enough,
1. For C−1

θ ≤ λ̃ ≤ Cθ, the set p−1(λ̃, k̃) is nonempty if and only if (λ̃, k̃) ∈ K̃.

2. The integrable system p is nondegenerate on p−1(K̃), except at the equators

E±(λ̃) = {θ = π/2, ξθ = 0, (1 + α)(ξϕ − aω̃) = ±
√
λ̃} ⊂ T ∗S2, C−1

θ ≤ λ̃ ≤ Cθ.

Moreover, p10 = λ̃ on E±(λ̃) and the union of all E±(λ̃) is equal to p−1(K̃±). Also,

dp10 = ±2(1 + α)
√
λ̃ dp20 on E±(λ̃). (2.4.2)

Proof. We can verify directly the statements above for a = 0, and also (2.4.2) for all a. Then
part 2 follows for small a by a perturbation argument; part 1 follows from part 2 by studying
the extremum problem for ξϕ restricted to {p10 = λ̃}.

Next, we construct the principal parts F± of the quantization symbols globally:

Proposition 2.4.4. For a small enough,
1. There exist unique smooth real-valued functions F±(λ̃, k̃) on K̃ such that F±|K̃± = 0

and (F±(p), p20) is a nondegenerate completely integrable system on p−1(K̃ \ (K̃+ ∪ K̃−))
with periodicity lattice 2πZ2.

2. ∂λ̃F± > 0, ∓∂k̃F± > 0, and F−(λ̃, k̃) − F+(λ̃, k̃) = 2k̃ on K̃. In particular, one
can define the inverse F−1

± (ζ, k̃) of F± in the λ̃ variable, with k̃ as a parameter. Also,

F± =
√
λ̃∓ k̃ for a = 0 and ∂λ̃F± = ±(2k̃)−1 +O(a2) on K̃±.

3. If (λ̃, k̃) ∈ K̃ \ (K̃+ ∪ K̃−) and γ± are some (2π-periodic) trajectories of F±(p) on
p−1(λ̃, k̃), then ∫

γ±

σS = 2πF±(λ̃, k̃). (2.4.3)
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Proof. 1. We first construct F+ in a neighborhood of K̃+. In fact, we take small εk > 0 and
define F+ on the set

K̃ε = {(λ̃, k̃) | k̃ ≥ εk, (1 + α)2(k̃ − aω̃)2 ≤ λ̃ ≤ Cθ}.

We will pick εk small enough so that K̃+ ⊂ K̃ε; note, however, that K̃ε does not lie in K̃.
Moreover, we will construct a symplectomorphism Φ from p−1(K̃ε) onto a subset of T ∗M
such that F+(p) ◦ Φ−1 = ζ and p20 ◦ Φ−1 = η.

Note that ξϕ = 0 on the poles of the sphere {sin θ = 0}; therefore, (θ, ϕ, ξθ, ξϕ) is a

symplectic system of coordinates near p−1(K̃ε). Next, fix ξϕ ≥ εk and consider p10 as a
function of (θ, ξθ); then for a small enough, this function has a unique critical point (0, 0)
on the compact set {p10(·, ·, ξϕ) ≤ Cθ}; the Hessian at this point is positive definite. Indeed,
it is enough to verify these statements for a = 0 and check that ∂θp10 = ∂ξθp10 = 0 for
(θ, ξθ) = (π/2, 0) and small a. Now, we may apply Proposition 2.3.10 to the function

{p10(·, ·, ξϕ)} and obtain a function F+(λ̃; k̃) on K̃ε such that F+|K̃+
= 0 and ∂λ̃F+ > 0 and

a mapping
Ψ : (θ, ξθ, ξϕ) 7→ (Ψx(θ, ξθ, ξϕ),Ψξ(θ, ξθ, ξϕ))

that defines a family of symplectomorphisms (θ, ξθ) 7→ (Ψx,Ψξ), depending smoothly on the
parameter ξϕ, and

F+(p10(θ, ξθ, ξϕ), ξϕ) =
1

2
(Ψx(θ, ξθ, ξϕ)2 + Ψξ(θ, ξθ, ξϕ)2), (θ, ξθ, ξϕ) ∈ p−1(K̃ε).

Now, define Φ : (θ, ϕ, ξθ, ξϕ) 7→ (Φx,Φy,Φξ,Φη) ∈ T ∗M by

Φx = Ψx, Φy = ϕ+G(Ψx,Ψξ, ξϕ), Φξ = Ψξ, Φη = ξϕ.

Here G(x, ξ; ξϕ) is some smooth function. For Φ to be a symplectomorphism, G should
satisfy

∂ξG(Ψx,Ψξ, ξϕ) = ∂ξϕΨx, ∂xG(Ψx,Ψξ, ξϕ) = −∂ξϕΨξ.

Since (x, ξ) vary in a disc, this system has a solution if and only if

0 = {Ψξ, ∂ξϕΨx}+ {∂ξϕΨξ,Ψx} = ∂ξϕ{Ψξ,Ψx};

this is true since {Ψξ,Ψx} = 1. The defining properties of F+ now follow from the cor-
responding properties of the integrable system (ζ, η); uniqueness follows from part 3 of
Proposition 2.3.8 and the condition F+|K̃+

= 0.

Now, by part 2 of Proposition 2.3.8 and Proposition 2.4.3, for each (λ̃0, k̃0) ∈ K̃ \ (K̃+ ∪
K̃−), there exists a smooth function F (λ̃, k̃) defined in a neighborhood of (λ̃0, k̃0) such that
∂λF 6= 0 and (F (p), p20) has periodicity lattice 2πZ2; moreover, part 3 of Proposition 2.3.8

describes all possible F . Then we can cover K̃ \ K̃ε by a finite set of the neighborhoods
above and modify the resulting functions F and piece them together, to uniquely extend the
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function F+ constructed above from K̃ε to K̃ \ K̃−. (Here we use that K̃ \ K̃− is simply

connected.) Similarly, we construct F− on K̃ \ K̃+. (The fact that F± is smooth at K̃∓ will

follow from smoothness of F∓ at K̃∓ and the identity F− − F+ = 2k̃.)
2. We can verify the formulas for F± for a = 0 explicitly, using the fact that the

Hamiltonian flow of
√
λ̃ is 2π-periodic in this case. The first two identities now follow

immediately. As for the third one, we know by part 3 of Proposition 2.3.8 and the case a = 0
that F−−F+ = 2k̃+ c for some constant c; we can then show that c = 0 using part 3 of this
proposition. Finally, ∂λ̃F±|K̃± can be computed using Proposition 2.3.10.

3. First, assume that (λ̃, k̃) ∈ K̃ε and let Φ be the symplectomorphism constructed in
part 1. Then

Φ ◦ γ+ = {ζ = F+(λ̃, k̃), η = k̃, ϕ = const}

is a circle. Let D+ be the preimage under Φ of the disc with boundary Φ ◦ γ+; then∫
γ+

σS =

∫
D+

ωS =

∫
Φ◦D+

ωSM = 2πF+(λ̃, k̃).

We see that (2.4.3) holds for F+ near K̃+; similarly, it holds for F− near K̃−. It now

suffices to show that for each (λ̃0, k̃0) ∈ K̃ \(K̃+∪K̃−), there exists a neighborhood V (λ̃0, k̃0)
such that if (λ̃j, k̃j) ∈ V , j = 1, 2, and γ±j are some (2π-periodic) Hamiltonian trajectories

of F±(p) on p−1(λ̃j, k̃j), then∫
γ±2

σS −
∫
γ±1

σS = 2π(F±(λ̃2, k̃2)− F±(λ̃1, k̃1)). (2.4.4)

In particular, if (2.4.3) holds for one point of V , it holds on the whole V . One way to
prove (2.4.4) is to use part 1 of Proposition 2.3.9 to conjugate (F±(p), p20) to the system
(ξx, ξy) on the torus Tx,y and note that the left-hand side of (2.4.4) is the integral of the
symplectic form over a certain submanifold bounded by γ1, γ2; therefore, it is the same for
the conjugated system, where it can be computed explicitly.

Finally, we construct local symplectomorphisms conjugating (F±(p), p20) to (ζ, η):

Proposition 2.4.5. For each (λ̃0, k̃0) ∈ K̃ \ K̃∓, there exists an exact symplectomorphism
Φ± from a neighborhood of p−1(λ̃0, k̃0) in T ∗S2 onto a neighborhood of

ΛM = {ζ = F±(λ̃0, k̃0), η = k̃0}

in T ∗M such that
p10 ◦ Φ−1

± = F−1
± (ζ, η), p20 ◦ Φ−1

± = η.

Proof. The existence of Φ± away from K̃± follows from part 1 of Proposition 2.3.9, ap-
plied to the systems (F±(p), p20) and (ζ, η); near K̃±, these symplectomorphisms have been
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constructed in the proof of part 1 of Proposition 2.4.4. Exactness follows by part 2 of Propo-
sition 2.3.9 (which still applies in the degenerate case); the equality of classical actions over
the flows of F±(p) and ζ follows from part 3 of Proposition 2.4.4, while the classical actions
over the flows of both p20 on p−1(λ̃0, k̃0) and η on ΛM are both equal to 2πk̃0.

2.4.3 Moser averaging

Fix (λ̃0, k̃0) ∈ K̃ \ K̃∓, take small ε > 0, and define (suppressing the dependence on the
choice of the sign)

Λ0 = p−1(λ̃0, k̃0), ζ0 = F±(λ̃0, k̃0), Λ0
M = {ζ = ζ0, η = k̃0} ⊂ T ∗M,

V ε = {(λ̃, k̃) | |F±(λ̃, k̃)− ζ0| ≤ ε, |k̃ − k̃0| ≤ ε} ⊂ R2,

V ε
M = {|ζ − ζ0| ≤ ε, |η − k̃0| ≤ ε} ⊂ T ∗M;

then V ε and V ε
M are compact neighborhoods of (λ̃0, k̃0) and Λ0

M, respectively. Here the
functions F± are as in Proposition 2.4.4. Let Φ± be the symplectomorphism constructed in
Proposition 2.4.5; we know that for ε small enough, Φ±(p−1(V ε)) = V ε

M. In this subsection,
we prove

Proposition 2.4.6. For (λ̃0, k̃0) ∈ K̃ \ K̃± and ε > 0 small enough, there exists a pair of
operators (B1, B2) quantizing Φ± near p−1(V ε) × V ε

M in the sense of Proposition 2.3.5 and
operators Q1, Q2 ∈ Ψcomp

cl (M) such that:
1. P1 and P2 are intertwined with Q1 and Q2, respectively, via (B1, B2), near p−1(V ε)×

V ε
M. It follows immediately that the principal symbols of Q1 and Q2 are F−1

± (ζ, η) and η,
respectively, near V ε

M.
2. Q2 = hDy and the full symbol of Q1 is a function of (ζ, η), microlocally near V ε

M.
Here we use Weyl quantization on M, inherited from the covering space R2.

First of all, we use Proposition 2.3.5 to find some (B1, B2) quantizing Φ± and Q1, Q2

intertwined with P1 and P2 by (B1, B2). Then we will find a couple of operators X, Y ∈
Ψcomp

cl (M) such that Y = X−1 near V ε
M and the operators Q′1 = XQ1Y,Q

′
2 = XQ2Y satisfy

part 2 of Proposition 2.4.6. This is the content of this subsection and will be done in several
conjugations by pseudodifferential operators using Moser averaging technique. We can then
change B1, B2 following the remark after Proposition 2.3.5 so that P1 and P2 are intertwined
with Q′1 and Q′2, which finishes the proof.

The averaging construction is based on the following

Proposition 2.4.7. Assume that the functions p0, f0, g ∈ C∞(V ε
M) are given by one of the

following:

(1) p0 = f0 = η and g is arbitrary;

(2) p0 = ζ and f0 = f0(ζ, η) is smooth in V ε
M, with ∂ζf0 6= 0 everywhere, and g is independent

of y.
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Define

〈g〉 =
1

2π

∫ 2π

0

g ◦ exp(tHp0) dt.

Then there exists unique b ∈ C∞(V ε
M) such that 〈b〉 = 0 and

g = 〈g〉+ {f0, b}.

Moreover, in case (2) b is independent of y.

Proof. We only consider case (2); case (1) is proven in a similar fashion. First of all, if b is
y-independent, then {f0, b} = ∂ζf0 · {ζ, b} = {ζ, ∂ζf0 · b}; therefore, without loss of generality
we may assume that f0 = ζ. The existence and uniqueness of b now follows immediately if
we treat y, η as parameters and consider polar coordinates in the (x, ξ) variables. To show
that b is smooth at ζ = 0 (in case ζ0 ≤ ε), let z = x + iξ and decompose g − 〈g〉 into an
asymptotic sum of the terms zj z̄k with j, k ≥ 0, j 6= k, and coefficients smooth in (y, η); the
term in b corresponding to zj z̄k is zj z̄k/(i(k − j)).

Henceforth in this subsection we will work with the operators Qj on the level of their full
symbols, microlocally in a neighborhood of V ε

M. (The operators X and Y will then be given
by the product of all operators used in conjugations below, multiplied by an appropriate
cutoff.) Denote by qj the full symbol of Qj. We argue in three steps, following in part [65,
§3].
Step 1: Use Moser averaging to make q2 independent of y.

Assume that q2 is independent of y modulo O(hn+1) for some n ≥ 0; more precisely,

q2 =
n∑
j=0

hjq2,j(x, ξ, η) + hn+1rn(x, y, ξ, η) +O(hn+2).

Take some B ∈ Ψloc
cl with principal symbol b and consider the conjugated operator

Q′2 = exp(ihnB)Q2 exp(−ihnB).

Here exp(±ihnB) ∈ Ψloc
cl are well-defined by Proposition 2.3.7 and inverse to each other;

using the same proposition, we see that the full symbol of Q′2 is

n∑
j=0

hjq2,j(x, ξ, η) + hn+1(rn − {η, b}) +O(hn+2).

If we choose b as in Proposition 2.4.7(1), then rn − {η, b} = 〈rn〉 is a function of (x, ξ, η)
only; thus, the full symbol of Q′2 is independent of y modulo O(hn+2). Arguing by induction
and taking the asymptotic product of the resulting sequence of exponentials, we make the
full symbol of Q2 independent of y.
Step 2: Use our knowledge of the spectrum of P2 to make q2 = η.
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First of all, we claim that
exp(2πiQ2/h) = I (2.4.5)

microlocally near V ε
M × V ε

M. For that, we will use Proposition 2.3.6. Let X ∈ Ψcomp
cl (S2)

have real-valued principal symbol, be microlocalized in a small neighborhood of p−1(V ε),
but equal to the identity microlocally near this set. Consider

Pt = exp(itQ2/h)B1 exp(−it(P2X)/h)B2.

We see that

hDtPt = exp(itQ2/h)(Q2B1 −B1P2X) exp(−it(P2X)/h)B2

vanishes microlocally near V ε
M × V ε

M; integrating between 0 and 2π and using part 5 of
Proposition 2.3.6 to show that exp(−2πi(P2X)/h) = I microlocally near p−1(V ε)×p−1(V ε),
we get (2.4.5).

Now, let XM ∈ Ψcomp
cl (M) be equal to the identity microlocally near WFh(Q2); since

the full symbol of Q2 is independent of y, we have [Q2, (hDy)XM] = O(h∞). Therefore, by
parts 2 and 5 of Proposition 2.3.6

exp(2πi(Q2 − (hDy)XM)/h) = exp(−2πiDyXM) exp(2πiQ2/h) = I

microlocally near V ε
M × V ε

M. However, R = h−1(Q2 − (hDy)XM) ∈ Ψloc
cl near V ε

M and thus
the left-hand side exp(2πiR) is pseudodifferential; by part 3 of Proposition 2.3.7, we get
R = l for some constant l ∈ Z and therefore

Q2 = hDy + hl

microlocally near V ε
M. It remains to conjugate Q2 by eily to get q2 = η.

Step 3: Use Moser averaging again to make q1 a function of (ζ, η), while preserving q2 = η.
Recall that [P1, P2] = 0; therefore, [Q1, Q2] = 0 (microlocally near V ε

M). Since q2 = η,
this means that q1 is independent of y. We now repeat the argument of Step 1, using
Proposition 2.4.7(2) with f0 = F−1

± (ζ, η). The function b at each step is independent of
y; thus, we can take [B, hDy] = O(h∞). But in that case, conjugation by exp(ihnB) does
not change Q2; the symbol of the conjugated Q1 is still independent of y. Finally, 〈rn〉 is a
function of (ζ, η); therefore, q1 after conjugation will also be a function of (ζ, η).

2.4.4 Construction of the Grushin problem

In this subsection, we establish a local quantization condition:

Proposition 2.4.8. 1. Assume that (λ̃0, k̃0) ∈ K̃ \K̃∓ and Vε is the neighborhood of (λ̃0, k̃0)
introduced in the beginning of §2.4.3. Then for ε > 0 small enough, there exists a classical
symbol G̃±(λ̃, k̃;h) on Vε with principal symbol F± and such that for k ∈ Z, the poles λ̃+ ihµ̃
of Rθ(ω, λ, k) with (λ̃, k̃) ∈ Vε and |µ̃| ≤ Cθ are simple with polynomial resolvent estimate
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L2 → L2, in the sense of Definition 2.2.2, and coincide modulo O(h∞) with the solution set
of the quantization condition

G̃±(λ̃+ ihµ̃, k̃;h) ∈ hN. (2.4.6)

2. Assume that (λ̃0, k̃0) satisfies (2.2.14), but does not lie in K̃. Then there exists a
neighborhood V (λ̃0, k̃0) such that for h small enough, there are no elements (λ̃ + ihµ̃, k̃) of
the joint spectrum of P1, P2 with (λ̃, k̃) ∈ V and |µ̃| ≤ Cθ, and Rθ(ω, λ, k) is bounded L2 → L2

by O(h2).

To prove part 1, we will use the microlocal conjugation constructed above. Let (λ̃0, k̃0) ∈
K̃ \ K̃∓ and ε > 0, B1, B2, Q1, Q2 be given by Proposition 2.4.6. Consider the operators

T1 =
1

2
((hDx)

2 + x2)− h

2
, T2 = hDy

onM; their full symbols are ζ−h/2 and η, respectively. We know that T1 and T2 commute;
the joint spectrum of T1, T2 is h(N × Z). Therefore, for any bounded function f on R2, we
can define f(T1, T2) by means of spectral theory; this is a bounded operator on L2(M).

Proposition 2.4.9. 1. For f ∈ C∞0 (R2), the operator f(T1, T2) is pseudodifferential; more-
over, f(T1, T2) ∈ Ψcomp

cl (M) and WFh(f(T1, T2)) ⊂ {(ζ, η) ∈ supp f}. The full symbol of
f(T1, T2) in the Weyl quantization is a function of ζ and η only; the principal symbol is
f(ζ, η).

2. Assume that ζ1 ∈ hN, η1 ∈ hZ. Let u be the L2 normalized joint eigenfunction of
(T1, T2) with eigenvalue (ζ1, η1). Then u is compactly microlocalized and

WFh(u) ⊂ {ζ = ζ1, η = η1}.

3. Assume that the function f(ζ, η;h) is Borel measurable, has support contained in a
compact h-independent subset Kf of R2, and

max{|f(ζ, η;h)| | ζ ∈ hN, η ∈ hZ} ≤ Ch−r

for some r ≥ 0. Then the operator f(T1, T2;h) is compactly microlocalized, its wavefront set
is contained in the square of {(ζ, η) ∈ Kf}, and the operator norm of f(T1, T2;h) is O(h−r).

Proof. For part 1, we can show that the operator f(T1, T2) is pseudodifferential by means
of Helffer–Sjöstrand formula in calculus of several commuting pseudodifferential operators;
see for example [39, Chapter 8]. This also gives information on the principal symbol and
the wavefront set of this operator. To show that the full symbol of f(T1, T2) depends only
on (ζ, η), note that if A ∈ Ψloc(M) and a is its full symbol in the Weyl quantization, then
the full symbol of [A, T1] in the Weyl quantization is −ih{a, ζ}; similarly, the full symbol of
[A, T2] in the Weyl quantization is −ih{a, η} (see for example [111, discussion before (1.11)]).
Since [f(T1, T2), Tj] = 0, the full symbol of f(T1, T2) Poisson commutes with ζ and η.

To show part 2, we take χ(ζ, η) ∈ C∞0 (R2) equal to 1 near (ζ1, η1); then u = χ(T1, T2)u.
Similarly, to show part 3, we take χ equal to 1 near Kf ; then the L2 operator norm of
f(T1, T2) can be estimated easily and f(T1, T2) = χ(T1, T2)f(T1, T2)χ(T1, T2).
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Now, recall that by Proposition 2.4.6, the full symbol of Q1 in the Weyl quantization is a
function of (ζ, η) near V ε

M; therefore, we can find a compactly supported symbol G̃±(λ̃, k̃;h)

such that the principal symbol of G̃± near V ε is F± and

Q1 = G̃−1
± (T1, T2;h)

microlocally near V ε
M, where G̃−1

± (ζ, k̃;h) is the inverse of G̃± in the λ̃ variable. Recall also
that Q2 = T2 microlocally near V ε

M. Multiplying Q1, Q2 by an appropriate cutoff, which is
a function of T1, T2, we can assume that Q1, Q2 are functions of T1, T2 modulo h∞Ψ−∞. We
can now construct a local Grushin problem for Q1, Q2:

Proposition 2.4.10. Let (λ̃1, k̃1) ∈ V ε and |µ̃1| ≤ Cθ.

1. Assume that (λ̃1 + ihµ̃1, k̃1) satisfies (2.4.6), with ζ1 = G̃±(λ̃1 + ihµ̃1, k̃1) ∈ hN. Then
there exist operators A1, A2, S1, S2 such that conditions (L1)–(L5) of Appendix 2.A.2 are
satisfied, with r = 1, (P1, P2) replaced by (Q1 − λ̃1 − ihµ̃1, Q2 − k̃1), K = {ζ = ζ1, η = k̃1},
and

A1(Q1 − λ̃1 − ihµ̃1) + A2(Q2 − k̃1) = I − S1S2 (2.4.7)

microlocally near V ε
M × V ε

M.
2. Fix δ > 0 and assume that

|(λ̃1 + ihµ̃1, k̃1)− (G−1
± (ζ, η), η)| ≥ δh, ζ ∈ hN, η ∈ hZ.

Then there exist operators A1, A2 such that the conditions (L1)–(L2) of Appendix 2.A.2 are
satisfied, with r = 1, (P1, P2) replaced by (Q1 − λ̃1 − ihµ̃1, Q2 − k̃1), K = {ζ = ζ1, η = k̃1},
and

A1(Q1 − λ̃1 − ihµ̃1) + A2(Q2 − k̃1) = I

microlocally near V ε
M × V ε

M.

Proof. 1. Let S1 : C → L2(M) and S2 : L2(M) → C be the inclusion and the orthogonal
projection onto, respectively, the unit joint eigenfunction of (T1, T2) with eigenvalue (ζ1, k̃1).
The properties (L3) and (L4) now follow from part 2 of Proposition 2.4.9.

Next, we use a partition of unity on the circle to construct the functions χ1, χ2 with the
following properties:

• χj ∈ C∞(R2 \ 0) is positively homogeneous of degree 0;

• χj ≥ 0 and χ1 + χ2 = 1 everywhere on R2 \ 0;

• χj(s1, s2) = 0 for |sj| < |s3−j|/2.

It follows that
|s−1
j χj(|s1|2, |s2|2)| ≤ C(|s1|+ |s2|)−1. (2.4.8)



CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF RESONANCES 86

Take χ(ζ, η) ∈ C∞0 supported in a small neighborhood of V ε
M, while equal to 1 near V ε

M;
define the functions f1, f2 as follows:

f1(ζ, η;h) =
χ(ζ, η)χ1(|G̃−1

± (ζ, η;h)− λ̃1 − ihµ̃1|2, |η − k̃1|2)

G̃−1
± (ζ, η;h)− λ̃1 − ihµ̃1

,

f2(ζ, η;h) =
χ(ζ, η)χ2(|G̃−1

± (ζ, η;h)− λ̃1 − ihµ̃1|2, |η − k̃1|2)

η − k̃1

,

for (ζ, η) 6= (ζ1, k̃1); we put fj(ζ1, k̃1) = 0. We now take Aj = fj(T1, T2;h). Noticing that

|G̃−1
± (ζ, η;h)− λ̃1|+ |η − k̃1| ≥ h/C, (ζ, η) ∈ h(N× Z) ∩ suppχ \ (ζ1, k̃1),

and using Proposition 2.4.9 and (2.4.8), we get that Aj are compactly microlocalized and
‖Aj‖ = O(h−1). Moreover, if χ̃(ζ, η) is equal to 1 near (ζ1, k̃1), then (1 − χ̃)fj are smooth
symbols; then, A′′j = (1 − χ̃)(T1, T2)Aj belongs to Ψcomp

cl by part 1 of Proposition 2.4.9 and
A′j = χ̃(T1, T2)Aj is microlocalized in the Cartesian square of {(ζ, η) ∈ supp χ̃}; we have
established property (L1), with r = 1. The properties (L2), (L5), and (2.4.7) are easy to
verify, given that all the operators of interest are functions of T1, T2.

2. This is proved similarly to part 1.

Finally, we conjugate the operators of the previous proposition by B1, B2 to get a local
Grushin problem for P1, P2 and obtain information about the joint spectrum:

Proof of Propositon 2.4.8. 1. Assume first that λ̃1, k̃1, µ̃1 satisfy the conditions of part 1 of
Proposition 2.4.10; let A1, A2, S1, S2 be the operators constructed there. Recall that Aj are
microlocalized in a small neighborhood of V ε

M. Then the operators

Ãj = B2AjB1, S̃1 = B2S1, S̃2 = S2B1,

together with P1 − λ̃1 − ihµ̃1, P2 − k̃1 in place of P1, P2 satisfy the conditions (L1)–(L5) of
Appendix 2.A.2 with K = p−1(λ̃1, k̃1) and

Ã1(P1 − λ̃1 − ihµ̃1) + Ã2(P2 − k̃1) = I − S̃1S̃2

microlocally near p−1(V ε). Moreover, P1 − λ̃1 − ihµ̃1, P2 − k̃1 satisfy conditions (E1)–(E2)
of Appendix 2.A.2 and the set where both their principal symbols vanish is exactly K. We
can now apply part 2 of Proposition 2.A.5 to show that for h small enough and some δ > 0,
independent of h, λ̃1, k̃1, there is exactly one element of the joint spectrum of (P1, P2) in the
ball of radius δh centered at (λ̃1 + ihµ̃1, k̃1), and this point is within O(h∞) of the center of
the ball.

Now, we assume that (λ̃+ ihµ̃, k̃) satisfies the conditions of part 2 of Proposition 2.4.10,
with δ specified in the previous paragraph. Then we can argue as above, using part 1 of
Proposition 2.A.5, to show that this point does not lie in the joint spectrum for h small
enough.



CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF RESONANCES 87

Since every point (λ̃ + ihµ̃, k̃) such that (λ̃, k̃) ∈ V ε and |µ̃| ≤ Cθ is covered by one
of the two cases above, we have established that the angular poles in the indicated region
coincide modulo O(h∞) with the set of solutions to the quantization condition. Moreover,
Proposition 2.A.4 together with the construction of a global Grushin problem from a local
one carried out in the proof of Proposition 2.A.5 provides the resolvent estimates required
in Definition 2.2.2.

2. The set p−1(λ̃0, k̃0) is empty by Proposition 2.4.3; therefore, the operator

T = (P1 − λ̃− ihµ̃)∗(P1 − λ̃− ihµ̃) + (P2 − k̃)2

is elliptic in the class Ψ2(S2) for (λ̃, k̃) close to (λ̃0, k̃0) and µ̃ bounded; therefore, for h small
enough, ‖T−1‖L2→L2 = O(1). The absense of joint spectrum and resolvent estimate follow
immediately if we notice that the restriction of T to D′k is h4(Pθ − λ)∗(Pθ − λ).

2.5 Radial problem

2.5.1 Trapping

In §1.5, we use a Regge–Wheeler change of variables r → x, under which and after an
appropriate rescaling the radial operator becomes (using the notation of (2.2.11))

Px(h) = h2D2
x + V (x, ω̃, ν̃, λ̃, µ̃, k̃;h),

V (x;h) = (λ̃+ ihµ̃)∆r − (1 + α)2((r2 + a2)(ω̃ + ihν̃)− ak̃)2

(note the difference in notation with §1.8). Let V (x;h) = V0(x) + hV1(x) + h2V2(x), where

V0(x) = λ̃∆r − (1 + α)2((r2 + a2)ω̃ − ak̃)2

is the semiclassical principal part of V (x); note that V0 is real-valued and for 1 ≤ ω̃ ≤ 2 and a
small enough, V0(±∞) < 0. Now, Proposition 1.8.4 establishes an arbitrarily large strip free
of radial poles in the nontrapping cases; therefore, the only radial poles in the region (2.2.12)
appear in case (3) of Proposition 1.8.3. Using the proof of the latter proposition, we may
assume that:

• |λ̃− λ̃0(ω̃, k̃)| < εr, where λ̃−1
0 is the value of the function

FV (r; ω̃, k̃) =
∆r

(1 + α)2((r2 + a2)ω̃ − ak̃)2

at its only maximum point. Under the assumptions (2.2.12), 1/C ≤ λ̃0 ≤ C for some
constant C;

• V0, as a function of x, has unique global maximum x0, |V0(x0)| < ε3
r and V ′′0 (x) < 0 for

|x− x0| ≤ εr;
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x0 xx0 + εrx0 − εr

I+I−

Figure 2.3: The potential V0 and the intervals I±.

• V0(x) < −ε3
r for |x− x0| ≥ εr.

Here εr > 0 is a small constant we will choose later. We can also compute

λ̃0 =
27M2ω̃2

1− 9ΛM2
for a = 0;

V ′′0 (x0) = −18M4(1− 9ΛM2)2λ̃ for a = 0, λ̃ = λ̃0.

(2.5.1)

Letting
p0(x, ξ) = ξ2 + V0(x)

be the principal symbol of Px, we see that p0 has a nondegenerate hyperbolic critical point
at (x0, 0) and this is the only critical point in the set {p0 ≥ −ε3

r}.

2.5.2 WKB solutions and the outgoing condition

Firstly, we obtain certain approximate solutions to the equation Pxu = 0 in the region
|x − x0| > εr, where V0 is known to be negative. (Compare with [100, Sections 2 and 3].)
Define the intervals

I+ = (x0 + εr,+∞), I− = (−∞, x0 − εr), I0 = (x0 − 2εr, x0 + 2εr). (2.5.2)

Let ψ0(x) be a smooth function on I+ ∪ I− solving the eikonal equation

ψ′0(x) = sgn(x− x0)
√
−V0(x).

(We will specify a normalization condition for ψ0 later.) Then we can construct approximate
WKB solutions

u+
±(x;h) = eiψ0(x)/ha+

±(x;h), u−±(x;h) = e−iψ0(x)/ha−±(x;h), x ∈ I±, (2.5.3)
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such that Pxu
δ
± = O(h∞) in C∞(I±)8 and aδγ are smooth classical symbols in h, for γ, δ ∈

{+,−}. Indeed, if

aδγ(x;h) ∼
∑
j≥0

hjaδ(j)γ (x),

then the functions a
δ(j)
γ have to solve the transport equations

(2ψ′0(x)∂x + ψ′′0(x)± iV1(x))a±(0)
γ = 0,

(2ψ′0(x)∂x + ψ′′0(x)± iV1(x))a±(j+1)
γ = ±i(∂2

x − V2(x))a±(j)
γ , j ≥ 0;

(2.5.4)

the latter can be solved inductively in j. We will fix the normalization of a
δ(0)
γ later; right

now, we only require that for x in a compact set, a
δ(0)
γ ∼ 1 in the sense that C−1 ≤ |aδ(0)

γ | ≤ C
for some h-independent constant C. Put

Γ±γ = {(x,±ψ′0(x)) | x ∈ Iγ} ⊂ T ∗Iγ, γ ∈ {+,−}; (2.5.5)

then by Proposition 2.3.1 (with m = 0),

WFh(u
δ
γ) ⊂ Γδγ, γ, δ ∈ {+,−}. (2.5.6)

Now, we show that the Cauchy problem for the equation Pxu = 0 is well-posed semi-
classically in I±. For two smooth functions v1, v2 on some interval, define their semiclassical
Wronskian by

W (v1, v2) = v1 · h∂xv2 − v2 · h∂xv1;

then
h∂xW (v1, v2) = v2 · Pxv1 − v1 · Pxv2. (2.5.7)

Also, if W (v1, v2) 6= 0 and u is some smooth function, then

u =
W (u, v1)v2 −W (u, v2)v1

W (v2, v1)
. (2.5.8)

We have W (u+
±, u

−
±) ∼ 1; therefore, the following fact applies:

Proposition 2.5.1. Assume that I ⊂ R is an interval and U ⊂ I is a nonempty open set.
Let v1(x;h), v2(x;h) ∈ C∞(I) be two polynomially bounded functions such that Pxvj(x;h) =
O(h∞) in C∞(I) and W (v1, v2)−1 is polynomially bounded. (Note that by (2.5.7), dxW (v1, v2)
is O(h∞).) Let u(x;h) ∈ C∞(I) be polynomially bounded in C∞(U) and Pxu = O(h∞) in
C∞(I). Then u = c1v1 + c2v2 +O(h∞) in C∞(I), where the constants c1, c2 are polynomially
bounded. Moreover, cj = W (u, v3−j)/W (vj, v3−j) +O(h∞).

8Henceforth we say that u = O(h∞) in C∞(I) for some open set I, if for every compact K ⊂ I and every
N , ‖u‖CN (K) = O(hN ). In particular, this does not provide any information on the growth of u at the ends
of I. Similarly, we say that u is polynomially bounded in C∞(I) if for every K and N , there exists M such
that ‖u‖CN (K) = O(h−M ).
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Proof. Let Wj = W (u, vj). Combining (2.5.7) and (2.5.8), we get |dxWj| = O(h∞)(|W1| +
|W2|). Also, Wj are polynomially bounded on U . By Gronwall’s inequality, we see that Wj

are polynomially bounded on I and constant modulo O(h∞); it remains to use (2.5.8).

Now, recall §1.5 that for X0 large enough, we have V (x) = V±(e∓A±x) for ±x > X0, where
A± > 0 are some constants and V±(w) are holomorphic functions in the discs {|w| < e−A±X0},
and V±(0) = −ω2

±, where

ω± = (1 + α)((r2
± + a2)(ω̃ + ihν̃)− ak̃). (2.5.9)

For a and h small enough, we have Reω± > 0. In §1.5, we constructed exact solutions u±(x)
to the equation Pxu± = 0 such that

u±(x) = e±iω±x/hv±(e∓A±x) for ± x > X0,

with v±(w) holomorphic in the discs {|w| < e−A±X0} and v±(0) = 1. Note that we can
use a different normalization condition than Proposition 1.5.2, as Imω± = O(h) under the
assumptions (2.2.12).

Proposition 2.5.2. For a certain normalization of the functions ψ0 and a
+(0)
± ,

u±(x) = u+
±(x) +O(h∞) in C∞(I±). (2.5.10)

In particular, by (2.5.6)
WFh(u±|I±) ⊂ Γ+

±. (2.5.11)

Proof. We will consider the case of u+. By Proposition 2.5.1, it is enough to show (2.5.10)
for ±x > X0, where X0 is large, but fixed. We choose X0 large enough so that ReV±(w) < 0
for |w| ≤ e−A±X0 . Then there exists a function ψ(x) such that

(∂xψ(x))2 + V (x) = 0, x > X0;

ψ(x) = ω+x+ ψ̃(e−A+x),

with ψ̃ holomorphic in {|w| < e−A+X0}. We can fix ψ by requiring that ψ̃(0) = 0. Take

u+(x) = eiψ(x)/ha(e−A+x;h);

then Pxu+ = 0 if and only if

([hA+wDw + A+wψ̃
′(w)− ω+]2 + V )a = 0.

This can be rewritten as

−A+(wψ̃′(w))′a+ (2ω+ + ihA+ − 2A+wψ̃
′(w))∂wa+ ihA+w∂

2
wa = 0.
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We will solve this equation by a power series in w and estimate the terms of this series
uniformly in h. Let us write

ψ̃′(w;h) =
∑
l≥0

ψl(h)wl, a(w;h) =
∑
j≥0

aj(h)wj

and solve for aj with the initial condition a0 = 1, obtaining

aj+1(h) =
A+

(j + 1)(2ω+ + ihA+(j + 1))

∑
0≤l≤j

ψl(h)(1 + 2j − l)aj−l(h).

We claim that for some R, all j, and small h, |aj(h)| ≤ Rj. Indeed, we have |2ω+ + ihA+(j+
1)| ≥ ε > 0; combining this with an estimate on ψl, we get

|aj+1| ≤
C

j + 1

∑
0≤l≤j

Sl(1 + 2j − l)|aj−l| ≤ 2C
∑

0≤l≤j

Sl|aj−l|

for some constants C and S. We can then conclude by induction if R ≥ 2C+S. In a similar
way, we can estimate the derivatives of aj in h; therefore, a(w;h) is a classical symbol for
|w| < R−1.

Now, we take X0 large enough so that e−A+X0 < R−1 and restrict ourselves to real x > X0.
We can normalize ψ0 so that ψ(x) = ψ0(x) + hψ1(x;h) for some classical symbol ψ1; then

u+(x) = eiψ0(x)/h[eiψ1(x;h)a(e−A+x;h)].

The expression in square brackets is a classical symbol; therefore, this expression solves the
transport equations (2.5.4); it is then equal to a constant times a+

+, modulo O(h∞) errors.

2.5.3 Transmission through the barrier

First of all, we establish a microlocal normal form for Px near the potential maximum. Let
ε0 > 0 be small; define

K0 = {|x− x0| ≤ ε0, |ξ| ≤ ε0} ⊂ T ∗R.

We pick εr small enough, depending on ε0, such that εr < ε0/2 and

{p0 = 0} ⊂ K0 ∪
⋃
γ,δ

Γδγ,

with Γδγ defined in (2.5.5). (Recall from §2.5.1 that εr controls how close we are to the
trapping region.) We also assume that ε0 is small enough so that (x0, 0) is the only critical
point of p0 in K0.
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Figure 2.4: Level lines of p0 before and after conjugation by Φ.

Proposition 2.5.3. For ε0 small enough and εr small enough depending on ε0, there exists
a symplectomorphism Φ from a neighborhood of K0 onto a neighborhood of the origin in T ∗R
and operators B1, B2 quantizing Φ near K0 × Φ(K0) in the sense of Proposition 2.3.5, such
that Px is intertwined via (B1, B2) with the operator SQ(β) microlocally near K0 × Φ(K0),
with S ∈ Ψ0

cl elliptic in the class Ψ0(R),

Q(β) = hxDx − β,

and β = β(ω̃, ν̃, λ̃, µ̃, k̃;h) a classical symbol. Moreover, the principal part β0 of β is real-
valued, independent of ν̃, µ̃, and vanishes if and only λ̃ = λ̃0(ω̃, k̃). Also,

β0 = − V0(x0)√
−2V ′′0 (x0)

+O(V0(x0)2), (2.5.12)

β0 =
27M2ω̃2 − λ̃(1− 9ΛM2)

2
√
λ̃(1− 9ΛM2)

+O(V0(x0)2) for a = 0. (2.5.13)

Finally, Φ(K0) ⊃ K̃0 = {|x| ≤ ε̃0, |ξ| ≤ ε̃0} for some ε̃0 depending on ε0, and, with I0

defined in (2.5.2),

Φ(Γ+
±) ⊂ Γ̃+

± = {±x > 0, ξ = β0/x, |ξ| ≤ ε̃0/2}, (2.5.14)

Φ(Γ−±) ⊂ Γ̃−± = {∓ξ > 0, x = β0/ξ, |x| ≤ ε̃0/2}; (2.5.15)

{p0 = 0} ∩ {x ∈ I0} ⊂ Φ−1(K̃0) ⊂ K0. (2.5.16)

Proof. First of all, we use [27, Theorem 12] to construct Φ, B1, B2 conjugating Px microlocally
near the critical point (x0, 0) to an operator of the form f [hxDx], for some symbol f(s;h),
where the latter employs the formal functional calculus of §2.3.2. The techniques in the
proof are similar to those of §2.4.3 of the present chapter, with appropriate replacements for
Propositions 2.3.10 and 2.4.7; therefore, the proof goes through for complex valued symbols
with real principal part.
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Let f0 be the principal part of f ; then p0◦Φ−1 = f0(xξ). Note that Φ(x0, 0) = (0, 0). The
level set {p0 = V0(x0)} at the trapped energy contains in particular the outgoing trajectory
{x > x0, ξ =

√
V0(x0)− V0(x)}; we can choose Φ mapping this trajectory into {x > 0, ξ =

0}. Since the latter is also outgoing for the Hamiltonian flow of xξ, we have ∂sf0(0) > 0;
it follows that ∂sf0(s) > 0 for all s (if ∂sf0 vanishes, then p0 has a critical point other than
(x0, 0)). The function f(s;h) not uniquely defined; however, its Taylor decomposition at
s = 0, h = 0 is and we can compute in particular

f0(s) = V0(x0) + s
√
−2V ′′0 (x0) +O(s2). (2.5.17)

Therefore, for εr small enough, we can solve the equation f(s;h) = 0 for s; let β be the
solution. We now write f(s;h) = f1(s;h)(s−β) for some nonvanishing f1 and get f [hxDx] =
SQ(β) microlocally in Φ(K0), with S = f1[hxDx] in Φ(K0) and extended to be globally
elliptic outside of this set. The equation (2.5.12) follows from (2.5.17), while (2.5.13) follows
from (2.5.12) and (2.5.1).

Finally, p0 = 0 on each Γδγ and thus xξ = β on Φ(Γδγ). By analysing the properties of
Φ near (x0, 0), we can deduce which part of the sets {xξ = β} each Γδγ maps into; (2.5.14)–
(2.5.16) follow for εr small enough.

We now describe the radial quantization condition and provide a non-rigorous explanation
for it. Recall from §1.5 that (ω, λ, k) is a pole of Rr if and only if the functions u±, studied
in the previous subsection, are multiples of each other. Assume that this is true and u =
u+ ∼ u−. However, by (2.5.11) the function B1u is microlocalized on the union of Γ̃+

±, but

away from Γ̃−±; it also solves Q(β)B1u = 0 microlocally. By propagation of singularities, this
can happen only if the characteristic set of Q(β) is {xξ = 0}, and in this case, B1u is smooth
near x = 0. Then B1u must be given by xiβ/h, with β ∈ −ihN and N denoting the set of
nonnegative integers. Therefore, we define the radial quantization symbol F r(m, ω̃, ν̃, k̃;h)
as the solution λ̃+ ihµ̃ to the equation

β(ω̃, ν̃, λ̃, µ̃, k̃;h) = −ihm, m ∈ Z, 0 ≤ m ≤ Cm.

The expansions for F r near a = 0 described in Proposition 2.2.6 follow from (2.5.13)
and (2.B.12).

We now prove the rest of Proposition 2.2.6. We start with quantifying the statement
that in order for the equation Q(β)u = 0 to have a nontrivial solution smooth near x = 0,
the quantization condition must be satisfied:

Proposition 2.5.4. Assume that β ∈ C satisfies

|β| ≤ Cβ, | Im β| ≤ Cβh, min
m∈N
|β + ihm| ≥ C−1

β h, (2.5.18)

for some constant Cβ. Let U ⊂ R be a bounded open interval, I ⊂ U be a compact interval
centered at zero, and X ∈ Ψcomp

cl (R). Then there exist constants C and N such that for each
u ∈ L2(R),

‖Xu‖L2(I) ≤ Ch−N‖Q(β)Xu‖L2(U) +O(h∞)‖u‖L2(R). (2.5.19)
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Proof. First, assume that Im β ≥ h. Let I ′ be an interval compactly contained in I and
centered at zero. We will use the fact that every C∞(I ′) seminorm of Xu is bounded by
Ch−N‖Xu‖L2(I) +O(h∞)‖u‖L2(R) for some constants C and N , depending on the seminorm
chosen. (Henceforth C and N will be constants whose actual values may depend on the
context.) Since Xu ∈ C∞, we can write

hDx(x
−iβ/hXu) = x−1−iβ/hQ(β)Xu.

However, Re(−iβ/h) ≥ 1; therefore, x−iβ/hXu vanishes at x = 0 and we can integrate to get

‖x−iβ/hXu‖L∞(I) ≤ C‖Q(β)Xu‖L2(I). (2.5.20)

On the other hand,

‖Xu‖L∞(I′) ≤ Ch−N0‖Xu‖L2(I) +O(h∞)‖u‖L2(R). (2.5.21)

for some constants C and N0. Now, take a large constant κ; using (2.5.21) in {|x| < hκ}
and (2.5.20) elsewhere, we get

‖Xu‖L2(I) ≤ Chκ/2−N0‖Xu‖L2(I) + h−κCβ‖Q(β)Xu‖L2(I) +O(h∞)‖u‖L2(R);

taking κ large enough, we get (2.5.19).
For the general case, we choose an integer M large enough so that Im(β + ihM) ≥ h.

Let v be M -th Taylor polynomial of Xu at zero. Since

‖Q(β + ihM)DM
x Xu‖L2(I) = ‖DM

x Q(β)Xu‖L2(I) ≤ Ch−N‖Q(β)Xu‖L2(U) +O(h∞)‖u‖L2(R),

we apply the current proposition for the case Im β ≥ h considered above to get

‖Xu− v‖L2(I) ≤ C‖DM
x Xu‖L2(I) ≤ Ch−N‖Q(β)Xu‖L2(U) +O(h∞)‖u‖L2(R);

therefore, ‖Q(β)v‖L2(I) is bounded by the same expression. However, one can verify directly
that if β is C−1

β h away from −ihN, then

‖v‖L2(I) ≤ Ch−N‖Q(β)v‖L2(I);

this completes the proof.

Now, we show that each radial pole lies within o(h) of a pseudopole:

Proposition 2.5.5. Assume that β(h) satisfies (2.5.18). Then for h small enough, (ω, λ, k)
is not a radial pole, and for each compact interval I ⊂ R, there exist constants C and N
such that

‖1IRr(ω, λ, k)1I‖L2→L2 ≤ Ch−N .
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Proof. Let u ∈ H2
loc(R) be an outgoing solution to the equation Pxu = f , with f ∈ L2

supported in a fixed compact subset inside the open interval I. Then

u(x) = c±u±(x), ±x� 0,

for some constants c±. Clearly, |c±| ≤ C‖u‖L2(I). Using the method of proof of Proposi-
tion 2.5.1, we get

‖u− c±u±‖L2(I∩I±) ≤ Ch−1‖f‖L2 . (2.5.22)

Next, let χ ∈ C∞0 (I0) be equal to 1 near the complement of I+ ∪ I− and B1 be the operator
introduced in Proposition 2.5.3; consider the compactly microlocalized operator

T = SQ(β)B1 −B1Px.

Then by Proposition 2.3.5, we can write T = TX + O(h∞), where X ∈ Ψcomp
cl is a certain

operator vanishing microlocally on K0. By (2.5.16), we can further write X = X1+X2, where
Xj ∈ Ψcomp

cl , WFh(Xj) ∩K0 = ∅, WFh(X1) ∩ {p0 = 0} = ∅ and WFh(X2) ⊂ {x ∈ I+ ∪ I−}.
By ellipticity,

‖X1u‖L2 ≤ C‖f‖L2 +O(h∞)‖u‖L2(I).

Take χ± ∈ C∞0 (I±) such that χ± = 1 near I± ∩ π(WFh(X2)) (here π : T∗R → R is the
projection map onto the base variable and π(WFh(X2)) is a compact subset of I+∪I−); then
by (2.5.22),

‖X2(u− u1)‖L2 ≤ Ch−1‖f‖L2 +O(h∞)‖u‖L2(I),

u1 = c+χ+(x)u+ + c−χ−(x)u−.

It follows that

‖SQ(β)B1u− TX2u1‖L2 ≤ Ch−1‖f‖L2 +O(h∞)‖u‖L2(I).

Combining (2.5.11) with (2.5.14) and the fact that WFh(X2) ∩K0 = ∅, we get

WFh(TX2χ±(x)u±) ⊂ Γ̃+
± \ K̃0.

The projections of the latter sets onto the x variable do not intersect Ĩ0 = {|x| ≤ ε̃0};
therefore, for some open Ũ0 containing Ĩ0,

‖TX2u1‖L2(Ũ0) = O(h∞)‖u‖L2(I).

Using ellipticity of S, we then get

‖Q(β)B1u‖L2(Ũ0) ≤ Ch−1‖f‖L2 +O(h∞)‖u‖L2(I).

Applying Proposition 2.5.4 to B1u on I0 and using that B1 is compactly microlocalized, we
get

‖X̃B1u‖L2 ≤ Ch−N‖f‖L2 +O(h∞)‖u‖L2(I),
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for any X̃ ∈ Ψcomp
cl microlocalized in K̃0. Using the elliptic estimate and (2.5.16), we get

‖u‖L2(I0) ≤ Ch−N‖f‖L2 +O(h∞)‖u‖L2(I).

From here by (2.5.22),

|c±| ≤ C‖c±u±‖L2(I±∩I0) ≤ Ch−N‖f‖L2 +O(h∞)‖u‖L2(I);

combining the last two estimates with (2.5.22), we get the required estimate:

‖u‖L2(I) ≤ Ch−N‖f‖L2 +O(h∞)‖u‖L2(I).

To finish the proof of Proposition 2.2.6, it remains to show

Proposition 2.5.6. Fix ω̃, ν̃, k̃ satisfying (2.2.12), m ∈ N bounded by a large constant Cm,
and let V be the set of all λ such that

|β(ω̃, ν̃, k̃, λ̃, µ̃;h) + ihm| < h/3.

Then for h small enough, Rr(ω, λ, k) has a unique pole λ0 in V , and λ0 is within O(h∞) of
F r(m, ω̃, ν̃, k̃;h). Moreover, we can write

Rr(ω, λ, k) =
S(λ)

λ− λ0

, λ ∈ V,

where the family of operators S(λ) : L2
comp(R) → L2

loc(R) is bounded polynomially in h and
S(λ0) is a rank one operator.

Proof. We will use Proposition 2.5.3 and the fact that β = O(h) to extend the WKB solutions
u+
± from I± to the whole R. Consider the locally integrable functions

ũ+
± = (x± i0)iβ/h.

solving the equation Q(β)ũ+
± = 0. (See for example [70, §3.2] for the definition and basic

properties of (x± i0)b.) We have

WFh(ũ
+
±) ⊂ {ξ = 0} ∪ {x = 0, ±ξ > 0};

ũ+
±(x) = xiβ/h microlocally near {x > 0, ξ = 0}, ũ+

±(x) = e∓πβ/h(−x)iβ/h microlocally near
{x < 0, ξ = 0}. Using the formulas for the Fourier transform of ũ+

± [70, Example 7.1.17],
we get

ũ+
±(x) =

hiβ/he∓βπ/(2h)

Γ(−iβ/h)

∫ ∞
0

χ(ξ)ξ−1−iβ/he±ixξ/h dξ

microlocally near {x = 0, ±ξ ∈ Kξ}, for every χ ∈ C∞0 (0,∞) such that χ = 1 near
Kξ ⊂ (0,∞). Let B2 be the operator constructed in Proposition 2.5.3. By (2.5.16) PxB2ũ

+
± =

O(h∞) in C∞(I0), and B2ũ
+
± = c̃±u

+
± + O(h∞) in C∞(I± ∩ I0) for some constants c̃± ∼ 1.
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To prove the latter, we can use the theory of Fourier integral operators and Lagrangian
distributions to represent B2ũ

+
± in the form (2.5.3) microlocally near Γ+

±; the symbols in
these WKB expressions will have to solve the transport equations. Then we can use B2ũ

+
±

to extend u+
± to I± ∪ I0 so that Pxu

+
± = O(h∞) there. We claim that

u+
± = c±1u

+
∓ + c±2Γ(−iβ/h)−1u−∓ +O(h∞) (2.5.23)

in C∞(I∓ ∩ I0), with c±j constants such that c±j and c−1
±j are polynomially bounded in h.

To show (2.5.23), we can apply the theory of Lagrangian distributions to B2ũ
+
± one more

time; alternatively, we know that this function is an O(h∞) approximate solution to the
equation Pxu = 0 on I0 ∩ I∓, and we have control on its L2 norm when microlocalized to
Γ+
∓ and Γ−∓. Thus, we can extend u+

± to the whole R as a polynomially bounded family with
Pxu

+
± = O(h∞) in C∞(R) and (2.5.23) holding on I∓. Similarly we can extend u−±; using

either of the families (u+
±, u

−
±) in Proposition 2.5.1 together with Proposition 2.5.2, we get

u± = u+
± +O(h∞) in C∞(R). It now follows from (2.5.23) that

W (u+, u−) = c(Γ(−iβ/h)−1 +O(h∞)),

with c and c−1 bounded polynomially in h. By (1.5.8), we get

Rr(ω, λ, k) =
S̃(ω, λ, k)

W (u+, u−)
,

with the family S̃ holomorphic and bounded polynomially in h. Moreover, for W (u+, u−) =

0, S̃ is proportional to u+ ⊗ u+ and thus has rank one. We are now done if we let λ0 be the
unique solution to the equation W (u+, u−) = 0 in V .

2.A Grushin problems for several commuting

operators

2.A.1 Global Grushin problem

Assume that P1, . . . , Pn are pseudodifferential operators on a compact manifold M , with
Pj ∈ Ψkj(M) and kj ≥ 0.

Definition 2.A.1. We say that λ = (λ1, . . . , λn) ∈ Cn belongs to the joint spectrum9 of
P1, . . . , Pn, if the joint eigenspace

{u ∈ C∞(M) | Pju = λju, j = 1, . . . , n}

is nontrivial. (In our situation, one of the operators Pj will be elliptic outside of a compact
set, so all joint eigenfunctions will be smooth.)

9Strictly speaking, this is the definition of the joint point spectrum. However, the operators we study
in §2.4 are joint elliptic near the fiber infinity, as in Proposition 2.A.5, thus all joint spectrum is given by
eigenvalues.
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The goal of this appendix is to extract information about the joint spectrum of P1, . . . , Pn
from certain microlocal information. Essentially, we will construct exact joint eigenfunctions
based on approximate eigenfunctions and certain invertibility conditions. The latter will be
given in the form of operators A1, . . . , An, with the following properties:

(G1) Each Aj can be represented as A′j +A′′j , where A′j is compactly microlocalized and has
operator norm O(h−r); A′′j ∈ h−rΨ−kj(M). Here r > 0 is a constant.

(G2) The commutator of any two of the operators P1, . . . , Pn, A1, . . . , An lies in h∞Ψ−∞(M).

We would like to describe the joint spectrum of P1, . . . , Pn in a ball of radius o(hr) centered
at zero. First, we consider a situation when there is no joint spectrum:

Proposition 2.A.2. Assume that conditions (G1) and (G2) hold and additionally,

n∑
j=1

AjPj = I mod h∞Ψ−∞(M).

Then there exists δ > 0 such that for h small enough, the ball of radius δhr centered at zero
contains no joint eigenvalues of P1, . . . , Pn.

Proof. Assume that u ∈ L2(M) and Pju = λju, where |λj| ≤ δhr. Then

0 =
n∑
j=1

Aj(Pj − λj)u = (I + h∞Ψ−∞)u−
n∑
j=1

λjAju.

It follows from condition (G1) that ‖Aj‖L2→L2 = O(h−r); therefore,

‖u‖L2 = O(δ + h∞)‖u‖L2

and we must have u = 0 for δ and h small enough.

Now, we study the case when the joint spectrum is nonempty. Assume that S1 : C →
C∞(M) and S2 : D′(M)→ C are operators with the following properties:

(G3) Each Sj is compactly microlocalized with operator norm O(1).

(G4) S2S1 = 1 +O(h∞).

(G5) If Q is any of the operators P1, . . . , Pn, A1, . . . , An, then QS1 ∈ h∞Ψ−∞ and S2Q ∈
h∞Ψ−∞.

(G6) We have
n∑
j=1

AjPj = I − S1S2 mod h∞Ψ−∞(M).
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Note that (G5) implies that the image of S1 consists of O(h∞)-approximate joint eigen-
functions. For n = 1, one recovers existence of exact eigenfunctions from approximate ones
using Grushin problems, based on Schur complement formula; see for example [65, §6]. The
proposition below constructs an analogue of these Grushin problems for the case of several
operators. This construction is more involved, since we need to combine the fact that Pj
commute exactly, needed for the existence of joint spectrum, with microlocal assumptions
(G1)–(G6) having O(h∞) error. Note also that condition (G2) does not appear in the case
n = 1.

Proposition 2.A.3. Assume that the conditions (G1)–(G6) hold and the operators P1, . . . , Pn
commute exactly; that is, [Pj, Pk] = 0 for all j, k. Then there exists δ > 0 such that for h
small enough, the ball of radius δhr contains exactly one joint eigenvalue of P1, . . . , Pn.
Moreover, this eigenvalue is O(h∞) and the corresponding eigenspace is one dimensional.

Proof. We prove the proposition in the case n = 2 (which is the case we will need in the
present chapter); the proof in the general case can be found in Appendix 2.A.3.

For λ = (λ1, λ2) ∈ C2, consider the operator

T (λ) =


P1 − λ1 −A2 S1 0
P2 − λ2 A1 0 S1

S2 0 0 0
0 S2 0 0

 : H1 → H2;

H1 = L2(M)⊕H−k1−k2h (M)⊕ C2, H2 = H−k1h (M)⊕H−k2h (M)⊕ C2.

The conditions (G1)–(G6) imply that for

Q =


A1 A2 S1 0
−P2 P1 0 S1

S2 0 0 0
0 S2 0 0

 : H2 → H1,

we have T (0)Q = I +OH2→H2(h
∞), QT (0) = I +OH1→H1(h

∞). By (G1) and (G3), we have
‖Q‖H2→H1 = O(h−r); therefore, if δ > 0 and h are small enough and |λ| ≤ δhr, then T (λ) is
invertible and

‖T (λ)−1‖H2→H1 = O(h−r).

Now, let |λ| ≤ δhr and put

(u(λ), u2(λ), f(λ)) = T (λ)−1(0, 0, 1, 0), f(λ) = (f1(λ), f2(λ)) ∈ C2.

This is the only solution to the following system of equations, which we call global Grushin
problem:

(P1 − λ1)u(λ)− A2u2(λ) + S1f1(λ) = 0, (2.A.1)

(P2 − λ2)u(λ) + A1u2(λ) + S1f2(λ) = 0, (2.A.2)

S2u(λ) = 1, (2.A.3)

S2u2(λ) = 0. (2.A.4)
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We claim that λ is an element of the joint spectrum if and only if f(λ) = 0, and in that
case, the joint eigenspace is one dimensional and spanned by u(λ). First, assume that u is a
joint eigenfunction with the eigenvalue λ. Then T (λ)(u, 0, 0, 0) = (0, 0, s, 0), where s is some
nonzero number; it follows immediately that f(λ) = 0 and u is a multiple of u(λ).

Now, assume that f(λ) = 0; we need to prove that u(λ) is a joint eigenfunction for
the eigenvalue λ. By (2.A.1) and (2.A.2), it suffices to show that u2(λ) = 0. For that, we
multiply (2.A.2) by P1 − λ1 and subtract (2.A.1) multiplied by P2 − λ2; since f(λ) = 0 and
[P1, P2] = 0, we get

((P1 − λ1)A1 + (P2 − λ2)A2)u2(λ) = 0.

Recalling (G6), we get

(I − S1S2 +O
H
−k1−k2
h →H−k1−k2h

(δ + h∞))u2(λ) = 0.

By (2.A.4), (I +O(δ + h∞))u2(λ) = 0 and thus u2(λ) = 0. The claim is proven.
It remains to show that the equation f(λ) = 0 has exactly one root in the disc of radius

δhr centered at zero, and this root is O(h∞). For that, let QT (λ) = I −R(λ); we have

R(λ) =


λ1A1 + λ2A2 0 0 0
−λ1P2 + λ2P1 0 0 0

λ1S2 0 0 0
λ2S2 0 0 0

+OH1→H1(h
∞);

T (λ)−1 = (I +R(λ) + (I −R(λ))−1R(λ)2)Q.

One can verify that R(λ)2Q(0, 0, 1, 0) = OH1(h
∞) and then

f(λ) = λ− g(λ;h),

where g(λ;h) = O(h∞) uniformly in λ. It remains to apply the contraction mapping princi-
ple.

Finally, we establish a connection between global Grushin problem and meromorphic
resolvent expansions, using some more information about our particular application:

Proposition 2.A.4. Assume that n = 2, P1, P2 satisfy the properties stated in the beginning
of this subsection, [P1, P2] = 0, k1 > 0, and P1 − λ is elliptic in the class Ψk1 for some
λ ∈ C. If V is the kernel of P2, then by analytic Fredholm theory (see for example [137,
Theorem D.4]), the resolvent

R(λ) = (P1 − λ)−1|V : H−k1h (M) ∩ V → L2(M) ∩ V

is a meromorphic family of operators in λ ∈ C with poles of finite rank. Then:

(1) Assume that the conditions of Proposition 2.A.2 hold and let δ > 0 be given by this propo-
sition. Then for h small enough, R(λ) is holomorphic in {|λ| < δhr} and ‖R(λ)‖L2∩V→L2

is O(h−r) in this region.
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(2) Assume that the conditions of Proposition 2.A.3 hold and let (λ0, λ
0
2) be the joint eigen-

value and δ > 0 the constant given by this proposition. Suppose that λ0
2 = 0. Then for h

small enough,

R(λ) = S(λ) +
Π

λ− λ0

, |λ| < δhr,

where S(λ) is holomorphic, Π is a rank one operator, and the L2 ∩ V → L2 norms of
S(λ) and Π are O(h−N) for some constant N .

Proof. 1. We have
A1(P1 − λ) = I − λA1 + h∞Ψ−∞(M) on V ;

the right-hand side is invertible for δ small enough. Therefore, R has norm O(h−r).
2. We know that R(λ) has a pole at λ if and only if there exists nonzero u ∈ L2(M)∩ V

such that (P1−λ)u = 0; that is, a joint eigenfunction of (P1, P2) with joint eigenvalue (λ, 0).
Therefore, λ0 is the only pole of R(λ) in {|λ| < δhr}.

Now, take λ 6= λ0, |λ| < δhr, and assume that v ∈ H−k1h (M) ∩ V and u = R(λ)v ∈
L2(M)∩V . Let T (λ) be the family of operators introduced in the proof of Proposition 2.A.3,
with λ1 = λ and λ2 = 0; we know that T (λ) is invertible. We represent T (λ)−1 as a 4 × 4
operator-valued matrix; let T−1

ij (λ) be its entries. We have T (λ)(u, 0, 0, 0) = (v, 0, c, 0) for
some number c. However, then (u, 0, 0, 0) = T (λ)−1(v, 0, c, 0); taking the third entry of this
equality, we get T−1

31 (λ)v+T−1
33 (λ)c = 0. Now, T−1

33 (λ) = f1(λ), with the latter introduced in
the proof of Proposition 2.A.3. Therefore, we can compute c in terms of v; substituting this
into the expression for u, we get the following version of the Schur complement formula:

R(λ) =

(
T−1

11 (λ)− T−1
13 (λ)T−1

31 (λ)

f1(λ)

)∣∣∣∣
V

. (2.A.5)

Next, by the proof of Proposition 2.A.3, f1(λ0) = 0 and f1(λ) = λ + O(h∞). Therefore, we
may write f1(λ) = (λ− λ0)/g(λ), with g holomorphic and bounded by O(1). Let u0 be the
joint eigenfunction of (P1, P2) with eigenvalue (λ0, 0); then Π = −g(λ0)T−1

13 (λ0)T−1
31 (λ0) is a

rank one operator, as T−1
13 (λ0) acts C→ V and Πu0 = −(1 +O(h∞))u0. Since the operators

T−1
ij are polynomially bounded in h, we are done.

2.A.2 Local Grushin problem

In this subsection, we show how to obtain information about the joint spectrum of two
operators P1, P2 based only on their behavior microlocally near the set where neither of them
is elliptic. For that, we use global Grushin problems discussed in the previous subsection.
Assume that P1 ∈ Ψk1

cl (M), P2 ∈ Ψk2
cl (M) satisfy

(E1) The principal symbol pj0 of Pj is real-valued.
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(E2) The symbol p10 is elliptic in the class Sk1(M) outside of some compact set. As a
corollary, the set

K = {(x, ξ) ∈ T ∗M | p10(x, ξ) = p20(x, ξ) = 0}

is compact.

Next, assume that A1, A2 are compactly microlocalized operators on M such that:

(L1) For each j and every bounded neighborhood U of K, Aj can be represented as A′j +A′′j ,
where both A′j and A′′j are compactly microlocalized, ‖A′j‖ = O(h−r), WFh(A

′
j) ⊂

U × U , and A′′j ∈ h−rΨ
comp
cl (M). Here r ≥ 0 is some constant.

(L2) The commutator of any two of the operators P1, P2, A1, A2 lies in h∞Ψ−∞(M).

Finally, let S1 : C→ C∞(M), S2 : D′(M)→ C be compactly microlocalized operators such
that:

(L3) ‖Sj‖ = O(1) and WFh(Sj) ⊂ K.

(L4) S2S1 = 1 +O(h∞).

(L5) If Q is any of the operators P1, P2, A1, A2, then QS1 ∈ h∞Ψ−∞ and S2Q ∈ h∞Ψ−∞.

Proposition 2.A.5. 1. If the conditions (E1)–(E2) and (L1)–(L2) hold, and

A1P1 + A2P2 = I

microlocally near K ×K, then there exists δ > 0 such that for h small enough, there are no
joint eigenvalues of P1, P2 in the ball of radius δhr centered at zero.

2. If the conditions (E1)–(E2) and (L1)–(L5) hold, [P1, P2] = 0, and

A1P1 + A2P2 = I − S1S2 (2.A.6)

microlocally near K × K, then there exists δ > 0 such that for h small enough, the ball
of radius δhr centered at zero contains exactly one joint eigenvalue λ of P1, P2. Moreover,
λ = O(h∞) and the corresponding joint eigenspace is one dimensional.

Proof. We will prove part 2; part 1 is handled similarly. Take small ε > 0 and let χε ∈
C∞0 (R) be supported in (−ε, ε) and equal to 1 on [−ε/2, ε/2]. Also, let ψε ∈ C∞(R) satisfy
tψε(t) = 1−χε(t) for all t; then ψε(t) = 0 for |t| ≤ ε/2. The function ψε is a symbol of order
−1, as it is equal to t−1 for |t| ≥ ε.

By (E1), we can define the operators χε[Pj], ψε[Pj] ∈ Ψloc
cl (T ∗M) using the formal func-

tional calculus introduced in §2.3.2. By (E2) and Proposition 2.3.4 ψε[P1] ∈ Ψ−k1cl (M), and
χε[P1] ∈ Ψcomp

cl . Therefore, we can define uniquely up to h∞Ψ−∞ the operators

Xε = χε[P1]χε[P2] ∈ Ψcomp
cl (M), ψε[P1] ∈ Ψ−k1cl (M), χε[P1]ψε[P2] ∈ Ψcomp

cl (M). (2.A.7)
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By Proposition 2.3.3, these operators commute with each other and with P1, P2 modulo
h∞Ψ−∞. Let Y be any of the operators in (2.A.7); we will show that it commutes with
each Aj modulo h∞Ψ−∞. Take a neighborhood U of K so small that |p10| + |p20| ≤ ε/4 on
U ; then Y is either zero or the identity operator microlocally on U . By (L1), decompose
Aj = A′j + A′′j , where WFh(A

′
j) ⊂ U × U and A′′j ∈ Ψcomp

cl . We have Aj = A′′j microlocally
away from U × U ; therefore, [A′′j , Pk] = 0 microlocally near T ∗M \ U . By Proposition 2.3.3,
[A′′j , Y ] = 0 microlocally near T ∗M \ U ; therefore, the commutator [Aj, Y ] is compactly
microlocalized and WFh([Aj, Y ]) ⊂ U × U . However, since Y = 0 or Y = I microlocally in
U , we have [Aj, Y ] ∈ h∞Ψ−∞, as needed.

Since Xε = I microlocally near K and WFh(Sj) ⊂ K, we get (I −Xε)S1, S2(I −Xε) ∈
h∞Ψ−∞. Multiplying (2.A.6) by Xε, we get for ε small enough,

(XεA1)P1 + (XεA2)P2 + S1S2 = Xε mod h∞Ψ−∞. (2.A.8)

Next, by Proposition 2.3.3

ψε[P1]P1 + χε[P1]ψε[P2]P2 = I −Xε mod h∞Ψ−∞. (2.A.9)

Adding these up, we get

(XεA1 + ψε[P1])P1 + (XεA2 + χε[P1]ψε[P2])P2 + S1S2 = I + h∞Ψ−∞. (2.A.10)

The operators P1, P2, Ã1 = XεA1 + ψε[P1], Ã2 = XεA2 + χε[P1]ψε[P2], S1, S2 satisfy the
assumptions of Proposition 2.A.3. Applying it, we get the desired spectral result.

2.A.3 Proof of Proposition 2.A.3 in the general case

In this subsection, we prove Proposition 2.A.3 for the general case of n ≥ 2 operators. For
simplicity, we assume that k1 = · · · = kn = 0; that is, each Pj lies in Ψ0(M). (If this is not
the case, one needs to replace L2(M) below with certain semiclassical Sobolev spaces.)

Let V be the space of all exterior forms on Cn; we can represent it as VEven⊕VOdd, where

VEven =
⊕
j≥0

Λ2jCn, VOdd =
⊕
j≥0

Λ2j+1Cn

are the vector spaces of the even and odd degree forms, respectively. Note that VEven and
VOdd have the same dimension. Define the spaces

L2
Even = L2(M)⊗ VEven, L

2
Odd = L2(M)⊗ VOdd, L

2
V = L2(M)⊗ V.

We call elements of L2
V forms. They posess properties similar to those of differential forms;

beware though that they are not differential forms in our case. We will use the families of
operators (Aj) and (Pj) to define the operators

dP , d
∗
A : L2

V → L2
V ,
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given by the formulas

dP (u⊗ v) =
n∑
j=1

(Pju)⊗ (ej ∧ v),

d∗A(u⊗ v) =
n∑
j=1

(Aju)⊗ (iejv);

u ∈ L2(M), v ∈ V.
Here e1, . . . , en is the canonical basis of Cn. The notation iej is used for the interior product
by ej; this is the adjoint of the operator v 7→ ej ∧ v with respect to the inner product on
V induced by the canonical bilinear inner product on Cn. Note that dP and d∗A map even
forms to odd and vice versa.

A direct calculation shows that under the assumptions (G1)–(G6),

(dP + d∗A)2 = I − S1S2 ⊗ IV +OΨ−∞(h∞). (2.A.11)

Here IV is the identity operator on V , while I is the identity operator on L2
V . Moreover,

since the operators P1, . . . , Pn commute exactly, we have

d2
P = 0. (2.A.12)

For λ = (λ1, . . . , λn) ∈ Cn, define the operator

T (λ) =

(
(dP−λ + d∗A)|L2

Even
S1 ⊗ IV

S2 ⊗ IV 0

)
: H1 → H2,

H1 = L2
Even ⊕ VOdd, H2 = L2

Odd ⊕ VEven.

Here dP−λ is defined using the operators P1−λ1, . . . , Pn−λn in place of P1, . . . , Pn. It follows
from (2.A.11) that for

Q =

(
(dP + d∗A)|L2

Odd
S1 ⊗ IV

S2 ⊗ IV 0

)
: H2 → H1,

we have QT (0) = I + OH1→H1(h
∞), T (0)Q = I + OH2→H2(h

∞). Moreover, it follows from
(G1) and (G3) that ‖Q‖H2→H1 = O(h−r). Therefore, for |λ| ≤ δhr and h and δ > 0 small
enough, the operator T (λ) is invertible, with ‖T (λ)−1‖H2→H1 = O(h−r).

Assume that |λ| ≤ δhr and let 1 ∈ VEven be the basic zero-form on Cn. Put (α(λ), v(λ)) =
T (λ)−1(0,1), where α(λ) ∈ L2

Even, v(λ) ∈ VOdd; then (α(λ), v(λ)) is the unique solution to
the system

(dP−λ + d∗A)α(λ) + S1(1)⊗ v(λ) = 0,

(S2 ⊗ IV )α(λ) = 1.
(2.A.13)

We further write v(λ) = f(λ) + w(λ), where f(λ) is a 1-form and w(λ) is a sum of forms of
degree 3 or more. Note that both f and w are holomorphic functions of λ, with f(λ) ∈ Cn.
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We claim that λ is a joint eigenvalue of P1, . . . , Pn if and only if f(λ) = 0. First of all,
if u is a joint eigenfunction, then T (λ)(u ⊗ 1, 0) = c(0,1) for some scalar c 6= 0; therefore,
f(λ) = 0 and the joint eigenspace is one dimensional.

Now, assume that f(λ) = 0. We will prove that the solution to (2.A.13) satisfies α(λ) =
u⊗ 1 for some u ∈ L2(M); it follows immediately that (P1 − λ1)u = · · · = (Pn − λn)u = 0.
Let α = u⊗ 1 + β, where β is a sum of forms of degree 2 or higher. Then by (2.A.12),

(dP−λ + d∗A)2(u⊗ 1) ∈ L2(M)⊗ 1. (2.A.14)

Next, we get from (2.A.13)

(S2 ⊗ IV )(dP−λ + d∗A)α + (1 +O(h∞))v = 0.

The components of this equation corresponding to odd forms of degree 3 or higher depend
only on β and w; therefore, for h small enough, w = Wβ for some operator W of norm
O(h−r). Since f = 0, we get v = Wβ; therefore, by (2.A.14) and (2.A.13) multiplied by
dP−λ + d∗A,

(dP−λ + d∗A)2β + (dP−λ + d∗A)(S1(1)⊗Wβ) ∈ L2(M)⊗ 1.

Taking the components of this equation corresponding to forms of even degree 2 or higher
and recalling (2.A.11), we get

((I − S1S2)⊗ IV +O(δ + h∞))β = 0.

However, (S2 ⊗ IV )β = 0 by (2.A.13); therefore,

(I +O(δ + h∞))β = 0.

It follows that β = 0 and the claim is proven.
It remains to show that the equation f(λ) = 0 has exactly one solution in the disk of

radius δhr. For that, we write QT (λ) = I −R(λ),

T (λ)−1 = (I +R(λ) + (I −R(λ))−1R(λ)2)Q.

We have Q(λ)(0,1) = (S1(1)⊗ 1, 0) and

R(λ) =

(
(dP + d∗A)dλ 0
(S2 ⊗ IV )dλ 0

)
+O(h∞).

Here dλ is constructed using λ1, . . . , λn in place of P1, . . . , Pn. Now, we use thatR(λ)2Q(0,1) =
OH1(h

∞) to conclude that f(λ) = λ − g(λ;h) with g = O(h∞); it then remains to use the
contraction mapping principle.
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2.B Numerical results

2.B.1 Overview

This section describes a procedure for computing the quantization symbol F(m, l, k) from
Theorem 2.1 to an arbitrarily large order in the case

l′ = l − |k| = O(1). (2.B.1)

The reason for the restriction l′ = O(1) is because then we can use bottom of the well
asymptotics for eigenvalues of the angular operator; otherwise, we would have to deal with
nondegenerate trajectories, quantization conditions for which are harder to compute numer-
ically; see for example [25].

We first use the equation (2.2.16); once we get rid of the semiclassical parameter h
(remembering that the original problem was h-independent), the number ω = F(m, l, k) is
the solution to the equation

Gr(m,ω, k) = Gθ(l′, ω, k). (2.B.2)

Here Gr,Gθ are the non-semiclassical analogues of F r,F θ; namely, (2.2.13) and (2.2.15) take
the form

λ = Gr(m,ω, k) ∼
∑
j≥0

Grj (m,ω, k),

λ = Gθ(l′, ω, k) ∼
∑
j≥0

Gθj (l′, ω, k),

respectively. The functions Grj ,Gθj are homogeneous of degree 2− j in the following sense:

Grj (m,Msω, sk) = s2−jGrj (m,ω, k), Gθj (l′,Msω, sk) = s2−jGθj (l′, ω, k), s > 0. (2.B.3)

Here Msω = sReω + i Imω; the lack of dilation in the imaginary part of ω reflects the fact
that it is very close to the real axis.

We will describe how to compute Grj ,Gθj for an arbitrary value of j in Appendix 2.B.3.
The method is based on a quantization condition for barrier-top resonances, studied in
§2.5.3; their computation is explained in Appendix 2.B.2 and a MATLAB implementation
and data files for several first QNMs can be found online at http://math.berkeley.edu/

~dyatlov/qnmskds. We explain why the presented method gives the quantization conditions
of Propositions 2.2.6 and 2.2.7, but we do not provide a rigorous proof.

We now compare the pseudopoles given by quantization conditions to QNMs for the Kerr
metric10 computed by the authors of [13] using Leaver’s continued fraction method — see [13,
§4.6] for an overview of the method and [14, Appendix E] and [15, §IV] for more details.

10The results of the present chapter do not apply to the Kerr case Λ = 0, due to lack of control on the
scattering resolvent at the asymptotically flat spatial infinity. However, the resonances described by (2.1.2)
are generated by trapping, which is located in a compact set; therefore, we can still make sense of the
quantization condition and compute approximate QNMs.

http://math.berkeley.edu/~dyatlov/qnmskds
http://math.berkeley.edu/~dyatlov/qnmskds
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Figure 2.5: Comparison of order 2 approximation to QNMs with the data of [13]. Here
l = 1, . . . , 4, k = −l,−l + 1, l − 1, l (left to right), and m = 0 (top) and 1 (bottom).

The QNM data for the case of scalar perturbations, studied in this chapter, computed using
Leaver’s method can be found online at http://www.phy.olemiss.edu/~berti/qnms.html.

Figure 2.5 compares the second order approximation to QNMs (that is, solution to the
equation (2.B.2) constructed using Grj and Gθj for j ≤ 2) to the QNMs of [13]. Each branch on
the picture shows the trajectory of the QNM with fixed parameters m, l, k for a ∈ [0, 0.25];
the marked points correspond to a = 0, 0.05, . . . , 0.25. The branches for same m, l and
different k converge to the Schwarzschild QNMs as a → 0. We see that the approximation
gets better when l increases, but worse if one increases m; this agrees well with the fact
that the computed quantization conditions are expected to work when l is large and m is
bounded.

The left part of Figure 2.6 compares the second and fourth order approximations with
the QNMs of [13] (with the same values of a as before); we see that the fourth order approx-
imation is considerably more accurate than the second order one, and the former is more

http://www.phy.olemiss.edu/~berti/qnms.html
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Figure 2.6: Left: comparison of order 2 and 4 approximations to QNMs with the data
of [13]. Here l = 3, 4, l′ = 0, 1, and m = 0. Right: log-log plot of the error of order 1–4
approximations to QNMs, as compared to [13]. Here a = 0.1, k = l, m = 0, and l, plotted
on the x axis, ranges from 1 to 7.

accurate for a smaller value of l′. Finally, the right part of Figure 2.6 is a log-log plot of
the error of approximations of degree 1 through 4, as a function of l; we see that the error
decreases polynomially in l.

2.B.2 Barrier-top resonances

Here we study a general spectral problem to which we will reduce both the radial and
the angular problems in the next subsection. Our computation is based on the following
observation: when the quantization condition of §2.5.3 is satisfied, the function u+ has the
microlocal form (2.5.3), with the symbol behaving like (r − r0)m near the trapped set. This
can be seen from the proof of Proposition 2.5.6: if β = −ihm, then ũ+

±(x) = xm and B1ũ
+
±

has to have the form (2.5.3). The calculations below are similar to [39, §3].
Consider the operator

Py = DyA(y)Dy +B(y;ω, k). (2.B.4)

Here the function A(y) is independent of ω, k, real-valued, and A(0) > 0; B is a symbol of
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order 2:
B(y;ω, k) ∼

∑
j≥0

Bj(y;ω, k),

with Bj homogeneous of degree 2 − j in the sense of (2.B.3). We also require that B0 be
real-valued and

B′0(0;ω, k) = 0, B′′0 (0;ω, k) < 0.

We will describe an algorithm to find the quantization condition for eigenvalues λ of Py with
eigenfunctions having the outgoing WKB form (2.B.6) near y = 0; we will compute λ as a
symbol of order 2:

λ ∼
∑
j≥0

λj(ω, k), λj(Msω, sk) = s2−jλ(ω, k), s > 0.

More precisely, we will show how to inductively compute each λj. The principal part λ0 is
given by the following barrier-top condition:

λ0 = B0(0;ω, k). (2.B.5)

In this case, we have
B0(y;ω, k) = λ0(ω, k)− y2U0(y;ω, k),

where U0 is a smooth function, and U0(0) = −V ′′(0)/2 > 0. Define the phase function
ψ0(y;ω, k) such that

ψ′0(y;ω, k) = y
√
U0(y;ω; k)/A(y);

note that ψ0 is homogeneous of degree 1. We will look for eigenfunctions of the WKB form

u(y;ω, k) = eiψ0(y;ω,k)a(y;ω, k), (2.B.6)

solving the equation Pyu = λu up to O(|ω|+ |k|)−∞ error near y = 0. Here a is a symbol of
order zero:

a(y;ω, k) ∼
∑

aj(y;ω, k),

with aj homogeneous of order −j.
Substituting (2.B.6) into the equation Pyu = λu and gathering terms with the same

degree of homogeneity, we get the following system of transport equations:

(L0 −B1 + λ1)aj = −L1aj−1 +
∑

0<l≤j

(Bl+1 − λl+1)aj−l, j ≥ 0,

L0 = 2iψ′0A∂y + i(Aψ′0)′ = 2i
√
U0(y)A(y)y∂y + i(y

√
U0(y)A(y))′;

L1 = ∂yA(y)∂y,

(2.B.7)

with the convention a−1 = 0.
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Now, consider the space of infinite sequences

C∞ = {a = (aj)∞j=0 | aj ∈ C}

and the operator T : C∞(R)→ C∞ defined by

T (a) = a, aj = ∂jya(0)/j!.

Let the operators Lj,Bj : C∞ → C∞ be defined by the relations

TLj = LjT, TBj = BjT.

We treat Lj,Bj as infinite dimensional matrices. We see that each Bj is lower triangular,
with elements on the diagonal given by Bj(0); (L1)jk = 0 for j + 2 < k. As for L0, due to
the factor y in front of the differentiation it is lower triangular and

(L0)jj = i(2j + 1)
√
U0(0)A(0).

One can show that there exists a smooth nonzero function a0 solving (L0 − B1 + λ1)a0 = 0
if and only if one of the diagonal elements of the matrix L0 −B1 + λ1 is zero (the kernel of
this matrix being spanned by Ta0). Let m ≥ 0 be the index of this diagonal element; this
will be a parameter of the quantization condition. We can now find

λ1 = B1(0)− i(2m+ 1)
√
U0(0)A(0). (2.B.8)

Now, there exists a nonzero functional f on C∞, such that f(a) depends only on a0, . . . , am,
and f vanishes on the image of L0 − B1 + λ1. Moreover, one can show that the equation
(L0 −B1 + λ1)a = b has a smooth solution a if and only if f(Tb) = 0.

Take a0 to be a nonzero element of the kernel of L0 − B1 + λ1; we normalize it so that
f(Ta0) = 0. Put aj = Taj; then the transport equations become

(L0 −B1 + λ1)aj = −L1aj−1 +
∑

0<l≤j

(Bl+1 − λl+1)aj−l, j > 0. (2.B.9)

We normalize each aj so that f(aj) = 0 for j > 0. The j-th transport equation has a solution
if and only if the f kills the right-hand side, which makes it possible to find

λj+1 = f
(
− L1aj−1 +

∑
0<l<j

Bl+1aj−l

)
, j > 0. (2.B.10)

Using the equations (2.B.5), (2.B.8), (2.B.10), and (2.B.9), we can find all λj and aj induc-
tively.
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2.B.3 Radial and angular quantization conditions

We start with the radial quantization condition. Consider the original radial operator

Pr = Dr(∆rDr) + Vr(r;ω, k),

Vr(r;ω, k) = −∆−1
r (1 + α)2((r2 + a2)ω − ak)2.

It has the form (2.B.4), with

y = r − r0, A(y) = ∆r, B(y;ω, k) = Vr(r;ω, k). (2.B.11)

Here r0 is the point where Vr achieves its maximal value, corresponding to the trapped point
x0 in §2.5.1. Now the previous subsection applies, with the use of the outgoing microlocal-
ization mentioned in the beginning of that subsection. Using (2.B.5) and (2.B.8), we can
compute near a = 0,

r0 = 3M − 2ak(1− 9ΛM2)

9M Reω
+O(a2(|k|2 + |ω|2)),

Gr0 =
27M2

1− 9ΛM2

(
1− 2ak

9M2 Reω

)
(Reω)2 +O(a2(|k|2 + |ω|2)),

Gr0 + Gr1 =

[
i(m+ 1/2) +

3
√

3Mω√
1− 9ΛM2

]2

+O(1) for a = 0;

(2.B.12)

reintroducing the semiclassical parameter, we get the formulas for F r in Proposition 2.2.6.

Now, we consider the angular problem. Without loss of generality, we assume that k > 0.
After the change of variables y = cos θ, the operator Pθ|D′k takes the form

Py = Dy(1− y2)(1 + αy2)Dy +
(1 + α)2(aω(1− y2)− k)2

(1− y2)(1 + αy2)
.

We are now interested in the bottom of the well asymptotics for the eigenvalues of Py, with
the parameter l′ from (2.B.1) playing the role of the quantization parameter m. The critical
point for the principal symbol of the operator Py is (0, 0). To reduce the bottom of the well
problem to the barrier-top problem, we formally rescale in the complex plane, introducing
the parameter y′ = eiπ/4y, so that (y′)2 = iy2. We do not provide a rigorous justification for
such an operation; we only note that the WKB solution of (2.B.6) looks like eic(y

′)2a = e−cy
2
a

near y = 0 for some positive constant c; therefore, it is exponentially decaying away from the
origin, reminding one of the exponentially decaying Gaussians featured in the bottom of the
well asymptotics (see for example [39, §3] or the discussion following [103, Proposition 4.3]).
There is a similar calculation of the bottom of the well resonances based on quantum Birkhoff
normal form; see for example [26]. The rescaled operator Py′ = −iPy takes the form (2.B.4),
with y′ taking the place of y and

A(y′) = (1 + i(y′)2)(1− iα(y′)2), B(y′;ω, k) = −i(1 + α)2(aω(1 + i(y′)2)− k)2

(1 + i(y′)2)(1− iα(y′)2)
. (2.B.13)



CHAPTER 2. ASYMPTOTIC DISTRIBUTION OF RESONANCES 112

We can now formally apply the results of Appendix 2.B.2; note that, even though A and B
are not real-valued, we have

A(0) = 1, B0(0) = −i(1 + α)2(aReω − k)2, B′′0 (0) < 0.

An interesting note is that when a = 0 and k > 0, the process described in Appendix 2.B.2
gives the spherical harmonics λ = l(l + 1) exactly and without the assumption (2.B.1). In
fact, the first three terms of the asymptotic expansion of λ sum to l(l+1) and the remaining
terms are zero.
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Chapter 3

Resonance projectors and asymptotics
for r-normally hyperbolic trapped sets

3.1 Introduction

For a Schrödinger operator h2∆g+V (x), V ∈ C∞(X;R), on a compact Riemannian manifold
(X, g) the Weyl law (see for example [39, Theorem 10.1]) provides an asymptotic for the
number of eigenvalues (bound states) λj(h) as h→ 0:

#(λj(h) ∈ [α0, α1]) = (2πh)−n
(

Volσ(p−1
V ([α0, α1])) +O(h)

)
. (3.1.1)

Here n is the dimension of X, pV (x, ξ) = |ξ|2g+V (x) is the (semiclassical) principal symbol of
the Schrödinger operator, defined on the cotangent bundle T ∗X, and Volσ is the symplectic
volume on T ∗X.

Scattering resonances are a natural generalization of bound states to noncompact man-
ifolds; they are the poles of the meromorphic continuation of the resolvent to the lower
half-plane {Imω ≤ 0} ⊂ C, see (3.1.3) and §§3.4.3, 3.4.4. However, there are very few re-
sults giving Weyl asymptotics of resonances in the style of (3.1.1). The first one is probably
due to Regge [101], with some of the following results including [136, 113, 114, 112, 50] – see
the discussion of related work below.

This chapter provides a new Weyl asymptotic formula for resonances, under the assump-
tion that the trapped set is r-normally hyperbolic and expansion rates satisfy a pinching
condition – see Theorems 3.1 and 3.2. These dynamical assumptions are motivated by the
study of black holes, see [79]; this continues the previous work of the author (presented in
Chapters 1 and 2, as well as in [46]), and the application to stationary perturbations of
Kerr–de Sitter black holes is given in Chapter 4. See also [58] for applications of normally
hyperbolic trapping to molecular dynamics. Since the imaginary part of a resonance can be
interpreted as the exponential decay rate of the corresponding linear wave, we study long-
living resonances, that is those in strips of size Ch around the real axis. More precisely, we
establish an asymptotic formula for the number of resonances in a band located between two
resonance free strips.
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Setup. To illustrate the results, we consider semiclassical Schrödinger operators on X = Rn,
studied in detail in §3.4.3:

PV := h2∆ + V (x), V ∈ C∞0 (Rn;R). (3.1.2)

Here ∆ = −
∑

j ∂
2
xj

is the Euclidean Laplacian. The results apply under the more general
assumptions of §§3.4.1 and 3.5.1, in particular in the setting of even asymptotically hyperbolic
manifolds – see §3.4.4 and Appendix 3.A. Resonances are the poles of the meromorphic
continuation of the resolvent

RV (ω) = (PV − ω2)−1 : L2(Rn)→ H2(Rn), Imω > 0, (3.1.3)

across the ray (0,∞) ⊂ C, as a family of operators L2
comp(Rn) → H2

loc(Rn). For the proofs,
it is convenient to consider a different operator with the same set of poles

R(ω) = P(ω)−1 : H2 → H1, (3.1.4)

where H1 = H2
h(Rn) is a semiclassical Sobolev space, H2 = L2(Rn), and P(ω) : H1 → H2 is

constructed from PV using the method of complex scaling (see §3.4.3).
To formulate dynamical assumptions, let pV (x, ξ) = |ξ|2 + V (x), fix energy intervals

[α0, α1] b [β0, β1] ⊂ (0,∞), put p =
√
pV on p−1

V ([β2
0 , β

2
1 ]) (see (3.4.4) for the general case)

and define the incoming/outgoing tails Γ± and the trapped set K as

Γ± := {ρ ∈ p−1
V ([β2

0 , β
2
1 ]) | exp(tHp)(ρ) 6→ ∞ as t→ ∓∞}, K := Γ+ ∩ Γ−.

Here exp(tHp) denotes the Hamiltonian flow of p. We assume that (see §3.5.1 for details)
Γ± are sufficiently smooth codimension one submanifolds intersecting transversely at K,
which is symplectic, and the flow is r-normally hyperbolic for large r in the sense that the
minimal expansion rate νmin of the flow exp(tHp) in the directions transverse to K is much
greater than the maximal expansion rate µmax along K – see (3.5.1), (3.5.3), (3.5.4). These
assumptions are stable under small smooth perturbations of the symbol p, using the results
of [64] – see §3.5.2.

Distribution of resonances. Let νmax be the maximal expansion rate of the flow exp(tHp)
in the directions transverse to the trapped set, see (3.5.2). The following theorem provides
a resonance free region with a polynomial resolvent bound:

Theorem 3.1. Let the assumptions of §§3.4.1 and 3.5.1 hold and fix ε > 0. Then for

Reω ∈ [α0, α1], Imω ∈ [−(νmin − ε)h, 0] \ 1
2
(−(νmax + ε)h,−(νmin − ε)h), (3.1.5)

ω is not a resonance and we have the bound1

‖R(ω)‖H2→H1 ≤ Ch−2. (3.1.6)

1The estimate (3.1.6) implies, in the case (3.1.2), cutoff resolvent bounds ‖χRV (ω)χ‖L2→H2
h

= O(h−2)

for any fixed χ ∈ C∞0 (Rn). This explicit bound improves slightly the bounds on the decay of correlations
in [97, Theorem 1].
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Re ω

Imω

− νmin−ε
2 h

− νmax+ε
2 h

−(νmin−ε)h

α0 α1α′0 α′1

K

Γ−

Γ+

ρ−

ρ+

(a) (b)

Figure 3.1: (a) An illustration of Theorem 3.2, with (3.1.8) counting resonances in the
outlined box. The unshaded regions above and below the box are the resonance-free regions
of Theorem 3.1. (b) The canonical relation Λ◦, with the flow lines of V± dashed.

In particular, we get a resonance free strip {Imω > −νmin−ε
2

h}, recovering in our situation
the results of [56, 132, 97].

Under the pinching condition
νmax < 2νmin, (3.1.7)

we get a second resonance free strip {Imω ∈ [−(νmin − ε)h,−(νmax + ε)h/2]}. We can then
count the resonances in the band between the two strips, see Figure 3.1(a):

Theorem 3.2. Let the assumptions of §§3.4.1 and 3.5.1 and the condition (3.1.7) hold. Fix
ε > 0 such that νmax +ε < 2(νmin−ε). Then, with Res denoting the set of resonances counted
with multiplicities (see (3.4.3)),

#
(

Res∩{Reω ∈ [α′0, α
′
1], Imω ∈ 1

2
[−(νmax + ε)h,−(νmin − ε)h]}

)
= (2πh)1−n(Volσ(K ∩ p−1([α′0, α

′
1])) + o(1)),

(3.1.8)

as h → 0, for every [α′0, α
′
1] ⊂ (α0, α1) such that p−1(α′j) ∩K has zero measure in K. Here

Volσ denotes the symplectic volume on K, defined by dVolσ = σn−1
S /(n− 1)!.

A band structure similar to the one exhibited in Theorems 3.1 and 3.2, with Weyl laws
in each band, has been obtained in [50] for a related setting of Anosov diffeomorphisms, see
the discussion below.

The resonance projector. The key tool in proving Theorems 3.1 and 3.2 is a microlocal
projector Π corresponding to resonances in the band (3.1.8). We construct it as a Fourier
integral operator (see §3.3.2), associated to the canonical relation Λ◦ ⊂ T ∗X × T ∗X defined
as follows. Let V± ⊂ TΓ± be the symplectic complements of TΓ± in TΓ±(T ∗X). For
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some neighborhoods Γ◦±, K
◦ of K ∩ p−1([α0, α1]) in Γ±, K, respectively, we can define the

projections π± : Γ◦± → K◦ along the flow lines of V± – see §3.5.4. We define (see also [18])

Λ◦ := {(ρ−, ρ+) ∈ Γ◦− × Γ◦+ | π−(ρ−) = π+(ρ+)}. (3.1.9)

Then Λ◦ is a canonical relation, see §3.5.4; it is pictured on Figure 3.1(b).
We now construct an operator Π with the following properties (see Theorem 3.3 in §3.7.1

for details, including a uniqueness statement):

(1) Π is a compactly supported Fourier integral operator associated to Λ◦;

(2) Π2 = Π +O(h∞) microlocally near K ∩ p−1([α0, α1]);

(3) [P,Π] = O(h∞) microlocally near K ∩ p−1([α0, α1]).

Here P is a pseudodifferential operator equal to
√
PV microlocally in p−1

V ([β2
0 , β

2
1 ]) (see

Lemma 3.4.3 for the general case). Conditions (2) and (3) mimic idempotency and com-
mutation properties of spectral projectors of self-adjoint operators.

The operator Π is constructed iteratively, solving a degenerate transport equation on each
step, with regularity of resulting functions guaranteed by r-normal hyperbolicity. The ob-
tained operator provides a rich microlocal structure, which makes it possible to locally relate
our situation to the Taylor expansion, ultimately proving Theorems 3.1 and 3.2. See §3.2.1
for a more detailed explanation of the ideas behind the proofs.

Related work. A particular consequence of Theorem 3.1 is a resonance free strip {Imω >
−νmin−ε

2
h}. For normally hyperbolic trapped sets, such strips (also called spectral gaps) have

been obtained by Gérard–Sjöstrand [55] for operators with analytic coefficients and possibly
non-smooth Γ±; Wunsch–Zworski [132] for sufficiently smooth Γ±, without specifying the
size of the gap; and Dolgopyat [40], Liverani [81], and Tsujii [126] for contact Anosov flows.
The recent preprint of Nonnenmacher and Zworski [97] gives a gap of optimal size for a
variety of normally hyperbolic trapped sets with very weak assumptions on the regularity of
Γ±; in our special case, the gap of [97] coincides with the one given by Theorem 3.1. For a
related, yet quite different, case of hyperbolic trapped sets (where the flow is hyperbolic in
all directions, but no assumptions are made on the regularity of Γ± and K), such gaps are
known under a pressure condition, see [98] and the references given there.

Upper bounds for the number of resonances in strips near the real axis have been
proved in different situations, both for normally hyperbolic and for hyperbolic trapping,
by Sjöstrand [108], Guillopé–Lin–Zworski [63], Sjöstrand–Zworski [116], Nonnenmacher–
Sjöstrand–Zworski [96, 95], Faure–Sjöstrand [48], Datchev–Dyatlov [36], and Datchev–Dyat-
lov–Zworski [37]; see [95] or [36] for a more detailed overview. The optimal known bounds
follow the fractal Weyl law,

#(Res∩{Reω ∈ [α0, α1], | Imω| ≤ C0h}) ≤ Ch−1−δ. (3.1.10)
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Here C0 is any fixed number and 2δ + 2 is bigger than the upper Minkowski dimension of
the trapped set K (inside T ∗X), or equal to it if K is of pure dimension. In our case,
dimK = 2n− 2, therefore the Weyl law (3.1.8) saturates the bound (3.1.10).

Much less is known about lower bounds for hyperbolic or normally hyperbolic trapped
sets – some special completely integrable cases were studied by Gérard–Sjöstrand [56], Sá
Barreto–Zworski [103], and the author (Chapter 2), a lower bound with a smaller power of h−1

than (3.1.10) for certain hyperbolic surfaces was proved by Jakobson–Naud [76], and Weyl
laws have been established in some situations in [114, 113, 50, 49, 51] – see below. It has been
conjectured [94, Definition 6.1] that for C0 large enough, a lower bound matching (3.1.10)
holds, but no such bound for non-integer δ has been proved so far.

There also exists a Weyl asymptotic for surfaces with cusps, see Müller [93]; in this case,
the infinite ends of the manifold are so narrow that almost all trajectories are trapped, and
the Weyl law in strips coincides with the Weyl law in disks, with a power h−n. Other Weyl
asymptotics in large regions in the complex plane have been obtained by Zworski [136] for
one-dimensional potential scattering and by Sjöstrand [112] for Schrödinger operators with
randomly perturbed potentials.

Finally, some situations where resonances form several bands of different depth were
studied in [114, 118, 113, 49, 49, 51]. Sjöstrand–Zworski [114] showed existence of cubic
bands of resonances for strictly convex obstacles, under a pinching condition on the curvature,
with a Weyl law in each band. Stefanov–Vodev [118] studied the elasticity problem outside
of a convex obstacle with Neumann boundary condition and showed existence of resonances
O((Reω)−∞) close to the real line and a gap below this set of resonances; a Weyl law for
resonances close to the real line was proved by Sjöstrand–Vodev [113]. A case bearing some
similarities to the one considered here, namely contact Anosov diffeomorphisms, has been
studied by Faure–Tsujii [50]; their upcoming work [49, 51] will handle contact Anosov flows –
the latter can be put in the framework of §3.4.1 using the work of Faure–Sjöstrand [48].

The results of [50, 49, 51] for the dynamical setting include, under a pinching condition,
the band structure of resonances (with the first band analogous to the one in Theorem 3.2)
and Weyl asymptotics in each band; the trapped set has to be normally hyperbolic, sym-
plectic, and smooth, however the manifolds Γ± need only have Hölder regularity, and no
assumption of r-normal hyperbolicity is made. These considerably weaker assumptions on
regularity are crucial for Anosov flows and maps, as one cannot even expect Γ± to be C2 in
most cases. The lower regularity is in part handled by conjugating P(ω) by the exponential
of an escape function, similar to the one in [37, Lemma 4.2] – this reduces the analysis to
an O(h1/2) sized neighborhood of the trapped set. It then suffices to construct only the
principal part of the projector Π to first order on the trapped set; such projector is uniquely
defined locally on K (by putting the principal symbol to be equal to 1 on K), without the
need for the global construction of §3.7.1 or the transport equation (3.2.2). The present
chapter however was motivated by resonance expansions on perturbations of slowly rotating
black holes, where the more restrictive r-normal hyperbolicity assumption is satisfied and it
is important to have an operator Π defined to all orders in h and away, as well as on, the
trapped set. Another advantage of such a global operator is the study of resonant states,
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see §3.8.5.

3.2 Outline of the argument

In this section, we explain informally the ideas behind the construction of the projector
Π and the proofs of Theorems 3.1 and 3.2, list some directions in which the results could
possibly be improved, and describe the structure of the chapter.

3.2.1 Ideas of the proofs and concentration of resonant states

Construction of Π. An important tool is the model case (see §3.6.1)

X = Rn, Γ0
− = {xn = 0}, Γ0

+ = {ξn = 0}, Π0f(x′, xn) = f(x′, 0). (3.2.1)

Any operator satisfying properties (1) and (2) of Π listed in the introduction can be microlo-
cally conjugated to Π0 (see Proposition 3.6.3 and part 2 of Proposition 3.6.9). However, there
is no canonical way of doing this, and to construct Π globally, we need to use property (3),
which eventually reduces to solving the transport equation on Γ±

Hpa = f, a|K = 0, (3.2.2)

where f is a given smooth function on Γ± with f |K = 0. The solution to (3.2.2) exists and
is unique for any normally hyperbolic trapped set, by representing a(ρ) as an exponentially
converging integral of f over the forward (Γ−) or backward (Γ+) flow line of Hp starting at
ρ. However, to know that a lies in Cr we need r-normal hyperbolicity (see Lemma 3.5.2).
This explains why r-normal hyperbolicity, and not just normal hyperbolicity, is needed to
construct the operator Π.

Proof of Theorem 3.1. The proof in §3.8 is based on positive commutator arguments, with
additional microlocal structure coming from the projector Π and the annihilating operators
Θ± discussed below. However, here we present a more intuitive (but harder to make rigorous)
argument based on propagation by

U(t) = e−itP/h,

which is a Fourier integral operator quantizing the Hamiltonian flow etHp (see Proposi-
tion 3.3.1). Note that we use not the original operator P(ω), but the operator P constructed
in Lemma 3.4.3, equal to

√
PV for the case (3.1.2); this means that U(t) is the wave, rather

than the Schrödinger, propagator. We will only care about the behavior of U(t) near the
trapped set; for this purpose, we introduce a pseudodifferential cutoff X microlocalized in a
neighborhood of K. For a family of functions f = f(h) whose semiclassical wavefront set (as
discussed in §3.3.1) is contained in a small neighborhood of K ∩ p−1([α0, α1]), Theorem 3.1
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follows from the following two estimates (a rigorous analog of (3.2.3) is Proposition 3.8.1,
and of (3.2.4), Proposition 3.8.2): for t > 0,

‖XU(t)(1− Π)f‖L2 ≤ (Ch−1e−(νmin−ε/2)t +O(h∞))‖f‖L2 , (3.2.3)

C−1e−
(νmax+ε/2)t

2 ‖XΠf‖L2 −O(h∞)‖f‖L2 ≤ ‖XU(t)Πf‖L2

≤ Ce−
(νmin−ε/2)t

2 ‖XΠf‖L2 +O(h∞)‖f‖L2 .
(3.2.4)

The estimates (3.2.3) and (3.2.4) are of independent value, as they give information about
the long time behavior of solutions to the wave equation, resembling resonance expansions
of linear waves; an application to black holes is given in Chapter 4. Note however that these
estimates are nontrivial only when t = O(log(1/h)), because of the O(h∞) error term.

The resonance free region (3.1.5) of Theorem 3.1 is derived from here as follows. Assume
that ω is a resonance in (3.1.5). Then there exists a resonant state, namely a function
u ∈ H1 such that P(ω)u = 0 and ‖u‖H1 ∼ 1. We formally have U(t)u = e−itω/hu. Also,
u is microlocalized on the outgoing tail Γ+, which is propagated by the flow etHp towards
infinity; this means that if f := X1u for a suitably chosen pseudodifferential cutoff X1, then
Πu = Πf +O(h∞) and for t > 0,

U(t)f = e−itω/hf +O(h∞) microlocally near WFh(X ).

Since Π commutes with P modulo O(h∞), it also commutes with U(t), which gives

XU(t)(1− Π)f = e−itω/hX (1− Π)f +O(h∞),

XU(t)Πf = e−itω/hXΠf +O(h∞).

Since Imω ≥ −(νmin−ε)h, we take t = N log(1/h) for arbitrarily large constant N in (3.2.3)
to get ‖X (1− Π)f‖L2 = O(h∞). Since Imω 6∈ (−(νmax + ε)h/2,−(νmin − ε)h/2), by (3.2.4)
we get ‖XΠf‖L2 = O(h∞). Together, they give ‖X f‖L2 = O(h∞), implying by standard
outgoing estimates (see Lemma 3.4.6) that ‖u‖H1 = O(h∞), a contradiction.

We now give an intuitive explanation for (3.2.3) and (3.2.4). We start by considering
the model case (3.2.1), with the pseudodifferential cutoff X replaced by the multiplication
operator by some χ ∈ C∞0 (Rn). For the operator P , we consider the model (somewhat
inappropriate since the actual Hamiltonian vector field Hp is typically nonvanishing on K,
contrary to the model case, but reflecting the nature of the flow in the transverse directions)
P = xn ·hDxn − ih/2; here the term −ih/2 makes P symmetric. We then have in the model
case, p = xnξn, etHp(x, ξ) = (x′, etxn, ξ

′, e−tξn), νmin = νmax = 1, and

U(t)f(x′, xn) = e−t/2f(x′, e−txn).

Then (3.2.3) (in fact, a better estimate with e−3t/2 in place of e−t – see the possible improve-
ments subsection below) follows by Taylor expansion at xn = 0. More precisely, we use the
following form of this expansion: for f ∈ C∞0 (Rn),

(1− Π0)f = xn · g, g(x′, xn) :=
f(x′, xn)− f(x′, 0)

xn
, (3.2.5)
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and one can show that ‖g‖L2 ≤ Ch−1‖f‖H1
h
, the factor h−1 coming from taking one non-

semiclassical derivative to obtain g from f (see Lemma 3.6.12). Then χU(t)(1 − Π0)f =
χU(t)xnU(−t)U(t)g, where (by a special case of Egorov’s theorem following by direct com-
putation) χU(t)xnU(−t) is a multiplication operator by

χU(t)xnU(−t) = χ(x)e−txn = O(e−t); (3.2.6)

this shows that ‖χU(t)(1− Π0)f‖L2 ≤ Ce−t‖g‖L2 ≤ Ch−1e−t‖f‖H1
h

and (3.2.3) follows.
To show (3.2.4) in the model case, we start with the identity

‖χU(t)Π0f‖L2 = ‖χtΠ0f‖L2 , χt := U(−t)χU(t).

If χ ∈ C∞0 (Rn), then χt(x) = χ(x′, etxn) has shrinking support as t → ∞. To compare
‖χtΠ0f‖L2 to ‖χΠ0f‖L2 , we use the following fact:

hDxnΠ0f = 0. (3.2.7)

This implies that for each a(x) ∈ C∞0 (Rn), the inner product 〈aΠ0f,Π0f〉 depends only on
the function b(x′) =

∫
R a(x′, xn) dxn; writing ‖χΠ0f‖2

L2 and ‖χtΠ0f‖2
L2 as inner products, we

get ‖χtΠ0f‖2
L2 = e−t‖χΠ0f‖2

L2 and (3.2.4) follows.
The proofs of (3.2.3) and (3.2.4) in the general case work as in the model case, once we

find appropriate replacements for differential operators xn and hDxn in (3.2.5) and (3.2.7).
It turns out that one needs to take pseudodifferential operators Θ± solving, microlocally
near K ∩ p−1([α0, α1]),

ΠΘ− = O(h∞), Θ+Π = O(h∞), (3.2.8)

then Θ− is a replacement for xn and Θ+, for hDxn . Note that Θ± are not unique, in fact
solutions to (3.2.8) form one-sided ideals in the algebra of pseudodifferential operators – see
§§3.6.4 and 3.7.2. The principal symbols of Θ± are defining functions of Γ±.

Concentration of resonant states. As a byproduct of the discussion above, we obtain
new information about microlocal concentration of resonant states, that is, functions u ∈ H1

such that P(ω)u = 0 and ‖u‖H1 ∼ 1. It is well-known (see for example [98, Theorem 4])
that the wavefront set of u is contained in Γ+ ∩ p−1(Reω). The new information we obtain
is that if ω is a resonance in the band given by Theorem 3.2 (that is, Imω > −(νmin − ε)h),
then by (3.2.3), u = Πu + O(h∞) microlocally near K. Then by (3.2.8), Θ+u = O(h∞)
near K, that is, u solves a pseudodifferential equation; note that the Hamiltonian flow lines
of the principal symbol of Θ+ are transverse to the trapped set. This implies in particular
that any corresponding semiclassical defect measure is determined uniquely by a measure
on the trapped set which is conditionally invariant under Hp, similarly to the damped wave
equation. See Theorem 3.4 in §3.8.5 for details.

Proof of Theorem 3.2. We start with constructing a well-posed Grushin problem, rep-
resenting resonances as zeroes of a certain Fredholm determinant F (ω). Using complex
analysis (essentially the argument principle), we reduce counting resonances to computing a
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contour integral of the logarithmic derivative F ′(ω)/F (ω), which, taking ν− = −(νmax +ε)/2,
ν+ = −(νmin − ε)/2, is similar to (see §3.10 for the actual expression)

1

2πi
(I− − I+), I± :=

∫
Imω=hν±

χ̃(ω) Tr(ΠR(ω)) dω

for some cutoff function χ̃(ω). The integration is over the region where Theorem 3.1 gives
polynomial bounds on the resolvent R(ω), and we can use the methods developed for the
proof of this theorem to evaluate both integrals, yielding Theorem 3.2. An important ad-
ditional tool, explaining in particular why the two integrals do not cancel each other, is
microlocal analysis in the spectral parameter ω, or equivalently a study of the essential
support of the Fourier transform of ΠR(ω) in ω – see §§3.8.4 and 3.10.

3.2.2 Possible improvements

First of all, it would be interesting to see if one could construct further bands of resonances,
lying below the one in Theorem 3.2. One expects these bands to have the form

{Imω ∈ [−(k + 1/2)(νmax + ε)h,−(k + 1/2)(νmin − ε)h]}, k ∈ Z, k ≥ 0,

and to have a Weyl law in the k-th band under the pinching condition (k + 1/2)νmax <
(k + 3/2)νmin. Note that the presence of the second band of resonances improves the size
of the second resonance free strip in Theorem 3.1 and gives a weaker pinching condition
νmax < 3νmin for the Weyl law in the first band. The proofs are expected to work similarly to
the present chapter, if one constructs a family of operators Π0 = Π,Π1, . . . ,Πk such that Πj is
h−j times a Fourier integral operator associated to Λ◦, ΠjΠk = O(h∞), and [P,Πj] = O(h∞)
(microlocally near K ∩ p−1([α0, α1])). However, the method of §3.7.1 does not apply directly
to construct Πk for k > 0, since one cannot conjugate all Πj to the model case, which is the
base of the crucial Proposition 3.6.9.

Another direction would be to consider the case when the operator P is quantum com-
pletely integrable on the trapped set (a notion that needs to be made precise), and derive a
quantization condition for resonances like the one for the special case of black holes ([103]
and Chapter 2). The author also believes that the results of the present chapter should be
adaptable to the situation when Γ± have codimension higher than 1, which makes it possi-
ble to revisit the distribution of resonances generated by one closed hyperbolic trajectory,
studied in [56].

An interesting special case lying on the intersection of the current work and [50, 49, 51]
is given by geodesic flows on compact manifolds of constant negative curvature; the corre-
sponding manifolds Γ± and K are smooth in this situation. While r-normal hyperbolicity
does not hold (in fact, µmax = νmin = νmax), the rigid algebraic structure of hyperbolic quo-
tients suggests that one could still look for the projector Π as a (smooth) Fourier integral
operator – in terms of the construction of §3.7.1, the transport equation (3.2.2), while not
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yielding a smooth solution for an arbitrary choice of the right-hand side f , will have a smooth
solution for the specific functions f arising in the construction.

Finally, a natural question is improving the o(1) remainder in the Weyl law (3.1.8).
Obtaining an O(hδ) remainder for δ < 1 does not seem to require conceptual changes to the
microlocal structure of the argument; however, for the O(h) remainder of Hörmander [73]
or the o(h) remainder of Duistermaat–Guillemin [44], one would need a finer analysis of the
interaction of the operator Π with the Schrödinger propagator, and more assumptions on the
flow on the trapped set might be needed. Moreover, the complex analysis argument of §3.11
does not work in the case of an O(h) remainder; a reasonable replacement would be to adapt
to the considered case the work of Sjöstrand [107] on the damped wave equation.

3.2.3 Structure of the chapter

• In §3.3, we review the tools we need from semiclassical analysis.

• In §3.4, we present a framework which makes it possible to handle resonances and the
spatial infinity in an abstract fashion. The assumptions we make are listed in §3.4.1,
followed by some useful lemmas (§3.4.2) and applications to Schrödinger operators
(§3.4.3) and even asymptotically hyperbolic manifolds (§3.4.4).

• In §3.5, we study r-normally hyperbolic trapped sets, stating the dynamical assump-
tions (§3.5.1), discussing their stability under perturbations (§3.5.2), and deriving some
corollaries (§§3.5.3–3.5.5).

• In §3.6, we study in detail Fourier integral operators associated to Λ◦, and in particular
properties of operators solving Π2 = Π +O(h∞).

• In §3.7, we construct the projector Π and the annihilating operators Θ±.

• In §3.8, we prove Theorem 3.1, establish microlocal estimates on the resolvent, and
study the microlocal concentration of resonant states (§3.8.5).

• In §3.9, we formulate a well-posed Grushin problem for P(ω), representing resonances
as zeroes of a certain Fredholm determinant.

• In §3.10, we prove a trace formula for R(ω) microlocally on the image of Π.

• In §3.11, we prove the Weyl asymptotic for resonances (Theorem 3.2).

• In Appendix 3.A, we provide an example of an asymptotically hyperbolic manifold
satisfying the dynamical assumptions of §3.5.1.
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3.3 Further semiclassical preliminaries

In this section, we review semiclassical pseudodifferential operators, wavefront sets, and
Fourier integral operators; the reader is directed to [137, 39] for a detailed treatment and [71,
72, 59] for the closely related microlocal case.

3.3.1 Pseudodifferential operators and microlocalization

Let X be a manifold without boundary. Following [137, §9.3 and 14.2], we consider the
symbol classes Sk(T ∗X), k ∈ R, consisting of smooth functions a on the cotangent bundle
T ∗X satisfying in local coordinates

sup
h

sup
x∈K
|∂αx∂

β
ξ a(x, ξ;h)| ≤ CαβK〈ξ〉k−|β|,

for each multiindices α, β and each compact set K ⊂ X. The corresponding class of semi-
classical pseudodifferential operators is denoted Ψk(X). The residual symbol class h∞S−∞

consists of symbols decaying rapidly in h and ξ over compact subsets of X; the operators in
the corresponding class h∞Ψ−∞ have Schwartz kernels in h∞C∞(X×X). Operators in Ψk are
bounded, uniformly in h, between the semiclassical Sobolev spaces Hs

h,comp(X)→ Hs−k
h,loc(X),

see [137, (14.2.3)] for the definition of the latter.
Note that for noncompact X, we impose no restrictions on the behavior of symbols as

x → ∞. Accordingly, we cannot control the behavior of operators in Ψk(X) near spatial
infinity; in fact, a priori we only require them to act C∞0 (X) → C∞(X) and on the spaces
of distributions E ′(X)→ D′(X). However, each A ∈ Ψk(X) can be written as the sum of an
h∞Ψ−∞ remainder and an operator properly supported uniformly in h – see for example [71,
Proposition 18.1.22]. Properly supported pseudodifferential operators act C∞0 → C∞0 and
C∞ → C∞ and therefore can be multiplied with each other, giving an algebra structure on
the whole Ψk, modulo h∞Ψ−∞.

To study the behavior of symbols near fiber infinity, we use the fiber-radial compactified
cotangent bundle T

∗
X, a manifold with boundary whose interior is diffeomorphic to T ∗X and

whose boundary ∂T
∗
X is diffeomorphic to the cosphere bundle over X – see for example [128,

§2.2]. We will restrict ourselves to the space of classical symbols, i.e. those having an
asymptotic expansion

a(x, ξ;h) ∼
∑
j≥0

hjaj(x, ξ),

with aj ∈ Sk−j classical in the sense that 〈ξ〉j−kaj extends to a smooth function on T
∗
X. The

principal symbol σ(A) := a0 ∈ Sk of an operator is defined independently of quantization.
We say that A ∈ Ψk is elliptic at some (x, ξ) ∈ T ∗X if 〈ξ〉−kσ(A) does not vanish at (x, ξ).

Another invariant object associated to A ∈ Ψk(X) is its wavefront set WFh(A), which
is a closed subset of T

∗
X; a point (x, ξ) ∈ T ∗X does not lie in WFh(A) if and only if there

exists a neighborhood U of (x, ξ) in T
∗
X such that the full symbol of A (in any quantization)
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is in h∞S−∞ in this neighborhood. Note that WFh(A) = ∅ if and only if A = O(h∞)Ψ−∞ .
We say that A1 = A2 +O(h∞) microlocally in some U ⊂ T

∗
X, if WFh(A−B) ∩ U = ∅.

We denote by Ψcomp(X) the space of all operators A ∈ Ψ0(X) such that WFh(A) is a
compact subset of T ∗X, in particular not intersecting the fiber infinity ∂T

∗
X. Note that

Ψcomp(X) ⊂ Ψk(X) for all k ∈ R.

Tempered distributions and operators. Let u = u(h) be an h-dependent family of
distributions in D′(X). We say that u is h-tempered (or polynomially bounded), if for
each χ ∈ C∞0 (X), there exists N such that ‖χu‖H−Nh = O(h−N). The class of h-tempered

distributions is closed under properly supported pseudodifferential operators. For an h-
tempered u, define the wavefront set WFh(u), a closed subset of T

∗
X, as follows: (x, ξ) ∈

T
∗
X does not lie in WFh(u) if and only if there exists a neighborhood U of (x, ξ) in T

∗
X such

that for each properly supported A ∈ Ψ0(X) with WFh(A) ⊂ U , we have Au = O(h∞)C∞ .
We have WFh(u) = ∅ if and only if u = O(h∞)C∞ . We say that u = v+O(h∞) microlocally
on some U ⊂ T

∗
X if WFh(u− v) ∩ U = ∅.

Let X1 and X2 be two manifolds. An operator B : C∞0 (X1)→ D′(X2) is identified with
its Schwartz kernel KB(y, x) ∈ D′(X2 ×X1):

Bf(y) =

∫
X1

KB(y, x)u(x) dx, u ∈ C∞0 (X1). (3.3.1)

Here we assume that X1 is equipped with some smooth density dx; later, we will also assume
that densities on our manifolds are specified when talking about adjoints.

We say that B is h-tempered if KB is, and define the wavefront set of B as

WFh(B) := {(x, ξ, y, η) ∈ T ∗(X1 ×X2) | (y, η, x,−ξ) ∈WFh(KB)}. (3.3.2)

If B ∈ Ψk(X), then the wavefront set of B as an h-tempered operator is equal to its wavefront
set as a pseudodifferential operator, under the diagonal embedding T

∗
X → T

∗
(X ×X).

3.3.2 Lagrangian distributions and Fourier integral operators

We now review the theory of Lagrangian distributions; for details, the reader is directed
to [137, Chapters 10–11], [61, Chapter 6], or [130, §2.3], and to [72, Chapter 25] or [59,
Chapters 10–11] for the closely related microlocal setting. Here, we only present the relatively
simple local part of the theory; geometric constructions of invariant symbols will be done by
hand when needed, without studying the structure of the bundles obtained (see §3.6.2). For
a more complete discussion, see for example [47, §3].

A semiclassical Lagrangian distribution locally takes the form

u(x;h) = (2πh)−m/2
∫
X×Rm

e
i
h

Φ(x,θ)a(x, θ;h) dθ. (3.3.3)

Here Φ is a nondegenerate phase function, i.e. a real-valued function defined on an open
subset of X × Rm, for some m, such that the differentials d(∂θ1Φ), . . . , d(∂θmΦ) are linearly
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independent on the critical set

CΦ := {(x, θ) | ∂θΦ(x, θ) = 0}.

The amplitude a(x, θ;h) is a classical symbol (that is, having an asymptotic expansion in
nonnegative integer powers of h as h → 0) compactly supported inside the domain of Φ.
The resulting function u(x;h) is smooth, compactly supported, h-tempered, and

WFh(u) ⊂ {(x, ∂xΦ(x, θ)) | (x, θ) ∈ CΦ ∩ supp a}. (3.3.4)

We say that Φ generates the (immersed, and we shrink the domain of Φ to make it embedded)
Lagrangian submanifold

ΛΦ := {(x, ∂xΦ(x, θ)) | (x, θ) ∈ CΦ};

note that WFh(u) ⊂ ΛΦ. Moreover, if we restrict Φ to CΦ and pull it back to ΛΦ, then dΦ
equals the canonical 1-form ξ dx on ΛΦ.

In general, assume that Λ is an embedded Lagrangian submanifold of T ∗X which is
moreover exact in the sense that the canonical form ξ dx is exact on Λ; we fix an antiderivative
on Λ, namely a function F such that ξ dx = dF on Λ. (This is somewhat similar to the
notion of Legendre distributions, see [91, §11].) Then we say that a compactly supported
h-tempered family of distributions u is a (compactly microlocalized) Lagrangian distribution
associated to Λ, if u can be written as a finite sum of expressions (3.3.3), with phase functions
Φj generating open subsets of Λ, plus an O(h∞)C∞0 remainder, where Φj are normalized
(by adding a constant) so that the pull-back to Λ of the restriction of Φj to CΦj equals F .
(Without such normalization, passing from one phase function to the other produces a factor

e
is
h for some constant s, which does not preserve the class of classical symbols – this is an

additional complication of the theory compared to the nonsemiclassical case.) Denote by
Icomp(Λ) the class of all Lagrangian distributions associated to Λ. For u ∈ Icomp(Λ), we have

WFh(u) ⊂ Λ; in particular, WFh(u) does not intersect the fiber infinity ∂T
∗
X.

If nowX1, X2 are two manifolds of dimensions n1, n2 respectively, and Λ ⊂ T ∗X1×T ∗X2 is
an exact canonical relation (with some fixed antiderivative), then an operator B : C∞(X1)→
C∞0 (X2) is called a (compactly microlocalized) Fourier integral operator associated to Λ, if
its Schwartz kernel KB(y, x) is h−(n1+n2)/4 times a Lagrangian distribution associated to

{(y, η, x,−ξ) ∈ T ∗(X1 ×X2) | (x, ξ, y, η) ∈ Λ}.

We write B ∈ Icomp(Λ); note that WFh(B) ⊂ Λ. A particular case is when Λ is the graph of a
canonical transformation κ : U1 → U2, with Uj open subsets in T ∗Xj. Operators associated
to canonical transformations (but not general relations!) are bounded Hs

h → Hs′

h uniformly
in h, for each s, s′.

Compactly microlocalized Fourier integral operators associated to the identity trans-
formation are exactly compactly supported pseudodifferential operators in Ψcomp(X). An-
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other example of Fourier integral operators is given by Schrödinger propagators, see for
instance [137, Theorem 10.4]2 or [47, Proposition 3.8]:

Proposition 3.3.1. Assume that P ∈ Ψcomp(X) is compactly supported, WFh(P ) is con-
tained in some compact subset V ⊂ T ∗X, and p = σ(P ) is real-valued. Then for t ∈ R
bounded by any fixed constant, the operator e−itP/h : L2(X) → L2(X) is the sum of the
identity and a compactly supported operator microlocalized in V × V . Moreover, for each
compactly supported A ∈ Ψcomp(X), Ae−itP/h and e−itP/hA are smooth families of Fourier
integral operators associated to the Hamiltonian flow etHp : T ∗X → T ∗X.

Here we put the antiderivative F for the identity transformation to equal zero, and extend
it to the antiderivative Ft on the graph of etHp by putting

Ft(γ(0), γ(t)) := tp(γ(0))−
∫
γ([0,t])

ξ dx

for each flow line γ of Hp. The corresponding phase function is produced by a solution to
the Hamilton–Jacobi equation [137, Lemma 10.5].

We finally discuss products of Fourier integral operators. Assume that Bj ∈ Icomp(Λj),
j = 1, 2, where Λ1 ⊂ T ∗X1 × T ∗X2 and Λ2 ⊂ T ∗X2 × T ∗X3 are exact canonical relations.
Assume moreover that Λ1,Λ2 satisfy the following transversality assumption: the manifolds
Λ1 × Λ2 and T ∗X1 × ∆(T ∗X2) × T ∗X3, where ∆(T ∗X2) ⊂ T ∗X2 × T ∗X2 is the diagonal,
intersect transversely inside T ∗X1 × T ∗X2 × T ∗X2 × T ∗X3, and their intersection projects
diffeomorphically onto T ∗X1 × T ∗X3. Then B2B1 ∈ Icomp(Λ2 ◦ Λ1), where

Λ2 ◦ Λ1 := {(ρ1, ρ3) | ∃ρ2 ∈ T ∗X2 : (ρ1, ρ2) ∈ Λ1, (ρ2, ρ3) ∈ Λ2}, (3.3.5)

and, if Fj is the antiderivative on Λj, then F1(ρ1, ρ2) + F2(ρ2, ρ3) is the antiderivative on
Λ2 ◦ Λ1. See for example [72, Theorem 25.2.3] or [59, Theorem 11.12] for the closely related
microlocal case, which is adapted directly to the semiclassical situation.

The transversality condition is always satisfied when at least one of the Λj is the graph
of a canonical transformation. In particular, one can always multiply a pseudodifferential
operator by a Fourier integral operator, and obtain a Fourier integral operator associated to
the same canonical relation.

3.3.3 Basic estimates

In this section, we review some standard semiclassical estimates, parametrices, and microlo-
calization statements.

Throughout the section, we assume that k, s ∈ R, P,Q ∈ Ψk(X) are properly supported
and u, f are h-tempered distributions on X, in the sense of §3.3.1.

We start with the elliptic estimate, see for instance Proposition 2.3.2:
2[137, Theorem 10.4] is stated for self-adjoint P , rather than operators with real-valued principal symbols;

however, the proof works similarly in the latter case, with the transport equation acquiring an additional
zeroth order term due to the subprincipal part of P .
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Proposition 3.3.2. (Elliptic estimate) Assume that Pu = f . Then:
1. If A,B ∈ Ψ0(X) are compactly supported and P,B are elliptic on WFh(A), then

‖Au‖Hs
h
≤ C‖Bf‖Hs−k

h
+O(h∞). (3.3.6)

2. We have
WFh(u) ⊂WFh(f) ∪ {〈ξ〉−kσ(P ) = 0}. (3.3.7)

Proposition 3.3.2 is typically proved using the following fact, which is of independent
interest:

Proposition 3.3.3. (Elliptic parametrix) If V ⊂ T
∗
X is compact and P is elliptic on V , then

there exists a compactly supported operator P ′ ∈ Ψ−k(X) such that PP ′ = 1+O(h∞), P ′P =
1 +O(h∞) microlocally near V . Moreover, σ(P ′) = σ(P )−1 near V .

We next give a version of propagation of singularities which allows for a complex absorbing
operator Q, see for instance [128, §2.3]:

Proposition 3.3.4. (Propagation of singularities) Assume that σ(P ) is real-valued, σ(Q) ≥
0, and (P ± iQ)u = f . Then:

1. If A1, A2, B ∈ Ψ0(X) are compactly supported and for each flow line γ(t) of the
Hamiltonian field ±〈ξ〉1−kHσ(P ) such that γ(0) ∈ WFh(A1), there exists t ≥ 0 such that A2

is elliptic at γ(t) and B is elliptic on the segment γ([0, t]), then

‖A1u‖Hs
h
≤ C‖A2u‖Hs

h
+ Ch−1‖Bf‖Hs−k+1

h
+O(h∞). (3.3.8)

2. If γ(t), 0 ≤ t ≤ T , is a flow line of ±〈ξ〉1−kHσ(P ), then

γ([0, T ]) ∩WFh(f) = ∅, γ(T ) 6∈WFh(u) =⇒ γ(0) 6∈WFh(u).

For Q = 0, Proposition 3.3.4 can be viewed as a microlocal version of uniqueness of solu-
tions to the Cauchy problem for hyperbolic equations; a corresponding microlocal existence
fact is given by

Proposition 3.3.5. (Hyperbolic parametrix) Assume that σ(P ) is real-valued, WFh(f) ⊂
T ∗X is compact, U, V ⊂ T ∗X are compactly contained open sets, and for each flow line
γ(t) of the Hamiltonian field Hσ(P ) such that γ(0) ∈ WFh(f), there exists t ∈ R such that
γ(t) ∈ U and γ(s) ∈ V for all s between 0 and t.

Then there exists an h-tempered family v(h) ∈ C∞0 (X) such that WFh(v) ⊂ V and

‖v‖L2 ≤ Ch−1‖f‖L2 , ‖Pv‖L2 ≤ C‖f‖L2 , WFh(Pv − f) ⊂ U.

Proof. By applying a microlocal partition of unity to f , we may assume that there exists
T > 0 (the case T < 0 is considered similarly and the case T = 0 is trivial by putting v = 0)
such that for each flow line γ(t) of Hσ(P ) such that γ(0) ∈ WFh(f), we have γ(T ) ∈ U
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and γ([0, T ]) ∈ V . Take ε ∈ (0, T ) such that γ([T − ε, T ]) ⊂ U for each such γ. Since
V is compactly contained in T ∗X, we may assume that P is compactly supported and
P ∈ Ψcomp(X). We then take χ ∈ C∞0 (−∞, T ) such that χ = 1 near [0, T − ε] and put

v :=
i

h

∫ T

0

χ(t)e−itP/hf dt.

Then ‖v‖L2 ≤ Ch−1‖f‖L2 and WFh(v) ⊂ V by Proposition 3.3.1. Integrating by parts, we
compute

Pv = −
∫ T

0

χ(t)∂te
−itP/hf dt = f +

∫ T

0

(∂tχ(t))e−itP/hf dt;

therefore, ‖Pv‖L2 ≤ C‖f‖L2 and by Proposition 3.3.1, WFh(Pv − f) ⊂ U .

We also need the following version of the sharp G̊arding inequality, see [137, Theo-
rem 4.32] or Proposition 1.6.2:

Proposition 3.3.6. (Sharp G̊arding inequality) Assume that A ∈ Ψcomp(X) is compactly
supported and Reσ(A) ≥ 0 near WFh(u). Assume also that B ∈ Ψcomp(X) is compactly
supported and elliptic on WFh(A) ∩WFh(u). Then

Re〈Au, u〉 ≥ −Ch‖Bu‖2
L2 −O(h∞).

3.4 Abstract framework near infinity

In this section, we provide an abstract microlocal framework for studying resonances; the
general assumptions are listed in §3.4.1. Rather than considering resonances as poles of the
meromoprhic continuation of the cutoff resolvent, we define them as solutions of a nonselfad-
joint eigenvalue problem featuring a holomorphic family of Fredholm operators, P(ω). We
assume that the dependence of the principal symbol of P(ω) on ω can be resolved in a convex
neighborhood U of the trapped set, yielding the ω-independent symbol p (and the operator
P later in Lemma 3.4.3). Finally, we require the existence of a semiclassically outgoing
parametrix for P(ω), resolving it modulo an operator microlocalized near the trapped set.

In §3.4.2, we derive several useful corollaries of our assumptions, making it possible to
treat spatial infinity as a black box in the following sections. Finally, in §§3.4.3 and 3.4.4,
we provide two examples of situations when the assumptions of §3.4.1 (but not necessarily
the dynamical assumptions of §3.5.1) are satisfied: Schrödinger operators on Rn, studied
using complex scaling, and Laplacians on even asymptotically hyperbolic manifolds, handled
using [128, 127].

3.4.1 General assumptions

Assume that:
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(1) X is a smooth n-dimensional manifold without boundary, possibly noncompact, with a
prescribed volume form;

(2) P(ω) ∈ Ψk(X) is a family of properly supported semiclassical pseudodifferential opera-
tors depending holomorphically on ω lying in an open simply connected set Ω ⊂ C such
that R ∩ Ω is connected, with principal symbol p(x, ξ, ω);

(3) H1,H2 are h-dependent Hilbert spaces such that HN
h,comp(X) ⊂ Hj ⊂ H−Nh,loc(X) for some

N , with norms of embeddings O(h−N), and P(ω) is bounded H1 → H2 with norm O(1);

(4) for some fixed [α0, α1] ⊂ R ∩ Ω and C0 > 0, the operator P(ω) : H1 → H2 is Fredholm
of index zero in the region

Reω ∈ [α0, α1], | Imω| ≤ C0h. (3.4.1)

Together with invertibility of P(ω) in a subregion of (3.4.1) proved in Theorem 3.1, by
Analytic Fredholm Theory [137, Theorem D.4] our assumptions imply that

R(ω) := P(ω)−1 : H2 → H1 (3.4.2)

is a meromorphic family of operators with poles of finite rank for ω satisfying (3.4.1). Reso-
nances are defined as poles of R(ω). Following [57, Theorem 2.1], we define the multiplicity
of a resonance ω0 as

1

2πi
Tr

∮
ω0

P(ω)−1∂ωP(ω) dω. (3.4.3)

Here
∮
ω0

stands for the integral over a contour enclosing ω0, but no other poles ofR(ω). Since
R(ω) has poles of finite rank, we see that the integral in (3.4.3) yields a finite dimensional
operator on H1 and thus one can take the trace. The fact that the resulting multiplicity is
a positive integer will follow for example from the representation of resonances as zeroes of
a Fredholm determinant, in part 1 of Proposition 3.9.5. See also [107, Appendix A].

We next fix a ‘physical region’ U in phase space, where most of our analysis will take
place, in particular the intersection of the trapped set with the relevant energy shell will
be contained in U . The region U will be contained in a larger region U ′, which is used
to determine when trajectories have escaped from U . (See (3.4.16) and (3.4.21) for the
definitions of U ,U ′ for the examples we consider.) We assume that:

(5) U ′ ⊂ T ∗X is open and bounded, and each compactly supported A ∈ Ψcomp(X) with
WFh(A) ⊂ U ′ is bounded L2 → Hj,Hj → L2, j = 1, 2, with norm O(1);

(6) P(ω)∗ = P(ω) +O(h∞) microlocally in U ′ when ω ∈ R ∩ Ω;

(7) for each (x, ξ) ∈ U ′, the equation p(x, ξ, ω) = 0, ω ∈ Ω has unique solution

ω = p(x, ξ). (3.4.4)

Moreover, p(x, ξ) ∈ R and ∂ωp(x, ξ, p(x, ξ)) < 0 for (x, ξ) ∈ U ′;
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(8) U ⊂ U ′ is a compactly contained open subset, whose closure U is relatively convex with
respect to the Hamiltonian flow of p, i.e. if γ(t), 0 ≤ t ≤ T , is a flow line of Hp in U ′ and
γ(0), γ(T ) ∈ U , then γ([0, T ]) ⊂ U ;

Note that for ω ∈ R∩Ω, Hamiltonian flow lines of p in U ′∩ p−1(ω) are rescaled Hamiltonian
flow lines of p( · , ω) in {ρ ∈ U ′ | p(ρ, ω) = 0}. The symbol p is typically the square root of the
principal symbol of the original Laplacian or Schrödinger operator, see (3.4.17) and (3.4.22).

We can now define the incoming/outgoing tails Γ± ⊂ U as follows: ρ ∈ U lies in Γ± if
and only if e∓tHp(ρ) stays in U for all t ≥ 0. Define the trapped set as

K := Γ+ ∩ Γ−. (3.4.5)

Note that Γ± and K are closed subsets of U (and thus the sets Γ± defined here are smaller
than the original Γ± defined in the introduction), and etHp(Γ±) ⊂ Γ± for ∓t ≥ 0, thus
etHp(K) = K for all t. We assume that, with α0, α1 defined in (3.4.1),

(9) K ∩ p−1([α0, α1]) is a nonempty compact subset of U .

Finally, we assume the existence of a semiclassically outgoing parametrix, which will make
it possible to reduce our analysis to a neighborhood of the trapped set in §3.4.2:

(10) Q ∈ Ψcomp(X) is compactly supported, WFh(Q) ⊂ U , and the operator

R′(ω) := (P(ω)− iQ)−1 : H2 → H1 (3.4.6)

satisfies, for ω in (3.4.1),
‖R′(ω)‖H2→H1 ≤ Ch−1; (3.4.7)

(11) for ω in (3.4.1), R′(ω) is semiclassically outgoing in the following sense: if (ρ, ρ′) ∈
WFh(R′(ω)) and ρ, ρ′ ∈ U ′, there exists t ≥ 0 such that etHp(ρ) = ρ′ and esHp(ρ) ∈ U ′
for 0 ≤ s ≤ t. (See Figure 3.2(a) below.)

3.4.2 Some consequences of general assumptions

In this section, we derive several corollaries of the assumptions of §3.4.1, used throughout
the rest of the chapter.

Global properties of the flow. We start with two technical lemmas:

Lemma 3.4.1. Assume that ρ ∈ Γ±. Then as t→ ∓∞, the distance d(etHp(ρ), K) converges
to zero.

Proof. We consider the case ρ ∈ Γ−. Put γ(t) := etHp(ρ), then γ(t) ∈ Γ− for all t ≥
0. Assume that d(γ(t), K) does not converge to zero as t → +∞, then there exists a
sequence of times tj → +∞ such that γ(tj) does not lie in a fixed neighborhood of K.
By passing to a subsequence, we may assume that γ(tj) converge to some ρ∞ ∈ Γ− \ K.
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Then ρ∞ 6∈ Γ+; therefore, there exists T ≥ 0 such that e−THp(ρ∞) 6∈ U . For j large
enough, we have γ(tj − T ) = e−THp(γ(tj)) 6∈ U and tj ≥ T ; this contradicts convexity of U
(assumption (8)).

Lemma 3.4.2. Assume that U1 is a neighborhood of K in U . Then there exists a neighbor-
hood U2 of K in U such that for each flow line γ(t), 0 ≤ t ≤ T of Hp in U , if γ(0), γ(T ) ∈ U2,
then γ([0, t]) ⊂ U1.

Proof. Assume the contrary, then there exist flow lines γj(t), 0 ≤ t ≤ Tj, in U , such that
d(γj(0), K) → 0, d(γj(Tj), K) → 0, yet γj(tj) 6∈ U1 for some tj ∈ [0, Tj]. Passing to a
subsequence, we may assume that γj(tj) → ρ∞ ∈ U \ K. Without loss of generality, we
assume that ρ∞ 6∈ Γ+. Then there exists T > 0 such that e−THp(ρ∞) ∈ U ′ \ U , and thus
e−THp(γj(tj)) 6∈ U for j large enough. Since γj([0, Tj]) ⊂ U , we have tj ≤ T . By passing to
a subsequence, we may assume that tj → t∞ ∈ [0, T ]. However, then γj(0) → e−t∞Hp(ρ∞),
which implies that e−t∞Hp(ρ∞) ∈ Γ+, contradicting the fact that ρ∞ 6∈ Γ+.

Resolution of dependence on ω. We reduce the operator P(ω) microlocally near U to
an operator of the form P − ω, see also [75, §4]:

Lemma 3.4.3. There exist:

• a compactly supported P ∈ Ψcomp(X) such that P ∗ = P and σ(P ) = p near U , where p
is defined in (3.4.4), and

• a family of compactly supported operators S(ω) ∈ Ψcomp(X), holomorphic in ω ∈ Ω,
with S(ω)∗ = S(ω) for ω ∈ R ∩ Ω and S(ω) elliptic near U , such that

P(ω) = S(ω)(P − ω)S(ω) +O(h∞) microlocally near U . (3.4.8)

Proof. We argue by induction, constructing compactly supported operators Pj,Sj(ω) ∈
Ψcomp(X), such that P ∗j = Pj, S∗j (ω) = Sj(ω) for ω ∈ R ∩ Ω, and P(ω) = Sj(ω)(Pj −
ω)Sj(ω) +O(hj+1) microlocally near U . It will remain to take the asymptotic limit.

For j = 0, it suffices to take any P0,S0(ω) such that σ(P0) = p and σ(S0(ω))(ρ) = s0(ρ, ω)
near U , where (with p(·, ω) denoting the principal symbol of P(ω))

p(ρ, ω) = s0(ρ, ω)2(p(ρ)− ω), ρ ∈ U ′;

the existence of such s0 and the fact that it is real-valued for real ω follows from assump-
tion (7).

Now, given Pj,Sj(ω) for some j ≥ 0, we construct Pj+1,Sj+1(ω). We have P(ω) =
Sj(ω)(Pj−ω)Sj(ω) +hj+1Rj(ω) microlocally near U , where Rj(ω) ∈ Ψcomp is a holomorphic
family of operators and, by assumption (6), Rj(ω)∗ = Rj(ω) + O(h∞) microlocally near U
when ω ∈ R ∩ Ω. We then put Pj+1 = Pj + hj+1Aj, Sj+1(ω) = Sj(ω) + hj+1Bj(ω), where
σ(Aj) = pj, σ(Bj(ω))(ρ) = sj(ρ, ω) near U and

σ(Rj)(ρ, ω) = 2s0(ρ, ω)sj(ρ, ω)(p(ρ)− ω) + s0(ρ, ω)2pj(ρ), ρ ∈ U ′.
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Figure 3.2: (a) Assumption (11), with the undashed part of the flow line of ρ corresponding
to ρ′ ∈ U ′ such that (ρ, ρ′) ∈WFh(R′(ω)). (b) An illustration of Lemma 3.4.4, with WFh(f)
the shaded set and WFh(u) containing undashed parts of the flow lines.

The existence of sj(ρ, ω), pj(ρ) and the fact that pj(ρ) ∈ R and sj(ρ, ω) ∈ R for ρ near U and
ω ∈ R∩Ω follow from assumption (7). In particular, we put pj(ρ) = σ(Rj)(ρ, p(ρ))/s0(ρ, p(ρ))2.

Note that, if u(h) ∈ H1, f(h) ∈ H2 have norms polynomially bounded in h (and in light
of assumption (3) are h-tempered in the sense of §3.3.1), and P(ω)u = f , then

(P − ω)S(ω)u = S ′(ω)f +O(h∞) microlocally near U , (3.4.9)

where S ′(ω) ∈ Ψcomp(X) is an elliptic parametrix of S(ω) microlocally near U , constructed
in Proposition 3.3.3.

Microlocalization of R(ω). Next, we use the semiclassically outgoing parametrix R′(ω)
from (3.4.6) to derive a key restriction on the wavefront set of functions in the image of
R(ω), see Figure 3.2(b):

Lemma 3.4.4. Assume that u(h) ∈ H1, f(h) ∈ H2 have norms polynomially bounded in
h, P(ω)u = f for some ω = ω(h) satisfying (3.4.1), and WFh(f) ⊂ U . Then for each
ρ ∈ WFh(u) ∩ U , if γ(t) = etHp(ρ) is the corresponding maximally extended flow line in U ′,
then either γ(t) ∈ U for all t ≤ 0 or γ(t) ∈WFh(f) for some t ≤ 0.

Proof. By propagation of singularities (Proposition 3.3.4) applied to (3.4.9), we see that
either γ(t) ∈ U for all t ≤ 0, or γ(t) ∈ WFh(f) for some t ≤ 0, or there exists t ≤ 0
such that γ(t) ∈ WFh(u) ∩ (U ′ \ U); we need to exclude the third case. However, in this
case by convexity of U (assumption (8)), γ(t − s) 6∈ U for all s ≥ 0; by assumption (11),
and since u = R′(ω)(f − iQu) with WFh(f − iQu) ⊂ U , we see that γ(t) 6∈ WFh(u), a
contradiction.

It follows from Lemma 3.4.4 that any resonant state, i.e. a function u such that ‖u‖H1 ∼ 1
and P(ω)u = 0, has to satisfy WFh(u) ∩ U ⊂ Γ+.
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The next statement improves on the parametrix R′(ω), inverting the operator P(ω)
outside of any given neighborhood of the trapped set. One can see this as a geometric
control statement (see for instance [19, Theorem 3]).

Lemma 3.4.5. Let W ⊂ U be a neighborhood of K∩p−1([α0, α1]) (which is a compact subset
of U by assumption (9)), and assume that f(h) ∈ H2 has norm bounded polynomially in h
and each ω = ω(h) is in (3.4.1). Then there exists v(h) ∈ H1, with f − P(ω)v compactly
supported in X and

‖v‖H1 ≤ Ch−1‖f‖H2 , ‖P(ω)v‖H2 ≤ C‖f‖H2 , WFh(f − P(ω)v) ⊂ W.

Proof. First of all, take compactly supported Q′ ∈ Ψcomp(X) such that WFh(Q′) ⊂ U and
Q′ = 1 microlocally near WFh(Q) (with Q defined in assumption (10)), and put

v1 := (1−Q′)R′(ω)f.

Then by (3.4.7), ‖v1‖H1 ≤ Ch−1‖f‖H2 and P(ω)v1 = f1, where

f1 = (1−Q′ − [P(ω),Q′]R′(ω) + (1−Q′)iQR′(ω))f.

Since (1 − Q′)iQ = O(h∞)Ψ−∞ , by (3.4.7) we find ‖f1‖H2 ≤ C‖f‖H2 , f − f1 is compactly
supported, and WFh(f −f1) ⊂WFh(Q′). It is now enough to prove our statement for f −f1

in place of f ; therefore, we may assume that f is compactly supported and

WFh(f) ⊂WFh(Q′).

Since WFh(Q′) is compact, by a microlocal partition of unity we may assume that WFh(f)
is contained in a small neighborhood of some fixed ρ ∈ WFh(Q′) ⊂ U . We now consider
three cases:
Case 1: ρ 6∈ p−1([α0, α1]). Then the operator P(ω) is elliptic at ρ, therefore we may
assume it is elliptic on WFh(f). The function v is then obtained by applying to f an elliptic
parametrix of P(ω) given in Proposition 3.3.3; we have f − P(ω)v = O(h∞)C∞0 .
Case 2: ρ ∈ Γ− ∩ p−1([α0, α1]). By Lemma 3.4.1, there exists t ≥ 0 such that etHp(ρ) ∈ W .
We may then assume that etHp(WFh(f)) ⊂ W , and v is then constructed by Proposi-
tion 3.3.5, using (3.4.8); we have WFh(v) ⊂ U and WFh(f − P(ω)v) ⊂ W .
Case 3: ρ 6∈ Γ−. Then there exists t ≥ 0 such that etHp(ρ) ∈ U ′\U . As in case 2, subtracting
from v the parametrix of Proposition 3.3.5, we may assume that f is instead microlocalized
in a neighborhood of etHp(ρ). Now, put v = R′(ω)f , with R′(ω) defined in (3.4.6); then
‖v‖H1 ≤ Ch−1‖f‖H2 by (3.4.7) and

f − P(ω)v = −iQv.

However, by assumption (11), and by convexity of U (assumption (8)), we have WFh(Q) ∩
WFh(v) = ∅ and thus f − P(ω)v = O(h∞)C∞0 .
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Finally, we can estimate the norm of u ∈ H1 by the norm of P(ω)u and the norm of u
microlocally near the trapped set. This can be viewed as an observability statement (see for
instance [19, Theorem 2]).

Lemma 3.4.6. Let A ∈ Ψcomp(X) be compactly supported and elliptic on K ∩ p−1([α0, α1]).
Then we have for any u ∈ H1 and any ω in (3.4.1),

‖u‖H1 ≤ C‖Au‖L2 + Ch−1‖P(ω)u‖H2 . (3.4.10)

Proof. By rescaling, we may assume that u = u(h) has ‖u‖H1 = 1 and put f = P(ω)u. Take
a neighborhood W of K ∩ p−1([α0, α1]) such that A is elliptic on W . Replacing u by u− v,
where v is constructed from f in Lemma 3.4.5, we may assume that WFh(f) ⊂ W .

Take Q′,Q′′ ∈ Ψcomp(X) compactly supported, with WFh(Q′′) ⊂ U , Q′′ = 1 + O(h∞)
microlocally near WFh(Q′), and Q′ = 1+O(h∞) microlocally near WFh(Q) (with Q defined
in assumption (10)). Then by the elliptic estimate (Proposition 3.3.2),

‖Q′u‖H1 ≤ C‖Q′′u‖L2 +O(h∞), (3.4.11)

‖[P(ω),Q′]u‖H2 ≤ Ch‖Q′′u‖L2 +O(h∞). (3.4.12)

Now,
(1−Q′)u = R′(ω)((1−Q′)f − [P(ω),Q′]u− iQ(1−Q′)u);

since iQ(1−Q′) = O(h∞)Ψ−∞ , we get by (3.4.7) and (3.4.12),

‖(1−Q′)u‖H1 ≤ C‖Q′′u‖L2 + Ch−1‖f‖H2 +O(h∞);

by (3.4.11), it then remains to prove that

‖Q′′u‖L2 ≤ C‖Au‖L2 + Ch−1‖f‖H2 +O(h∞).

By a microlocal partition of unity, it suffices to estimate ‖Bu‖L2 for B ∈ Ψcomp(X) compactly
supported with WFh(B) in a small neighborhood of some ρ ∈ WFh(Q

′′) ⊂ U . We now
consider three cases:
Case 1: ρ 6∈ p−1([α0, α1]). Then P(ω) is elliptic at ρ, therefore we may assume it is elliptic
on WFh(B). By Proposition 3.3.2, we get ‖Bu‖L2 ≤ C‖f‖H2 +O(h∞).
Case 2: there exists t ≤ 0 such that etHp(ρ) ∈ W , therefore we may assume that etHp(WFh(B)) ⊂
W . Since A is elliptic on W , by Proposition 3.3.4 together with (3.4.8), we get ‖Bu‖L2 ≤
C‖Au‖L2 + Ch−1‖f‖H2 +O(h∞).
Case 3: if γ(t) = etHp(ρ) is the maximally extended trajectory of Hp in U ′, then ρ ∈
p−1([α0, α1]) and γ(t) 6∈ W for all t ≤ 0. By Lemma 3.4.1, we have ρ 6∈ Γ+. Since WFh(f) ⊂
W , Lemma 3.4.4 implies that ρ 6∈WFh(u). We may then assume that WFh(B)∩WFh(u) = ∅
and thus ‖Bu‖L2 = O(h∞).
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3.4.3 Example: Schrödinger operators on Rn

In this section, we consider the case described the introduction, namely a Schrödinger oper-
ator on X = Rn with

PV = h2∆ + V (x),

where ∆ is the Euclidean Laplacian and V ∈ C∞0 (Rn;R). We will explain how this case fits
into the framework of §3.4.1.

To define resonances for P0, we use the method of complex scaling of Aguilar–Combes [1],
which also applies to more general operators and potentials – see [115], [106], and the refer-
ences given there. Take R > 0 large enough so that

suppV ⊂ {|x| < R/2}.

Fix the deformation angle θ ∈ (0, π/2) and consider a deformation Γθ,R ⊂ Cn of Rn defined
by

Γθ,R := {x+ iFθ,R(x) | x ∈ Rn},

where Fθ,R : Rn → Rn is defined in polar coordinates (r, ϕ) ∈ [0,∞)× Sn−1 by

Fθ,R(r, ϕ) = (fθ,R(r), ϕ),

and the function fθ,R ∈ C∞([0,∞)) is chosen so that (see Figure 3.3(a))

fθ,R(r) = 0, r ≤ R; fθ,R(r) = r tan θ, r ≥ 2R;

f ′θ,R(r) ≥ 0, r ≥ 0; {f ′θ,R = 0} = {fθ,R = 0}.

Note that
Γθ,R ∩ {|Re z| ≤ R} = Rn ∩ {|Re z| ≤ R};

Γθ,R ∩ {|Re z| ≥ 2R} = eiθRn ∩ {|Re z| ≥ 2R}.

Define the deformed differential operator P̃V on Γθ,R it as follows: P̃V = PV on Rn ∩ Γθ,R,
and on the complementing region {|Re z| > R}, it is defined by the formula

P̃V (v) =
n∑
j=1

(hDzj)
2ṽ|Γθ,R ,

for each v ∈ C∞0 (Γθ,R ∩ {|Re z| > R}) and each almost analytic continuation ṽ of v (that
is, ṽ|Γθ,R = v and ∂z̄ṽ vanishes to infinite order on Γθ,R – the existence of such continuation
follows from the fact that Γθ,R is totally real, that is for each z ∈ Γθ,R, TzΓθ,R∩ iTzΓΘ,R = 0).
We identify Γθ,R with Rn by the map

ι : Rn → Γθ,R ⊂ Cn, ι(x) = x+ iFθ,R(x),
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Figure 3.3: (a) The graph of fθ,r. (b) The region where complex scaling provides meromor-
phic continuation of the resolvent.

so that P̃V can be viewed as a second order differential operator on Rn. Then in polar
coordinates (r, ϕ), we can write for r > R,

P̃V =

(
1

1 + if ′θ,R(r)
hDr

)2

− (n− 1)i

(r + ifθ,R(r))(1 + if ′θ,R(r))
h2Dr +

∆ϕ

(r + ifθ,R(r))2
,

with ∆ϕ denoting the Laplacian on the round sphere Sn−1. We have

σ(P̃V ) =
|ξr|2

(1 + if ′θ,R(r))2
+

|ξϕ|2

(r + ifθ,R(r))2
+ V (r, ϕ). (3.4.13)

Fix a range of energies [α0, α1] ⊂ (0,∞) and a bounded open set Ω ⊂ C such that (see
Figure 3.3(b))

[α0, α1] ⊂ Ω, Ω ⊂ {−θ < argω < π − θ}.
For ω ∈ Ω, define the operator

P(ω) = P̃V − ω2 : H1 → H2, H1 := H2
h(Rn), H2 := L2(Rn).

Then P(ω) is Fredholm H1 → H2 for ω ∈ Ω. Indeed,

P(ω) = cos2 θe−2iθh2∆− ω2 on {|x| ≥ 2R},

thus P(ω) is elliptic on {|x| ≥ 2R}, as well as for |ξ| large enough, in the class S(〈ξ〉2)
of [137, §4.4.1] (this class incorporates the behavior of symbols as x→∞, in contrast with
those used in §3.3.1). Using a construction similar to Lemma 3.3.3, but with symbols in
the class S(〈ξ〉−2), we can define a parametrix near (both spatial and fiber) infinity, R∞(ω),
with ‖R∞‖L2(Rn)→H2

h(Rn) = O(1) and

R∞(ω)P(ω) = 1 + Z(ω) +O(h∞)H2
h(Rn)→H2

h(Rn),

P(ω)R∞(ω) = 1 + Z ′(ω) +O(h∞)L2(Rn)→L2(Rn),
(3.4.14)
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where Z(ω), Z ′(ω) ∈ Ψcomp(Rn) are compactly supported inside {|x| < 2R + 1}. Since
1 +O(h∞) is invertible and Z(ω), Z ′(ω) are compact, we see that P(ω) is indeed Fredholm
H1 → H2. We have thus verified assumptions (1)–(4) of §3.4.1.

The identification of the poles of R(ω) with the poles of the meromorphic continuation
of the resolvent RV (ω) = (PV − ω2)−1 defined in (3.1.3) from {Imω > 0} to Ω, and in fact,
the existence of such a continuation, follows from the following formula (implicit in [106],
and discussed in [119]): if χ ∈ C∞0 (Rn), suppχ b B(0, R), then

χR(ω)χ = χRV (ω)χ. (3.4.15)

This is initially valid in Ω∩ {Imω > 0} so that the right-hand side is well-defined, and then
by analytic continuation in the region where the left hand side is meromorphic.

Now, we take intervals

[α0, α1] b [β0, β1] b [β′0, β
′
1] ⊂ Ω ∩ (0,∞)

and put
U ′ := {|x| < R, |ξ|2 + V (x) ∈ ((β′0)2, (β′1)2)},
U := {|x| < 3R/4, |ξ|2 + V (x) ∈ (β2

0 , β
2
1)}.

(3.4.16)

Note that P(ω) = PV − ω2 in U ′; this verifies assumptions (5) and (6). Assumption (7) is
also satisfied, with

p(x, ξ) =
√
|ξ|2 + V (x), (x, ξ) ∈ U ′. (3.4.17)

The operators P and S(ω) from Lemma 3.4.3 take the form, microlocally near U ,

P =
√
PV , S(ω) =

√√
PV + ω. (3.4.18)

Here the square root is understood in the microlocal sense: for an operator A ∈ Ψk(X)
with σ(A) > 0 on U ′, we define the microlocal square root

√
A ∈ Ψcomp(X) of A in U ′

as the (unique modulo O(h∞) microlocally in U ′) operator such that (
√
A)2 = A + O(h∞)

microlocally in U ′ and σ(
√
A) =

√
σ(A). See for example [59, Lemma 4.6] for details of the

construction of the symbol.
Assumption (8), namely convexity of U , is satisfied since for each (x, ξ) ∈ U ′, if |x| ≥ R/2

and Hp|x|2 = 0 at (x, ξ), then H2
p |x|2 > 0 at (x, ξ); therefore, the function |x|2 cannot attain

a local maximum on a trajectory of etHp in U ′ \ U . Same observation shows assumption (9);
in fact, K ⊂ {|x| ≤ R/2}.

Finally, for assumptions (10) and (11), we take any compactly supported Q ∈ Ψcomp(X)
such that WFh(Q) ⊂ U and

σ(Q) ≥ 0 everywhere; σ(Q) > 0 on p−1([α0, α1]) ∩ {|x| ≤ R/2}.

To verify assumption (10), consider an arbitrary family u = u(h) ∈ H2
h(Rn), with norm

bounded polynomially in h, and put

f = (P(ω)− iQ)u,
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where ω satisfies (3.4.1). By (3.4.13), and since Imω = O(h), we find

Imσ(P(ω)) ≤ 0 everywhere;

{〈ξ〉−2σ(P(ω)) = 0} ⊂ {Fθ,R(x) = 0}.

Note also that σ(P(ω)) = |ξ|2 + V (x) − ω2 on {Fθ,R(x) = 0}. Together with the convexity
property of |x|2 mentioned above, we see that for each ρ ∈ T ∗X, there exists t ≤ 0 such
that P(ω) − iQ is elliptic at exp(tHReσ(P(ω)))(ρ). Since Im σ(P(ω) − iQ) ≤ 0 everywhere,
by propagation of singularities with a complex absorbing term (Proposition 3.3.4) and the
elliptic estimate (Proposition 3.3.2) we get

‖Z(ω)u‖H2
h
≤ Ch−1‖f‖L2 +O(h∞),

where Z(ω) is defined in (3.4.14). Then by (3.4.14),

‖u‖H2
h(Rn) ≤ C‖f‖L2(Rn) + ‖Z(ω)u‖H2

h
+O(h∞) ≤ Ch−1‖f‖L2(Rn) +O(h∞),

proving the estimate (3.4.7) of assumption (10).
Assumption (11) is proved in a similar fashion: assume that WFh(f) ⊂ U ′ and ρ′ ∈

WFh(u)∩U ′. Denote γ(t) = exp(tHReσ(P(ω)))(ρ
′). Then there exists t0 ≥ 0 such that P(ω)−

iQ is elliptic at γ(−t0). By Proposition 3.3.4, we see that either exp(−tHReσ(P(ω)))(ρ
′) ∈

WFh(f) for some t ∈ [0, t0] or exp(−t0HReσ(P(ω)))(ρ
′) ∈ WFh(u), in which case this point

also lies in WFh(f) by Proposition 3.3.2; therefore, γ(−t) ∈ WFh(f) for some t ≥ 0. Let
t1 be the minimal nonnegative number such that γ(−t1) ∈ WFh(f); we may assume that
t1 > 0. Since γ((−t1, 0]) does not intersect WFh(f), it also does not intersect the elliptic set
of P(ω); therefore, γ([−t1, 0]) ⊂ {Fθ,R(x) = 0} and thus σ(P(ω)) = p2 − ω2 on γ([−t1, 0]).
It follows that e−tHp(ρ′) ∈WFh(f) for some t ≥ 0, as required.

3.4.4 Example: even asymptotically hyperbolic manifolds

In this section, we define resonances, in the framework of §3.4.1, for an n-dimensional com-
plete noncompact Riemannian manifold (M, g) which is asymptotically hyperbolic in the
following sense: M is diffeomorphic to the interior of a smooth manifold with boundary
M , and for some choice of the boundary defining function x̃ ∈ C∞(M) and the product
decomposition {x̃ < ε} ∼ [0, ε)× ∂M , the metric g takes the following form in {0 < x̃ < ε}:

g =
dx̃2 + g1(x̃, ỹ, dỹ)

x̃2
. (3.4.19)

Here g1 is a family of Riemannian metrics on ∂M depending smoothly on x̃ ∈ [0, ε). We
moreover require that the metric is even in the sense that g1 is a smooth function of x̃2.

To put the Laplacian ∆g onM into the framework of §3.4.1, we use the recent construction
of Vasy [127]. We follow in part [36, §4.1], see also [36, Appendix B] for a detailed description
of the phase space properties of the resulting operator in a model case. Take the space M even
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obtained from M by taking the new boundary defining function µ = x̃2 and put (see [127,
§3.1])

P1(ω) = µ−
1
2
−n+1

4 e
iωφ
h (h2(∆g − (n− 1)2/4)− ω2)e−

iωφ
h µ−

1
2

+n+1
4 .

Here φ is a smooth real-valued function on M such that

eφ = µ1/2(1 + µ)−1/4 on {0 < µ < δ0},

where δ0 > 0 is a small constant; the values of φ on {µ ≥ δ0} are chosen as in the paragraph
preceding [127, (3.14)]. We can furthermore choose eφ and µ to be equal to 1 near the set
{x̃ > ε0/2}, for any fixed ε0 > 0 (and δ0 chosen small depending on ε0) so that

P1(ω) = h2(∆g − (n− 1)2/4)− ω2 on {x̃ > ε0/2}. (3.4.20)

The differential operator P1(ω) has coefficients smooth up to the boundary of M even; then it
is possible to find a compact n-dimensional manifold X without boundary such that M even

embeds into X as {µ ≥ 0} and extend P1(ω) to an operator P2(ω) ∈ Ψ2(X), see [127, §3.5]
or [36, Lemma 4.1]. Finally, we fix a complex absorbing operator Q ∈ Ψ2(X), with Schwartz
kernel supported in the nonphysical region {µ < 0}, satisfying the assumptions of [127, §3.5].
We now fix an interval [α0, α1] ⊂ (0,∞), take Ω ⊂ C a small neighborhood of [α0, α1], and
put

P(ω) := P2(ω)− iQ, ω ∈ Ω.

Fix C0 > 0, take s > C0 + 1/2, and put H2 = Hs−1
h (X) and

H1 = {u ∈ Hs
h(X) | P2(1)u ∈ Hs−1

h (X)}, ‖u‖2
H1

= ‖u‖2
Hs
h(X) + ‖P2(1)u‖2

Hs−1
h (X)

.

It is proved in [127, Theorem 4.3] that for ω satisfying (3.4.1), the operator P(ω) : H1 → H2

is Fredholm of index zero; therefore, we have verified assumptions (1)–(4) of §3.4.1. The
poles of R(ω) = P(ω)−1 coincide with the poles of the meromorphic continuation of the
Schwartz kernel of the resolvent

Rg(ω) := (h2(∆g − (n− 1)2/4)− ω2)−1 : L2(M)→ L2(M), Imω > 0,

to the entire C, first constructed in [87] with improvements by [60] – see [127, Theorem 5.1].
We can now proceed similarly to §3.4.3, using that the regions {x̃ > ε0} are geodesically

convex for ε0 > 0 small enough (see for instance [47, Lemma 7.1]). Fix small ε0 > 0, take
any intervals

[α0, α1] b [β0, β1] b [β′0, β
′
1] ⊂ Ω ∩ (0,∞),

and define

U ′ := {x̃ > ε0/2, |ξ|g ∈ (β′0, β
′
1)}, U := {x̃ > ε0, |ξ|g ∈ (β0, β1)}. (3.4.21)

As in §3.4.3, assumptions (5)–(9) hold, with

p(x, ξ) = |ξ|g. (3.4.22)
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The operators P and S(ω) constructed in Lemma 3.4.3 are given microlocally near U by

P =
√
h2∆g − (n− 1)2/4, S(ω) =

√√
h2∆g − (n− 1)2/4 + ω,

with the square roots defined as in (3.4.18).
Finally, for assumptions (10) and (11), take Q ∈ Ψcomp(X) with WFh(Q) ⊂ U and

σ(Q) ≥ 0 everywhere; σ(Q) > 0 on p−1([α0, α1]) ∩ {x̃ ≥ 2ε0}.

Then assumption (10) follows from [127, Theorem 4.8]. To verify assumption (11), we
modify the proof of [127, Theorem 4.9] as follows: assume that f = f(h) ∈ H2 has norm
bounded polynomially in h and put u = R′(ω)f , for ω = ω(h) satisfying (3.4.1). Assume
also that WFh(f) ⊂ U ′ and take ρ′ ∈ WFh(u) ∩ U ′. We may assume that P2(ω) is not
elliptic at ρ′, since otherwise ρ′ ∈WFh(f). If γ(t) is the bicharacteristic of σ(P2(ω)) starting
at ρ′, then (see [127, (3.32) and the end of §3.5]) either γ(t) converges to the set L+ ⊂
∂T
∗
X ∩ {µ = 0} of radial points as t → −∞, or Q is elliptic at γ(−t0) for some t0 > 0. In

the first case, γ(−t0) 6∈WFh(u) for t0 > 0 large enough by the radial points argument [127,
Proposition 4.5]; in the second case, by Proposition 3.3.2 we see that if γ(−t0) ∈ WFh(u),
then γ(−t0) ∈ WFh(f). Combining this with Proposition 3.3.4, we see that there exists
t1 ≥ 0 such that γ(−t1) ∈ WFh(f). Since γ(0), γ(−t1) ∈ U ′, and U ′ is convex with respect
to the bicharacteristic flow of σ(P2(ω)) (the latter being just a rescaling of the geodesic flow
pulled back by a certain diffeomorphism), we see that γ([−t1, 0]) ⊂ U ′. Now, by (3.4.20),
γ([−t1, 0]) is a flow line of Hp2 ; therefore, for some t ≥ 0, e−tHp(ρ′) ∈WFh(f), as required.

3.5 r-normally hyperbolic trapped sets

In this section, we state the dynamical assumptions on the flow near the trapped set K,
namely r-normal hyperbolicity, and define the expansion rates νmin, νmax (§3.5.1). We next
establish some properties of r-normally hyperbolic trapped sets: existence of special defining
functions ϕ± of the incoming/outgoing tails Γ± near K (§3.5.3), existence of the canonical
projections π± from open subsets Γ◦± ⊂ Γ± to K and the canonical relation Λ◦ (§3.5.4), and
regularity of solutions to the transport equations (§3.5.5).

3.5.1 Dynamical assumptions

Let U ⊂ U ′ be the open sets from §3.4.1, and p ∈ C∞(U ′;R) be the function defined in (3.4.4).
Consider also the incoming/outgoing tails Γ± ⊂ U and the trapped set K = Γ+∩Γ− defined
in (3.4.5). We assume that, for a large fixed integer r depending only on the dimension n
(see Figure 3.4(a)),

(1) Γ± are equal to the intersections of U with codimension 1 orientable Cr submanifolds of
T ∗X;
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Figure 3.4: (a) Dynamics of etHp in the directions transverse to the trapped set. (b) Dynamics
on Γ±; the flow lines of V± are dashed.

(2) Γ+ and Γ− intersect transversely, and the symplectic form σS is nondegenerate on TK;
that is, K extends to a symplectic submanifold of T ∗X of codimension two.

Consider one-dimensional subbundles V± ⊂ TΓ± defined as the symplectic complements of
TΓ± in TΓ±(T ∗X) (see Figure 3.4(b)); they are invariant under the flow etHp . By assump-
tion (2), we have TKΓ± = V±|K ⊕ TK. Define the minimal expansion rate in the normal
direction, νmin, as the supremum of all ν for which there exists a constant C such that

sup
ρ∈K
‖de∓tHp(ρ)|V±‖ ≤ Ce−νt, t > 0. (3.5.1)

Here ‖ · ‖ denotes the operator norm with respect to any smooth inner product on the fibers
of T (T ∗X). Similarly we define the maximal expansion rate in the normal direction, νmax,
as the infimum of all ν for which there exists a constant c > 0 such that

inf
ρ∈K
‖de∓tHp(ρ)|V±‖ ≥ ce−νt, t > 0. (3.5.2)

Since etHp preserves the symplectic form σS, which is nondegenerate on V+|K ⊕ V−|K , it is
enough to require (3.5.1) and (3.5.2) for a specific choice of sign.

We assume r-normal hyperbolicity :

(3) Let µmax be the maximal expansion rate of the flow along K, defined as the infimum of
all µ for which there exists a constant C such that

sup
ρ∈K
‖detHp(ρ)|TK‖ ≤ Ceµ|t|, t ∈ R. (3.5.3)

Then
νmin > rµmax. (3.5.4)
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Assumption (3), rather than a weaker assumption of normal hyperbolicity νmin > 0, is needed
for regularity of solutions to the transport equations, see Lemma 3.5.2 below. The number
r depends on how many derivatives of the symbols constructed below are needed for the
semiclassical arguments to work. In the proofs, we will often take r = ∞, keeping in mind
that a large fixed r is always enough.

3.5.2 Stability

We now briefly discuss stability of our dynamical assumptions under perturbations; more
details, with applications to general relativity, are given in §4.3.6. Assume that ps, where
s ∈ R varies in a neighborhood of zero, is a family of real-valued functions on U ′ such
that p0 = p and ps is continuous at s = 0 with values in C∞(U ′). Assume moreover that
conditions (8) and (9) of §3.4.1 are satisfied with p replaced by any ps. Here Γ± and K
are replaced by the sets Γ±(s) and K(s) defined using ps instead of p. We claim that
assumptions (1)–(3) of §3.5.1 are satisfied for ps,Γ±(s), K(s) when s is small enough.

We use the work of Hirsch–Pugh–Shub [64] on stability of r-normally hyperbolic invariant
manifolds. Assumptions (1)–(3) imply that the flow etHp is eventually absolutely r-normally
hyperbolic on K in the sense of [64, Definition 4]. Then by [64, Theorem 4.1], for s small
enough, Γ±(s) and K(s) are Cr submanifolds of T ∗X, which converge to Γ± and K in Cr as
s→ 0. It follows immediately that conditions (1) and (2) are satisfied for small s.

To see that condition (3) is satisfied for small s, as well as stability of the pinching
condition (3.1.7) under perturbations, it suffices to show that, with νmin(s), νmax(s), µmax(s)
defined using etHps ,Γ±(s), K(s),

lim inf
s→0

νmin(s) ≥ νmin, (3.5.5)

lim sup
s→0

νmax(s) ≤ νmax, (3.5.6)

lim sup
s→0

µmax(s) ≤ µmax. (3.5.7)

We show (3.5.5); the other two inequalities are proved similarly. Fix a smooth metric on the
fibers of T (T ∗X). Take arbitrary ε > 0, then for T > 0 large enough, we have

sup
ρ∈K
‖de∓THp(ρ)|V±‖ ≤ e−(νmin−ε)T .

Fix T ; since ps, Γ±(s), K(s), and the corresponding subbundles V±(s) depend continuously
on s at s = 0, we have for s small enough,

sup
ρ∈K(s)

‖de∓THps (ρ)|V±(s)‖ ≤ e−(νmin−ε/2)T .

Since etHps is a one-parameter group of diffeomorphisms, we get

sup
ρ∈K(s)

‖de∓tHps (ρ)|V±(s)‖ ≤ Ce−(νmin−ε/2)t, t ≥ 0;

therefore, νmin(s) ≥ νmin − ε/2 for s small enough and (3.5.5) follows.
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3.5.3 Adapted defining functions

In this section, we construct special defining functions ϕ± of Γ± near K. We will assume
below that Γ± are smooth; however, if Γ± are Cr with r ≥ 1, we can still obtain ϕ± ∈ Cr.
A similar construction can be found in [132, Lemma 4.1].

Lemma 3.5.1. Fix ε > 0.3 Then there exist smooth functions ϕ±, defined in a neighborhood
of K in U ′, such that for δ > 0 small enough, the set

Uδ := U ∩ {|ϕ+| ≤ δ, |ϕ−| ≤ δ}, (3.5.8)

is a compact subset of U when intersected with p−1([α0, α1]), and:

(1) Γ± ∩ Uδ = {ϕ± = 0} ∩ Uδ, and dϕ± 6= 0 on Uδ;

(2) Hpϕ± = ∓c±ϕ± on Uδ, where c± are smooth functions on Uδ and, with νmin, νmax defined
in (3.5.1), (3.5.2),

νmin − ε < c± < νmax + ε on Uδ; (3.5.9)

(3) the Hamiltonian field Hϕ± spans the subbundle V± on Γ± ∩ Uδ defined before (3.5.1);

(4) {ϕ+, ϕ−} > 0 on Uδ;

(5) Uδ is convex, namely if γ(t), 0 ≤ t ≤ T , is a Hamiltonian flow line of p in U and
γ(0), γ(T ) ∈ Uδ, then γ([0, T ]) ⊂ Uδ.

Proof. Since Γ± are orientable, there exist defining functions ϕ̃± of Γ± near K; that is, ϕ̃± are
smooth, defined in some neighborhood U ofK, and dϕ̃± 6= 0 on U and Γ±∩U = U∩{ϕ̃± = 0}.
Since K is symplectic, by changing the sign of ϕ̃− if necessary, we can moreover assume that
{ϕ̃+, ϕ̃−} > 0 on K.

Since etHp(Γ±) ⊂ Γ± for ∓t ≥ 0, we have Hpϕ̃± = 0 on Γ±; therefore,

Hpϕ̃± = ∓c̃±ϕ̃±,

where c̃± are smooth functions on U . The functions c̃± control how fast ϕ̃± decays along the
flow as t → ±∞. The constants νmin and νmax control the average decay rate; to construct
ϕ±, we will modify ϕ̃± by averaging along the flow for a large time.

For any ρ ∈ Γ± ∩ U , the kernel of dϕ̃±(ρ) is equal to TρΓ±; therefore, the Hamiltonian
fields Hϕ̃± span V± on Γ± ∩U . We then see from the definitions (3.5.1), (3.5.2) of νmin, νmax

that there exists a constant C such that, with (e∓tHp)∗Hϕ̃± ∈ V± denoting the push-forward
of the vector field Hϕ̃± by the diffeomorphism e∓tHp ,

C−1e−(νmax+ε/2)t ≤
(e∓tHp)∗Hϕ̃±

Hϕ̃±

≤ Ce−(νmin−ε/2)t on K, t ≥ 0.

3The parameter ε is fixed in Theorem 3.1; it is also taken small enough for the results of §3.5.5 to hold.
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Now, we calculate on K,

∂t((e
∓tHp)∗Hϕ̃±) = ±(e∓tHp)∗[Hp, Hϕ̃± ]

= −(e∓tHp)∗Hc̃±ϕ̃± = −(c̃± ◦ e±tHp)(e∓tHp)∗Hϕ̃± .

Combining these two facts, we get for T > 0 large enough,

νmin − ε < 〈c̃±〉T < νmax + ε on K,

where 〈·〉T stands for the ergodic average on K:

〈f〉T :=
1

T

∫ T

0

f ◦ etHp dt.

Fix T . We now put ϕ± := e∓f± · ϕ̃±, where f± are smooth functions on U with

f± =
1

T

∫ T

0

(T − t)c̃± ◦ etHp dt on K,

so that Hpf± = 〈c̃±〉T − c̃± on K. Then ϕ± satisfy conditions (1)–(4), with

c± = ∓Hpϕ±
ϕ±

= 〈c̃±〉T ∈ (νmin − ε, νmax + ε)

on K, and thus on Uδ for δ small enough.
To verify condition (5), fix δ0 > 0 small enough so that ±Hpϕ

2
± ≤ 0 on Uδ0 . By

Lemma 3.4.2, for δ small enough depending on δ0, for each Hamiltonian flow line γ(t),
0 ≤ t ≤ T , of p in U , if γ(0), γ(T ) ∈ Uδ, then γ([0, T ]) ⊂ Uδ0 . Since ±∂tϕ±(γ(t))2 ≤ 0 for
0 ≤ t ≤ T and |ϕ±(γ(t))| ≤ δ for t = 0, T , we see that γ([0, T ]) ⊂ Uδ.

3.5.4 The canonical relation Λ◦

We next construct the projections π± from subsets Γ◦± ⊂ Γ± to K. Fix δ0, δ1 > 0 small
enough so that Lemma 3.5.1 holds with δ0 in place of δ and K ∩ p−1([α0 − δ1, α1 + δ1])
is a compact subset of U (the latter is possible by assumption (9) in §3.4.1), consider the
functions ϕ± from Lemma 3.5.1 and put

Γ◦± := Γ± ∩ p−1(α0 − δ1, α1 + δ1)∩ {|ϕ∓| < δ0}, K◦ := K ∩ p−1(α0 − δ1, α1 + δ1), (3.5.10)

so that K◦ = Γ◦+ ∩ Γ◦− and, for δ0 small enough, Γ◦± ⊂ U . Note that, by part (2) of
Lemma 3.5.1, the level sets of p on Γ± are invariant under Hϕ± and etHp(Γ◦±) ⊂ Γ◦± for
∓t ≥ 0.

By part (4) of Lemma 3.5.1, Γ◦± is foliated by trajectories of Hϕ± (or equivalently, by
trajectories of V±), moreover each trajectory intersects K at a single point. This defines
projection maps

π± : Γ◦± → K◦,
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mapping each trajectory to its intersection with K. The flow etHp preserves the subbundle
V± generated by Hϕ± , therefore

π± ◦ e∓tHp = e∓tHp ◦ π±, t ≥ 0. (3.5.11)

Now, define the 2n-dimensional submanifold Λ◦ ⊂ T ∗X × T ∗X by

Λ◦ := {(ρ−, ρ+) ∈ Γ◦− × Γ◦+ | π−(ρ−) = π+(ρ+)}. (3.5.12)

We claim that Λ◦ is a canonical relation. Indeed, it is enough to prove that σS|TΓ◦±
=

π∗±(σS|TK◦), where σS is the symplectic form on T ∗M . This is true since the Hamiltonian
flow etHϕ± preserves σS and V±|K is symplectically orthogonal to TK.

3.5.5 The transport equations

Finally, we use r-normal hyperbolicity to establish existence of solutions to the transport
equations, needed in the construction of the projector Π in §3.7.1. We start by estimating
higher derivatives of the flow. Take δ0,Γ

◦
±, K

◦ from §3.5.4 and identify Γ◦± ∼ K◦ × (−δ0, δ0)
by the map

ρ± ∈ Γ◦± 7→ (π±(ρ±), ϕ∓(ρ±)). (3.5.13)

Denote elements ofK◦×(−δ0, δ0) by (θ, s) and the flow etHp on Γ◦±, ∓t ≥ 0, by (recall (3.5.11))

etHp : (θ, s) 7→ (etHp(θ), ψt±(θ, s)).

Note that ψt±(θ, 0) = 0. We have the following estimate on higher derivatives of the flow on
K◦ (in any fixed coordinate system), see for example [47, Lemma C.1] (which is stated for
geodesic flows, but the proof applies to any smooth flow):

sup
θ∈K◦
|∂αθ etHp(θ)| ≤ Cαe

(|α|µmax+ε̃)|t|, t ∈ R. (3.5.14)

Here µmax is defined by (3.5.3), ε̃ > 0 is any fixed constant, and Cα depends on ε̃. We choose
ε̃ small enough in (3.5.17) below and the constant ε > 0 in Lemma 3.5.1 is small depending
on ε̃.

Next, we estimate the derivatives of ψt±. We have, with c± defined in part (2) of
Lemma 3.5.1,

∂tψ
t
±(θ, s) = ±c∓(etHp(θ), ψt±(θ, s))ψt±(θ, s).

Then
∂t(∂

k
s ∂

α
θ ψ

t
±(θ, s)) = ±c∓(etHp(θ), 0)∂ks ∂

α
θ ψ

t
±(θ, s) + . . . ,

where . . . is a linear combination, with uniformly bounded variable coefficients depending
on the derivatives of c∓, of expressions of the form

∂β1θ e
tHp(θ) · · · ∂βmθ etHp(θ) ∂γ1θ ∂

k1
s ψ

t
±(θ, s) · · · ∂γlθ ∂

kl
s ψ

t
±(θ, s),
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where β1 + · · ·+ βm + γ1 + · · ·+ γl = α, k1 + · · ·+ kl = k, and |βj|, |γj|+ kj > 0. Moreover,
if l = 0 or l + m = 1, then the corresponding coefficient is a bounded multiple of ψt±(θ, s).
It now follows by induction from (3.5.9) that

sup
θ∈K◦, |s|<δ0

|∂ks ∂αθ ψ∓t± (θ, s)| ≤ Cαke
(|α|µmax−νmin+ε̃)t, t ≥ 0. (3.5.15)

We can now prove the following

Lemma 3.5.2. Assume that (3.5.4) is satisfied, with some integer r > 0. Let f ∈ Cr+1(Γ◦±)
be such that f |K = 0. Then there exists unique solution a ∈ Cr(Γ◦±) to the equation

Hpa = f, a|K◦ = 0. (3.5.16)

Proof. Using (3.5.4), choose ε̃ > 0 so that

rµmax − νmin + ε̃ < 0. (3.5.17)

Any solution to (3.5.16) satisfies for each T > 0,

a = a ◦ e∓THp ±
∫ T

0

f ◦ e∓tHp dt.

Since a|K◦ = 0, by letting T → +∞ we see that the unique solution to (3.5.16) is

a = ±
∫ ∞

0

f ◦ e∓tHp dt. (3.5.18)

The integral (3.5.18) converges exponentially, as

|f ◦ e∓tHp(θ, s)| ≤ C|ψ∓t± (θ, s)| ≤ Ce−(νmin−ε)t.

To show that a ∈ Cr, it suffices to prove that when |α|+ k ≤ r, the integral∫ ∞
0

∂ks ∂
α
θ (f ◦ e∓tHp) dt

converges uniformly in s, θ. Given (3.5.17), it is enough to show that

sup
θ,s
|∂ks ∂αθ (f ◦ e∓tHp)(θ, s)| ≤ Cαke

(|α|µmax−νmin+ε̃)t, t > 0. (3.5.19)

To see (3.5.19), we use the chain rule to estimate the left-hand side by a sum of terms of the
form

∂mθ ∂
l
sf(e∓tHp(θ, s))∂β1θ e

∓tHp(θ) · · · ∂βmθ e∓tHp(θ)∂γ1θ ∂
k1
s ψ

∓t
± (θ, s) · · · ∂γlθ ∂

kl
s ψ
∓t
± (θ, s)

where β1 + · · ·+ βm + γ1 + · · ·+ γl = α, k1 + · · ·+ kl = k, and |βj|, |γj|+ kj > 0. For l = 0,
we have |∂mθ f ◦ e∓tHp | = O(e−(νmin−ε)t) and (3.5.19) follows from (3.5.14). For l > 0, (3.5.19)
follows from (3.5.14) and (3.5.15).
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3.6 Calculus of microlocal projectors

In this section, we develop tools for handling Fourier integral operators associated to the
canonical relation Λ◦ introduced in §3.5.4. We will not use theoperator P or the global
dynamics of the flow etHp ; we will only assume that X is an n-dimensional manifold and

• Γ◦± ⊂ T ∗X are smooth orientable hypersurfaces;

• Γ◦± intersect transversely and K◦ := Γ◦+ ∩ Γ◦− is symplectic;

• if V± ⊂ TΓ◦± is the symplectic complement of TΓ◦± in T (T ∗X), then each maximally
extended flow line of V± on Γ◦± intersects K◦ at precisely one point, giving rise to the
projection maps π± : Γ◦± → K◦;

• the canonical relation Λ◦ ⊂ T ∗(X ×X) is defined by

Λ◦ = {(ρ−, ρ+) ∈ Γ◦− × Γ◦+ | π−(ρ−) = π+(ρ+)};

• the projections π̃± : Λ◦ → Γ◦± are defined by

π̃±(ρ−, ρ+) = ρ±. (3.6.1)

If we only consider a bounded number of terms in the asymptotic expansions of the studied
symbols, and require existence of a fixed number of derivatives of these symbols, then the
smoothness requirement above can be replaced by Cr for r large enough depending only on
n.

We will study the operators in the class Icomp(Λ◦) considered in §3.3.2. The antiderivative
on Λ◦ (see §3.3.2) is fixed so that it vanishes on the image of the embedding

jK : K◦ → Λ◦, jK(ρ) = (ρ, ρ); (3.6.2)

this is possible since j∗K(η dy− ξ dx) = 0 and the image of jK is a deformation retract of Λ◦.
We are particularly interested in defining invariantly the principal symbol σΛ(A) of an

operator A ∈ Icomp(Λ◦). This could be done using the global theory of Fourier integral
operators; we take instead a more direct approach based on the model case studied in §3.6.1.
The principal symbols on a neighborhood Λ̃ of a compact subset K̂ ⊂ K◦ are defined as
sections of certain vector bundles in §3.6.2.

We are also interested in the symbol of a product of two operators in Icomp(Λ◦). Note that
such a product lies again in Icomp(Λ◦), since Λ◦ satisfies the transversality condition with
itself and, with the composition defined as in (3.3.5), Λ◦ ◦ Λ◦ = Λ◦. To study the principal
symbol of the product, we again use the model case – see Proposition 3.6.5.

Next, in §3.6.3, we study idempotents in Icomp(Λ◦), microlocally near K̂, proving technical
lemmas need in the construction of the microlocal projector Π in §3.7. Finally, in §3.6.4,
we consider left and right ideals of pseudodifferential operators annihilating a microlocal
idempotent, which are key for proving resolvent estimates in §3.8.
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3.6.1 Model case

We start with the model case

X := Rn, Γ0
+ := {ξn = 0}, Γ0

− := {xn = 0}. (3.6.3)

Then K0 = {xn = ξn = 0} is canonically diffeomorphic to T ∗Rn−1. If we denote elements of
R2n ' T ∗Rn by (x′, xn, ξ

′, ξn), with x′, ξ′ ∈ Rn−1, then the projection maps π± : Γ0
± → K0

take the form
π+(x, ξ′, 0) = (x′, 0, ξ′, 0), π−(x′, 0, ξ) = (x′, 0, ξ′, 0),

and the map
φ : (x, ξ) 7→ (x′, 0, ξ;x, ξ′, 0) ∈ T ∗(Rn × Rn) (3.6.4)

gives a diffeomorphism of R2n onto the corresponding canonical relation Λ0.

Basic calculus. For a Schwartz function a(x, ξ) ∈ S (R2n), define its Λ0-quantization
OpΛ

h (a) : S ′(Rn)→ S (Rn) by the formula

OpΛ
h (a)u(x) = (2πh)−n

∫
R2n

e
i
h

(x′·ξ′−y·ξ)a(x, ξ)u(y) dydξ. (3.6.5)

The operator OpΛ
h (a) will be a Fourier integral operator associated to Λ0, see below for

details. We also use the standard quantization for pseudodifferential operators [137, §4.1.1],
where a(x, ξ;h) ∈ C∞(R2n) and all derivatives of a are bounded uniformly in h by a fixed
power of 1 + |x|2 + |ξ|2:

Oph(a)u(x) = (2πh)−n
∫
R2n

e
i
h

(x−y)·ξa(x, ξ)u(y) dydξ. (3.6.6)

The symbol a can be extracted from OpΛ
h (a) or Oph(a) by the following oscillatory testing

formulas, see [137, Theorem 4.19]:

OpΛ
h (a)(e

i
h
x·ξ) = e

i
h
x′·ξ′a(x, ξ), ξ ∈ Rn, (3.6.7)

Oph(a)(e
i
h
x·ξ) = e

i
h
x·ξa(x, ξ), ξ ∈ Rn. (3.6.8)

From here, using stationary phase expansions similarly to [137, Theorems 4.11 and 4.12], we
get (where the symbols quantized by OpΛ

h are Schwartz)

OpΛ
h (a) OpΛ

h (b) = OpΛ
h (a#Λb), (3.6.9)

OpΛ
h (a) Oph(b) = OpΛ

h (a#b), (3.6.10)

Oph(b) OpΛ
h (a) = OpΛ

h (ab#), (3.6.11)
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where the symbols a#Λb, a#b, ab# ∈ S (R2n) have asymptotic expansions

a#Λb(x, ξ) ∼
∑
α

(−ih)|α|

α!
∂αξ a(x, ξ′, 0)∂αx b(x

′, 0, ξ), (3.6.12)

a#b(x, ξ) ∼
∑
α

(−ih)|α|

α!
∂αξ a(x, ξ)∂αx b(x

′, 0, ξ), (3.6.13)

ab#(x, ξ) ∼
∑
α

(−ih)|α|

α!
∂αξ b(x, ξ

′, 0)∂αxa(x, ξ). (3.6.14)

Finally, the operators OpΛ
h (a) are bounded L2 → L2 with norm O(h−1/2):

Proposition 3.6.1. If a ∈ S (R2n), then there exists a constant C such that

‖OpΛ
h (a)‖L2(Rn)→L2(Rn) ≤ Ch−1/2.

Proof. Define the semiclassical Fourier transform

û(ξ) := (2πh)−n/2
∫
Rn
e−

i
h
y·ξu(y) dy,

then ‖û‖L2 = ‖u‖L2 and

OpΛ
h (a)u(x) = (2πh)−1/2

∫
R
v(x, ξn) dξn,

where

v(x, ξn) := (2πh)−(n−1)/2

∫
Rn−1

e
i
h
x′·ξ′a(x, ξ′, ξn)û(ξ′, ξn) dξ′.

Using the L2-boundedness of pseudodifferential operators on Rn−1, we see that for each
(xn, ξn) ∈ R2,

‖v(·, xn, ξn)‖L2
x′
≤ F (xn, ξn)‖û(·, ξn)‖L2

ξ′
,

where F (xn, ξn) is bounded by a certain S (R2n−2) seminorm of a(·, xn, ·, ξn). Then F is
rapidly decaying on R2 and for any N ,

‖v(·, ξn)‖L2
x
≤ C〈ξn〉−N‖û(·, ξn)‖L2

ξ′
.

Therefore,

‖OpΛ
h (a)u(x)‖L2 ≤ Ch−1/2

∫
R
‖v(·, ξn)‖L2

x
dξn ≤ Ch−1/2‖u‖L2

as required.
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Microlocal properties. For a ∈ S (R2n), the operator OpΛ
h (a) is h-tempered as defined in

Section 3.3.1. Moreover, the following analog of (3.3.4) follows from (3.6.10) and (3.6.11):

WFh(OpΛ
h (a)) ⊂ φ(supp a) ⊂ Λ0, (3.6.15)

with φ defined by (3.6.4).
For a ∈ C∞0 (R2n), we use (3.3.3) to check that OpΛ

h (a) is, modulo an O(h∞)S ′→S re-
mainder, a Fourier integral operator in the class Icomp(Λ0) defined in §3.3.1.

We will also use the operator OpΛ
h (1) : C∞(Rn)→ C∞(Rn) defined by

OpΛ
h (1)f(x) = f(x′, 0), f ∈ C∞(Rn). (3.6.16)

Since (3.6.5) was defined only for Schwartz symbols, we understand (3.6.16) as follows:
if a ∈ C∞0 (R2n) is equal to 1 near some open set U ⊂ R2n, then the operator OpΛ

h (1)
defined in (3.6.16) is equal to the operator OpΛ

h (a) defined in (3.6.5), microlocally near
φ(U) ⊂ T ∗(Rn×Rn). Moreover, WFh(OpΛ

h (1))∩T ∗(Rn×Rn) ⊂ Λ0. To see this, it is enough
to note that for a ∈ C∞0 (R2n) and χ ∈ C∞0 (Rn), we have χOpΛ

h (1) Oph(a) = OpΛ
h (ã), where

ã(x, ξ) = χ(x)a(x′, 0, ξ) ∈ C∞0 (R2n) and OpΛ
h (ã) is defined using (3.6.5).

Canonical transformations. We now study how OpΛ
h (a) changes under quantized canon-

ical transformations preserving its canonical relation (see §3.3.2). Let U, V ⊂ R2n be two
bounded open sets and κ : U → V a symplectomorphism such that

κ(Γ0
± ∩ U) = Γ0

± ∩ V,

with Γ0
± given by (3.6.3). We further assume that for each (x′, ξ′) ∈ T ∗Rn−1, the sets

{xn | (x′, xn, ξ
′, 0) ∈ U} and {ξn | (x′, 0, ξ′, ξn) ∈ U}, and the corresponding sets for V , are

either empty or intervals containing zero, so that the maps π± : U ∩ Γ0
± → U ∩ K0 are

well-defined. Since κ preserves the subbundles V±, it commutes with the maps π± and thus
preserves Λ0; using the map φ from (3.6.4), we define the open sets Û , V̂ ⊂ R2n and the

diffeomorphism κ̂ : Û → V̂ by

Û := φ−1(U × U), V̂ := φ−1(V × V ), φ ◦ κ̂ = κ ◦ φ.

Proposition 3.6.2. Let B,B′ : C∞(Rn)→ C∞0 (Rn) be two compactly microlocalized Fourier
integral operators associated to κ and κ−1, respectively,4 such that

BB′ = 1 +O(h∞) microlocally near V ′,

B′B = 1 +O(h∞) microlocally near U ′,
(3.6.17)

for some open U ′ b U , V ′ b V such that κ(U ′) = V ′. Then for each a ∈ C∞0 (V̂ ),

B′OpΛ
h (a)B = OpΛ

h (aκ) +O(h∞)S ′→S ,

4The choice of antiderivative (see §3.3.2) is irrelevant here, since the phase factor in B resulting from
choosing another antiderivative will be cancelled by the phase factor in B′.
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for some classical symbol aκ compactly supported in Û , and

aκ(x, ξ) = γ+
κ (x, ξ′)γ−κ (x′, ξ)a(κ̂(x, ξ)) +O(h) on φ−1(U ′ × U ′), (3.6.18)

where γ±κ are smooth functions on U ∩ Γ± depending on κ, B,B′ with γ±κ |K0∩U ′ = 1.

Proof. Assume first that κ has a generating function S(x, η):

κ(x, ξ) = (y, η)⇐⇒ ξ = ∂xS(x, η), y = ∂ηS(x, η).

If DS ⊂ R2n is the domain of S, then for each (x′, η′) ∈ T ∗Rn−1, the sets {xn | (x′, xn, η′, 0) ∈
DS} and {ηn | (x′, 0, η′, ηn) ∈ DS} are either empty or intervals containing zero. Since κ
preserves Γ±, we find ∂ηnS(x′, 0, η) = ∂xnS(x, η′, 0) = 0 and thus

S(x, η′, 0) = S(x′, 0, η) = S(x′, 0, η′, 0). (3.6.19)

We can write, modulo O(h∞)S ′→S errors,

Bu(y) = (2πh)−n
∫
e
i
h

(y·η−S(x,η))b(x, η;h)u(x) dxdη,

B′u(x) = (2πh)−n
∫
e
i
h

(S(x,η)−y·η)b′(x, η;h)u(y) dydη,

where b, b′ are compactly supported classical symbols and by (3.6.17) the principal symbols
b0 and b′0 have to satisfy for (x, ξ) ∈ U ′,

b0(x, η)b′0(x, η) = | det ∂2
xηS(x, η)|. (3.6.20)

We can now use oscillatory testing (3.6.7) to get

aκ(x, ξ) := e−
i
h
x′·ξ′B′OpΛ

h (a)B(e
i
h
x·ξ)

= (2πh)−2n

∫
R4n

e
i
h

(−x′·ξ′+S(x,η̃)−y·η̃+y′·η′−S(x̃,η)+x̃·ξ)b′(x, η̃;h)a(y, η)b(x̃, η;h) dydη̃dηdx̃.

We analyse this integral by the method of stationary phase; this will yield that aκ is a
classical symbol in h, compactly supported in Û modulo an O(h∞)S (R2n) error, and thus

B′OpΛ
h (a)B = OpΛ

h (aκ).
The stationary points are given by

η̃ = (η′, 0), x̃ = (x′, 0), (y, η) = κ̂(x, ξ).

The value of the phase at stationary points is zero due to (3.6.19). To compute the Hessian,
we make the change of variables η̃ = η̌+(η′, 0). We can then remove the variables y, η̌ and pass
from the original Hessian to ∂2

η′η′S(x, η′, 0) − ∂2S(x′, 0, η), where the first matrix is padded
with zeros. Since ∂ηnS(x′, 0, η) = 0, we have ∂2

ηnηnS = ∂2
ηnx′

S = ∂2
ηnη′

S = 0 at (x′, 0, η),
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therefore we can remove the xn, ηn variables, with a multiplicand of (∂2
xnηnS(x′, 0, η))2 in the

determinant. Next, by (3.6.19) ∂2
η′η′S(x′, 0, η) = ∂2

η′η′S(x, η′, 0); therefore, the Hessian has
signature zero and determinant

(∂2
xnηnS(x′, 0, η) det ∂2

x′η′S(x′, 0, η))2.

Since ∂2
x′ηn

S(x′, 0, η) = 0, this is equal to (det ∂2
xηS(x′, 0, η))2. Therefore, we get (3.6.18) with

γ+
κ (x, ξ′)γ−κ (x′, ξ) =

b′0(x, η′, 0)b0(x′, 0, η)

| det ∂2
xηS(x′, 0, η)|

=
b′0(x, η′, 0)

b′0(x′, 0, η)
;

here (y, η) = κ̂(x, ξ) and the last equality follows from (3.6.20). We then find

γ+
κ (x, ξ′) = b′0(x, η′, 0)/b′0(x′, 0, η′, 0), γ−κ (x′, ξ) = b′0(x′, 0, η′, 0)/b′0(x′, 0, η). (3.6.21)

We now consider the case of general κ. Using a partition of unity for a, we may assume
that the intersection U ∩K0 is arbitrary small. We now represent κ as a product of several
canonical relations, each of which satisfies the conditions of this Proposition and has a
generating function; this will finish the proof.

First of all, consider a canonical transformation of the form

(x, ξ) 7→ (y, η), (y′, η′) = κ̃(x′, ξ′), (yn, ηn) = (xn, ξn), (3.6.22)

with κ̃ a canonical transformation on T ∗Rn−1 ' K0. We can write κ̃ locally as a product
of canonical transformations close to the identity, each of which has a generating function –
see [137, Theorems 10.4 and 11.4]. If S̃(x′, η′) is a generating function for κ̃, then S̃(x′, η′) +
xnηn is a generating function for (3.6.22).

Multiplying our κ by a transformation of the form (3.6.22) with κ̃ = (κ|K0)−1, we reduce
to the case

κ(x′, 0, ξ′, 0) = (x′, 0, ξ′, 0) for (x′, 0, ξ′, 0) ∈ U ∩K0.

If κ(x, ξ) = (y(x, ξ), η(x, ξ)), since κ commutes with π± we have

y′(x, ξ′, 0) = y′(x′, 0, ξ) = x′,

η′(x, ξ′, 0) = η′(x′, 0, ξ) = ξ′.
(3.6.23)

We now claim that κ has a generating function, if we shrink U to be a small neighborhood of
U ∩ (Γ0

+ ∪ Γ0
−) (which does not change anything since OpΛ

h (a) is microlocalized in Γ0
−× Γ0

+).
For that, it is enough to show that the map

ψ : (x, ξ) 7→ (x, η(x, ξ))

is a diffeomorphism from U onto some open subset DS ⊂ R2n.
We first show that ψ is a local diffeomorphism near Γ0

±; that is, the differential ∂ξη is
nondegenerate on Γ0

±. By (3.6.23), ∂x′,ξ′(y
′, η′) equals the identity on Γ0

+ ∪ Γ0
−; moreover, on

Γ0
+ we have ∂x,ξ′ηn = 0 and ∂xn(y′, η′) = 0 and on Γ0

−, we have ∂x′,ξyn = 0 and ∂ξn(y′, η′) =
0. It follows that on Γ0

+ ∪ Γ0
−, det ∂ξη = ∂ξnηn and since κ is a diffeomorphism, 0 6=

det ∂(x,ξ)(y, η) = ∂xnyn · ∂ξnηn, yielding det ∂ξη 6= 0.
It remains to note that ψ is one-to-one on Γ0

+ ∪ Γ0
−, which follows immediately from the

identities ψ(x, ξ′, 0) = (x, ξ′, 0) and ψ(x′, 0, ξ) = κ(x′, 0, ξ).
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3.6.2 General case

We now consider the case of general Γ◦±, K
◦,Λ◦, satisfying the assumptions from the begin-

ning of §3.6. We start by shrinking Γ◦± so that our setup can locally be conjugated to the

model case of §3.6.1. (The set K̂ will be chosen in §3.7.1.)

Proposition 3.6.3. Let K̂ ⊂ K◦ be compact. Then there exist δ̃ > 0 and

• a finite collection of open sets Ui ⊂ T ∗X, such that

K̂ ⊂ K̃ :=
⋃
i

Ki, Ki := K◦ ∩ Ui.

• symplectomorphisms κi defined in a neighborhood of Ui and mapping Ui onto

Vδ̃ := {|(x′, ξ′)| < δ̃, |xn| < δ̃, |ξn| < δ̃} ⊂ T ∗Rn, (3.6.24)

such that, with Γ0
± defined in (3.6.3),

κi(Ui ∩ Γ◦±) = Vδ̃ ∩ Γ0
±;

• compactly microlocalized Fourier integral operators

Bi : C∞(X)→ C∞0 (Rn), B′i : C∞(Rn)→ C∞0 (X),

associated to κi and κ−1
i , respectively, such that

BiB
′
i = 1 near Vδ̃, B

′
iBi = 1 near Ui. (3.6.25)

Proof. It is enough to show that each point ρ ∈ K◦ has a neighborhood Uρ and a symplec-
tomorphism κρ : Uρ → Vρ ⊂ T ∗Rn such that κρ(Uρ ∩ Γ◦±) = Vρ ∩ Γ0

±; see for example [137,
Theorem 11.5] for how to construct the operators Bi, B

′
i locally quantizing the canonical

transformations κρ,κ−1
ρ .

By the Darboux theorem [137, Theorem 12.1] (giving a symplectomorphism mapping an
arbitrarily chosen defining function of Γ◦− to xn), we can reduce to the case ρ = 0 ∈ T ∗Rn

and Γ◦− = {xn = 0} near 0. Since Γ◦+ ∩ Γ◦− = K◦ is symplectic, the Poisson bracket of
the defining function xn of Γ◦− and any defining function ϕ+ of Γ◦+ is nonzero at 0; thus,
∂ξnϕ+(0) 6= 0 and we can write Γ◦+ locally as the graph of some function:

Γ◦+ = {ξn = F (x, ξ′)}.

Put ϕ′+(x, ξ) = ξn − F (x, ξ′), then {ϕ′+, xn} = 1. It remains to apply the Darboux theorem
once again, obtaining a symplectomorphism preserving xn and mapping ϕ′+ to ξn.
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We now consider the sets5

Γ̃± :=
⋃
i

Γi±, Γi± := Γ◦± ∩ Ui,

Λ̃ :=
⋃
i

Λi, Λi := {(ρ−, ρ+) ∈ Λ◦ | ρ± ∈ Γi±}.
(3.6.26)

Let Γ̂± ⊂ Γ̃± be compact, with π±(Γ̂±) = K̂ and for each ρ ∈ K̂, the set π−1
± (ρ) ∩ Γ̂± is a

flow line of V± containing ρ. Define the compact set

Λ̂ := {(ρ−, ρ+) ∈ Λ◦ | ρ± ∈ Γ̂±} (3.6.27)

and assume that Γ̂± are chosen so that Λ̂ ⊂ Λ̃. The goal of this subsection is to obtain an in-
variant notion of the principal symbol of Fourier integral operators in Icomp(Λ◦), microlocally

near Λ̂.
Define the diffeomorphisms κ̂i : Λi → Vδ̃ by the formula

(κi(ρ−),κi(ρ+)) = φ(κ̂i(ρ−, ρ+)), (ρ−, ρ+) ∈ Λi;

here φ is defined in (3.6.4).
Consider some A ∈ Icomp(Λ◦), then BiAB

′
i is a Fourier integral operator associated to

the model canonical relation Λ0 from §3.6.1 (with the antiderivatives on Λ◦ and Λ0 chosen
in the beginning of §3.6). Therefore, there exists a compactly supported classical symbol
ãi(x, ξ;h) on R2n such that, with OpΛ

h defined in (3.6.5),

BiAB
′
i = OpΛ

h (ãi) +O(h∞)S ′→S . (3.6.28)

By (3.6.25), we find

A = B′i OpΛ
h (ãi)Bi +O(h∞) microlocally near Λi.

Define the function ai ∈ C∞(Λi) using the principal symbol ãi0 by

ai = ãi0 ◦ κ̂i.

By Proposition 3.6.2, applied to the Fourier integral operators BjB
′
i and BiB

′
j quantizing

κ = κj ◦ κ−1
i and κ−1, respectively, with U ′ = κi(Ui ∩ Uj), V ′ = κj(Ui ∩ Uj) we see that

whenever Λi ∩ Λj 6= ∅, we have

ai|Λi∩Λj = (γ−ij ⊗ γ+
ij )a

j|Λi∩Λj , (3.6.29)

where γ±ij are smooth functions on Γi± ∩ Γj± and γ±ij |K = 1. Moreover, γ±ji = (γ±ij )
−1 and

γ±ijγ
±
jk = γ±ik on Γi±∩Γj±∩Γk± (this can be seen either from the fact that the formulas (3.6.29)

5The open subsets Γ̃±, K̃ of Γ◦±,K
◦ should not be confused with the incoming/outgoing tails and the

trapped set for the Lorentzian case studied in Chapter 4.
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for different i, j have to be compatible with each other, or directly from (3.6.21)). Therefore,

we can consider smooth line bundles E± over Γ̃± with smooth sections ei± of E±|Γi± such that

ej± = γ±ije
i
± on Γi± ∩ Γj± – see for example [70, §6.4].

Define the line bundle E over Λ̃ using the projection maps from (3.6.1):

E = (π̃∗−E−)⊗ (π̃∗+E+)

and for A ∈ Icomp(Λ◦), the symbol σΛ(A) ∈ C∞(Λ̃; E) by the formula

σΛ(A)|Λi = ai(π̃∗−e
i
− ⊗ π̃∗+ei+). (3.6.30)

Note that the bundle E can be studied in detail using the global theory of Fourier inte-
gral operators (see for instance [72, §25.1]). However, the situation in our special case is
considerably simplified, since the Maslov bundle does not appear.

We have σΛ(A) = 0 near Λ̂ if and only if A ∈ hIcomp(Λ◦) microlocally near Λ̂. Moreover,

for all a ∈ C∞(Λ̃; E), there exists A ∈ Icomp(Λ◦) such that σΛ(A) = a near Λ̂.

The restrictions E±|K̃ are canonically trivial; that is, for a± ∈ C∞(Γ̃±; E±), we can view

a±|K̃ as a function on K̃, by taking ei±|Ki = 1. The bundles E± are trivial:

Proposition 3.6.4. There exist sections a± ∈ C∞(Γ̃±; E±), nonvanishing near Γ̂± and such

that a±|K̃ = 1 near K̂.

Proof. Since γ±ij is a nonvanishing smooth function on Γi± ∩ Γj± such that γ±ij |Ki∩Kj = 1, we
can write

γ±ij = exp(f±ij ),

where f±ij is a uniquely defined function on Γi± ∩ Γj±, such that f±ij |Ki∩Kj = 0. We now put

near Γ̂±,
a±|Γi± = exp(bi±)ei±,

where bi± ∈ C∞(Γi±) are such that near Γ̂± and K̂ respectively,

(bi± − b
j
±)|Γi±∩Γj±

= f±ij , bi±|Ki = 0.

Such functions exist since f±ij is a cocycle:

f±ii = f±ij + f±ji = 0; f±ij + f±jk = f±ik on Γi± ∩ Γj± ∩ Γk±

and since the sheaf of smooth functions is fine; more precisely, if 1 =
∑

i χi is a partition of

unity on Γ̂±, with suppχi ⊂ Γi±, we put

bi± =
∑
k

χkf
±
ik .
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We now state the properties of the calculus, following directly from (3.6.9)–(3.6.11), the
general theory of Fourier integral operators, and Egorov’s Theorem [137, Theorem 11.1] (see
the beginning of §3.6 for multiplying two elements of Icomp(Λ◦)):

Proposition 3.6.5. Assume that A1, A2 ∈ Icomp(Λ◦), P ∈ Ψk(X). Then A1A2, A1P, PA1 lie
in Icomp(Λ◦), and

σΛ(A1A2)(ρ−, ρ+) = σΛ(A2)(ρ−, π−(ρ−))⊗ σΛ(A1)(π+(ρ+), ρ+), (3.6.31)

σΛ(A1P )(ρ−, ρ+) = σ(P )(ρ−) · σΛ(A1)(ρ−, ρ+), (3.6.32)

σΛ(PA1)(ρ−, ρ+) = σ(P )(ρ+) · σΛ(A1)(ρ−, ρ+). (3.6.33)

Here in (3.6.31), σΛ(A2)(ρ−, π−(ρ−)) and σΛ(A1)(π+(ρ+), ρ+) are considered as sections of
E− and E+, respectively.

We next give a parametrix construction for operators of the form 1 − A, with A ∈
Icomp(Λ◦), needed in §3.9:

Proposition 3.6.6. Let A ∈ Icomp(Λ◦) and assume that

WFh(A) ⊂ Λ̂; σΛ(A)|K̃ 6= 1 everywhere.

Then there exists B ∈ Icomp(Λ◦) with WFh(B) ⊂ Λ̂, and such that

(1− A)(1−B) = 1 +O(h∞), (1−B)(1− A) = 1 +O(h∞).

Moreover, B is uniquely defined modulo O(h∞) and

σΛ(B)(ρ−, ρ+) =
σΛ(A)(ρ−, π−(ρ−))⊗ σΛ(A)(π+(ρ+), ρ+)

σΛ(A)(π−(ρ−), π+(ρ+))− 1
− σΛ(A)(ρ−, ρ+). (3.6.34)

Proof. Take anyB1 ∈ Icomp(Λ◦) with WFh(B1) ⊂ Λ̂ and symbol given by (3.6.34). By (3.6.31),

(1−A)(1−B1) = 1−hR, for some R ∈ Icomp(Λ◦) with WFh(R) ⊂ Λ̂. Define B2 ∈ Icomp(Λ◦)
by the asymptotic Neumann series

−B2 ∼
∑
j≥1

hjRj.

Define B ∈ Icomp(Λ◦) by the identity 1 − B = (1 − B1)(1 − B2), then (1 − A)(1 − B) =
1+O(h∞). Similarly, we construct B′ ∈ Icomp(Λ◦) such that (1−B′)(1−A) = 1+O(h∞). A
standard algebraic argument, see for example the proof of [71, Theorem 18.1.9], shows that
B′ = B +O(h∞) and both are determined uniquely modulo O(h∞).

We finish this subsection with a trace formula for operators in Icomp(Λ◦), used in §3.10:
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Proposition 3.6.7. Assume that A ∈ Icomp(Λ◦) and WFh(A) ⊂ Λ̂. Then, with dVolσ =
σn−1
S /(n− 1)! denoting the symplectic volume form and jK : K◦ → Λ◦ defined in (3.6.2),

(2πh)n−1 TrA =

∫
K̂

σΛ(A) ◦ jK dVolσ +O(h).

Proof. By a microlocal partition of unity, we reduce to the case when WFh(A) lies entirely
in one of the sets Λi defined in (3.6.26). If ãi is defined by (3.6.28), then by the cyclicity of
the trace, TrA = Tr OpΛ

h (ãi) +O(h∞). It remains to note that for any a(x, ξ) ∈ C∞0 (R2n),

(2πh)n−1 Tr OpΛ
h (a) =

∫
R2n−2

a(x′, 0, ξ′, 0) dx′dξ′ +O(h),

seen directly from (3.6.5) by the method of stationary phase in the xn, ξn variables.

3.6.3 Microlocal idempotents

In this subsection, we establish properties of microlocal idempotents associated to the La-
grangian Λ◦ considered in §3.6.2, microlocally on the compact set Λ̂ defined in (3.6.27). We
use the principal symbol σΛ constructed in (3.6.30).

Definition 3.6.8. We call A ∈ Icomp(Λ◦) a microlocal idempotent of order k > 0 near Λ̂,

if A2 = A+O(hk)Icomp(Λ◦) microlocally near Λ̂ and σΛ(A) does not vanish on Λ̂.

In the following Proposition, part 1 is concerned with the principal part of the idempotent
equation; part 2 establishes a normal form for microlocal idempotents, making it possible
to conjugate them microlocally to the operator OpΛ

h (1) from (3.6.16). Part 3 is used to con-
struct a global idempotent of all orders in Proposition 3.6.10 below, while part 4 establishes
properties of commutators used in the construction of §3.7.

Proposition 3.6.9. 1. A ∈ Icomp(Λ◦) is a microlocal idempotent of order 1 near Λ̂ if and

only if near Λ̂,
σΛ(A)(ρ−, ρ+) = a−0 (ρ−)⊗ a+

0 (ρ+) (3.6.35)

for some sections a±0 ∈ C∞(Γ̃±; E±) nonvanishing near Γ̂± and such that a±0 |K̃ = 1 near K̂.

Moreover, a±0 are uniquely determined by A on Γ̂±.

2. If A,B ∈ Icomp(Λ◦) are two microlocal idemptotents of order k > 0 near Λ̂, then

there exists an operator Q ∈ Ψcomp(X), elliptic on Γ̂+ ∪ Γ̂− and such that B = QAQ−1 +

O(hk)Icomp(Λ◦) microlocally near Λ̂. Here Q−1 denotes an elliptic parametrix of Q constructed
in Proposition 3.3.3.

3. If A ∈ Icomp(Λ◦) is a microlocal idempotent of order k > 0 near Λ̂, and A2 − A =

hkRk +O(h∞) microlocally near Λ̂ for some Rk ∈ Icomp(Λ◦), then for ρ± ∈ Γ̃± near Γ̂±,

σΛ(Rk)(π+(ρ+), ρ+) = σΛ(Rk)(π+(ρ+), π+(ρ+)) · a+
0 (ρ+),

σΛ(Rk)(ρ−, π−(ρ−)) = σΛ(Rk)(π−(ρ−), π−(ρ−)) · a−0 (ρ−),
(3.6.36)
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with a±0 defined in (3.6.35).

4. If A ∈ Icomp(Λ◦) is a microlocal idempotent of all orders near Λ̂, P ∈ Ψcomp(X) is

compactly supported, and [P,A] = hkSk+O(h∞) microlocally near Λ̂ for some Sk ∈ Icomp(Λ◦),

then near Λ̂,

σΛ(Sk)(ρ−, ρ+) = a−0 (ρ−)⊗ σΛ(Sk)(π+(ρ+), ρ+) + σΛ(Sk)(ρ−, π−(ρ−))⊗ a+
0 (ρ+).

In particular, σΛ(Sk) ◦ jK = 0 near K̂, with jK : K◦ → Λ◦ defined in (3.6.2).

Proof. In this proof, all the equalities of operators in Icomp(Λ◦) and the corresponding sym-

bols are presumed to hold microlocally near Λ̂.
1. By (3.6.31), we have A2 = A+O(h) if and only if

σΛ(A)(ρ−, ρ+) = σΛ(A)(ρ−, π−(ρ−))⊗ σΛ(A)(π+(ρ+), ρ+).

In particular, restricting to K̃, we obtain σΛ(A) = σΛ(A)2 near K̂. Since σΛ(A) is nonva-

nishing, we get σΛ(A)|K̃ = 1 near K̂. It then remains to put a−0 (ρ−) = σΛ(A)(ρ−, π−(ρ−))
and a+

0 (ρ+) = σΛ(A)(π+(ρ+), ρ+).
2. We use induction on k. For k = 1, we have by (3.6.32) and (3.6.33),

σΛ(QAQ−1)(ρ−, ρ+) =
σ(Q)(ρ+)

σ(Q)(ρ−)
σΛ(A)(ρ−, ρ+).

If a±0 and b±0 are given by (3.6.35), then it is enough to take any Q with

σ(Q)|Γ̃− = a−0 /b
−
0 , σ(Q)|Γ̃+

= b+
0 /a

+
0 , (3.6.37)

this is possible since the restrictions of a±0 and b±0 to K̃ are equal to 1.
Now, assuming the statement is true for k ≥ 1, we prove it for k + 1. We have B =

Q̃AQ̃−1 + O(hk) for some Q̃ ∈ Ψcomp elliptic on Γ̂+ ∪ Γ̂−; replacing A by Q̃AQ̃−1, we may
assume that B = A + O(hk). Then B − A = hkRk for some Rk ∈ Icomp(Λ◦); since both A
and B are microlocal idempotents of order k+ 1, we find Rk = ARk +RkA+O(h) and thus
by (3.6.31),

σΛ(Rk)(ρ−, ρ+) = a−0 (ρ−)⊗ σΛ(Rk)(π+(ρ+), ρ+) + σΛ(Rk)(ρ−, π−(ρ−))⊗ a+
0 (ρ+). (3.6.38)

Take Q = 1 + hkQk for some Qk ∈ Ψcomp, then Q−1 = 1− hkQk +O(hk+1) and

QAQ−1 = A+ hk[Qk, A] +O(hk+1).

Now, B = QAQ−1 +O(hk+1) if and only if

(σ(Qk)(ρ+)− σ(Qk)(ρ−))a−0 (ρ−)⊗ a+
0 (ρ+) = σΛ(Rk)(ρ−, ρ+).
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By (3.6.38), it is enough to choose Qk such that for ρ± ∈ Γ̃±,

σ(Qk)(ρ−) = −σΛ(Rk)(ρ−, π−(ρ−))

a−0 (ρ−)
, σ(Qk)(ρ+) =

σΛ(Rk)(π+(ρ+), ρ+)

a+
0 (ρ+)

,

this is possible since σΛ(Rk) ◦ jK = 0 (with jK defined in (3.6.2)) as follows from (3.6.38).
3. Since this is a local statement, we can use (3.6.28) to reduce to the model case of §3.6.1.

Using part 2 and the fact that the operator OpΛ
h (1) considered in (3.6.16) is a microlocal

idemptotent of all orders, we can write

A = QOpΛ
h (1)Q−1 + hkAk,

for some elliptic Q ∈ Ψcomp and Ak ∈ Icomp(Λ0). Then

Rk = QOpΛ
h (1)Q−1Ak + AkQOpΛ

h (1)Q−1 − Ak +O(h);

(3.6.36) follows by (3.6.31) since σΛ(QOpΛ
h (1)Q−1) = σΛ(A) is given by (3.6.35).

4. As in part 3, we reduce to the model case of §3.6.1 and use part 2 to write A =
QOpΛ

h (1)Q−1 +O(h∞); then

[P,A] = Q[Q−1PQ,OpΛ
h (1)]Q−1 +O(h∞).

Put P̃ = Q−1PQ; by (3.6.13) and (3.6.14) we have [P̃ ,OpΛ
h (1)] = OpΛ

h (s ◦ φ), where φ is
given by (3.6.4) and

s(ρ−, ρ+;h) = p̃(ρ+;h)− p̃(ρ−;h),

where P̃ = Oph(p̃); thus

s(ρ−, ρ+;h) = s(π+(ρ+), ρ+;h) + s(ρ−, π−(ρ−);h).

It remains to conjugate by Q, keeping in mind (3.6.37).

We can use part 3 of Proposition 3.6.9, together with the triviality of the bundles E±, to
show existence of a global idempotent, which is the starting point of the construction in §3.7.

Proposition 3.6.10. There exists a microlocal idempotent Π̃ ∈ Icomp(Λ◦) of all orders near

Λ̂.

Proof. We argue inductively, constructing microlocal idempotents Π̃k of order k for each k
and taking the asymptotic limit. To construct Π̃1, we use part 1 of Proposition 3.6.9; the
existence of symbols a±0 was shown in Proposition 3.6.4.

Now, assume that Π̃k is a microlocal idempotent of order k > 0. By part 3 of Proposi-
tion 3.6.9, we have Π̃2

k− Π̃k = hkRk +O(h∞) microlocally near Λ̂, where Rk ∈ Icomp(Λ◦) and

rk = σΛ(Rk) satisfies (3.6.36). Put Π̃k+1 = Π̃k + hkBk, for some Bk ∈ Icomp(Λ◦). We need to

choose Bk so that microlocally near Λ̂,

Rk + Π̃kBk +BkΠ̃k −Bk = O(h).



CHAPTER 3. RESONANCES FOR R-NORMALLY HYPERBOLIC TRAPPING 160

Taking bk = σΛ(Bk), by (3.6.31) this translates to

bk(ρ−, ρ+) = a−0 (ρ−)⊗ bk(π+(ρ+), ρ+) + bk(ρ−, π−(ρ−))⊗ a+
0 (ρ+) + rk(ρ−, ρ+).

By (3.6.36), it is enough to take any b±k ∈ C∞(Γ̃±; E±) such that near K̂, b±k |K̃ = −rk ◦ jK ,
with jK defined in (3.6.2) (for example, b±k = −(rk ◦ jK ◦ π±)a±0 ) and put

bk(ρ−, ρ+) := a−0 (ρ−)⊗ b+
k (ρ+) + b−k (ρ−)⊗ a+

0 (ρ+) + rk(ρ−, ρ+).

3.6.4 Annihilating ideals

Assume that Π ∈ Icomp(Λ◦) is a microlocal idempotent of all orders near the set Λ̂ introduced
in (3.6.27), see Definition 3.6.8. We are interested in the following equations:

ΠΘ− = O(h∞) microlocally near Λ̂, (3.6.39)

Θ+Π = O(h∞) microlocally near Λ̂, (3.6.40)

where Θ± are pseudodifferential operators. The solutions to (3.6.39) form a right ideal
and the solutions to (3.6.40) form a left ideal in the algebra of pseudodifferential operators.
Moreover, by (3.6.32), (3.6.33), each solution Θ± to the equations (3.6.39), (3.6.40) satisfies

σ(Θ±)|Γ± = 0 near Γ̂± and each Θ± such that WFh(Θ±) ∩ Γ̂± = ∅ solves these equations.
Note that in the model case of §3.6.1, with Π equaling the operator OpΛ

h (1) from (3.6.16),
and with the quantization procedure Oph defined in (3.6.6), the set of solutions to (3.6.39)
is the set of operators Oph(θ−) with θ−|xn=0 = 0; that is, the right ideal generated by the
operator xn. The set of solutions to (3.6.40) is the set of operators Oph(θ+) with θ+|ξn=0 = 0;
that is, the left ideal generated by the operator hDxn . This follows from the multiplication
formulas (3.6.13) and (3.6.14), together with the multiplication formulas for the standard
quantization [137, (4.3.16)].

We start by showing that our ideals are principal in the general setting:

Proposition 3.6.11. 1. For each defining functions ϕ± of Γ◦± near Γ̂±, there exist operators

Θ± solving (3.6.39), (3.6.40), such that σ(Θ±) = ϕ± near Γ̂±. Such operators are called basic
solutions of the corresponding equations.

2. If Θ±,Θ
′
± are solutions to (3.6.39), (3.6.40), and moreover Θ± are basic solutions,

then there exist Z± ∈ Ψcomp such that Θ′− = Θ−Z− + O(h∞) microlocally near Γ̂− and

Θ′+ = Z+Θ+ +O(h∞) microlocally near Γ̂+.

Proof. We concentrate on the equation (3.6.39); (3.6.40) is handled similarly. Since the equa-
tions (3.6.39) and Θ′ = Θ−Z− are linear in Θ− and Θ′, Z−, respectively, we can use (3.6.28)
and a pseudodifferential partition of unity to reduce to the model case of §3.6.1. Using part 2
of Proposition 3.6.9, we can furthermore assume that Π = OpΛ

h (1).
To show part 1, in the model case, we can take Θ− = Oph(ϕ−), where ϕ−(x, ξ) is the

given defining function of {xn = 0}. For part 2, if Θ− = Oph(ϕ−) and Θ′− = Oph(θ
′
−), then
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we can write microlocally near Γ̂−, Θ− = xnY−+O(h∞), where Y− ∈ Ψcomp is elliptic on Γ̂−;
in fact, Y− = Oph(ϕ−/xn). Similarly we can write Θ′− = xnY

′
− + O(h∞) microlocally near

Γ̂−, for some Y ′− ∈ Ψcomp; it remains to put Z− = Y −1
− Y ′− microlocally near Γ̂−.

For the microlocal estimate on the kernel of Π in §3.8.2, we need an analog of the following
fact:

f ∈ C∞(Rn) =⇒ f(x)− f(x′, 0) = xng(x), g ∈ C∞(Rn), (3.6.41)

where f(x′, 0) is replaced by Πf and multiplication by xn is replaced by a basic solution
to (3.6.39). We start with a technical lemma for the model case:

Lemma 3.6.12. Consider the operator Ξ0 : C∞(Rn)→ C∞(Rn) defined by

Ξ0f(x′, xn) =
f(x′, xn)− f(x′, 0)

xn
=

∫ 1

0

(∂xnf)(x′, txn) dt.

Then:
1. Ξ0 is bounded H1(Rn)→ L2(Rn) and thus ‖Ξ0‖H1

h→L2 = O(h−1).

2. The wavefront set WFh(Ξ0) defined in §3.3.1 satisfies6

WFh(Ξ0) ∩ T ∗(Rn × Rn) ⊂ ∆(T ∗Rn) ∪ Λ0

∪{(x′, 0, ξ, x′, 0, ξ′, tξn) | (x′, ξ) ∈ R2n−1, t ∈ [0, 1]},

where ∆(T ∗Rn) ⊂ T ∗Rn × T ∗Rn is the diagonal and Λ0 is defined using (3.6.3).

Proof. 1. Put λtf(x′, xn) = (∂xnf)(x′, txn); then

‖Ξ0f‖L2 ≤
∫ 1

0

‖λtf‖L2 dt ≤
∫ 1

0

t−1/2‖f‖H1 dt ≤ 2‖f‖H1 .

2. Denote elements of T ∗(Rn ×Rn) by (x, ξ, y, η). If χ ∈ C∞0 (R) is supported away from
zero, then, with OpΛ

h (1) defined in (3.6.16),

χ(xn)Ξ0 =
χ(xn)

xn
(1−OpΛ

h (1)).

Since χ(xn)/xn is a smooth function, the identity operator has wavefront set on the diagonal,
and WFh(OpΛ

h (1)) ∩ T ∗(Rn × Rn) ⊂ Λ0, we find

WFh(Ξ0) ∩ T ∗(Rn × Rn) ∩ {yn 6= 0} ⊂ ∆(T ∗Rn) ∪ Λ0.

Similarly, one has Ξ0χ(xn) = χ(xn)/xn; therefore,

WFh(Ξ0) ∩ {xn 6= 0} ⊂ ∆(T ∗Rn).

6It would be interesting to understand the microlocal structure of Ξ0, starting from the fact that its
wavefront set lies in the union of three Lagrangian submanifolds.
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To handle the remaining part of the wavefront set, take a, b ∈ C∞0 (T ∗Rn) such that

(x′, txn, ξ) ∈ supp a, t ∈ [0, 1] =⇒ (x, ξ′, tξn) 6∈ supp b.

We claim that for any ψ ∈ C∞0 (Rn),

Oph(b)ψ Ξ0 Oph(a)ψ = O(h∞); (3.6.42)

indeed, the Schwartz kernel of this operator is

K(y, x) = (2πh)−2n

∫
R3n×[0,1]

e
i
h

((y−z)·η+(z′−x′)·ξ′+(tzn−xn)ξn)

b(y, η)ψ(z)(ih−1ξna(z′, tzn, ξ) + (∂zna)(z′, tzn, ξ))ψ(x) dξdηdzdt.

The stationary points of the phase in the (ξ, η, z) variables are given by

z = y, x′ = y′, xn = tyn, η
′ = ξ′, ηn = tξn

and lie outside of the support of the amplitude; by the method of nonstationary phase in
the (ξ, η, z) variables, the integral is O(h∞)C∞ . Now, (3.6.42) implies that

WFh(Ξ0) ∩ T ∗(Rn × Rn) ∩ {xn = yn = 0}
⊂ {(x′, 0, ξ, x′, 0, ξ′, tξn) | (x′, ξ) ∈ R2n−1, t ∈ [0, 1]},

which finishes the proof.

The microlocal analog of (3.6.41) in the general case is now given by

Proposition 3.6.13. Let Π ∈ Icomp(Λ◦) be a microlocal idempotent of all orders near Λ̂ and
Θ− be a basic solution to (3.6.39), see Proposition 3.6.11. Then there exists an operator
Ξ : C∞(X)→ C∞0 (X) such that:

1. WFh(Ξ) is a compact subset of T ∗(M ×M) and ‖Ξ‖L2→L2 = O(h−1);
2. WFh(Ξ) ⊂ ∆(T ∗M) ∪ Λ◦ ∪Υ, where ∆(T ∗M) ⊂ T ∗M × T ∗M is the diagonal and Υ

consists of all (ρ−, ρ
′
−) such that ρ−, ρ

′
− ∈ Γ◦− and ρ′− lies on the segment of the flow line of

V− between ρ− and π−(ρ−);

3. 1− Π = Θ−Ξ +O(h∞) microlocally near K̂ × K̂.

Proof. By (3.6.28) and a microlocal partition of unity, we can reduce to the model case
of §3.6.1. Moreover, by part 2 of Proposition 3.6.9, we may conjugate by a pseudodifferential
operator to make Π = OpΛ

h (1). Finally, by part 2 of Proposition 3.6.11 we can multiply Θ−
on the right by an elliptic pseudodifferential operator to make Θ− = Oph(xn). Then we can
take Ξ = AΞ0A, with Ξ0 defined in Lemma 3.6.12 and A ∈ Ψcomp(Rn) compactly supported,

with A = 1 +O(h∞) microlocally near K̂.
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3.7 The projector Π

In this section, we construct the microlocal projector Π near a neighborhood Ŵ of K ∩
p−1([α0, α1]) discussed in the introduction (Theorem 3.3 in §3.7.1). In §3.7.2, we study the

annihilating ideals for Π in Ŵ using §3.6.4.

3.7.1 Construction of Π

Assume that the conditions of §§3.4.1 and 3.5.1 hold. Consider the sets Γ◦± and K◦ = Γ◦+∩Γ◦−
defined in (3.5.10) and let Λ◦ be given by (3.5.12). Put

K̂ := K ∩ p−1([α0 − δ1/2, α1 + δ1/2]) ⊂ K◦,

here δ1 is defined in §3.5.4. The sets Γ◦± satisfy the assumptions listed in the beginning
of §3.6, as follows from §§3.5.1 and 3.5.4.

We choose δ > 0 small enough so that Lemma 3.5.1 holds (we will impose more conditions
on δ in §3.7.2) and consider the sets

Ŵ := Uδ ∩ p−1([α0 − δ1/2, α1 + δ1/2]),

Γ̂± := Γ◦± ∩ Ŵ , Λ̂ := Λ◦ ∩ (Ŵ × Ŵ ).
(3.7.1)

Here Uδ is defined in (3.5.8). We now apply Proposition 3.6.3; for δ small enough, Ŵ , Γ̂±
are compact and Γ̂±, Λ̂ satisfy the conditions listed after (3.6.26). Then (3.6.30) defines the

principal symbol σΛ(A) on a neighborhood of Λ̂ in Λ◦ for each A ∈ Icomp(Λ◦).

Theorem 3.3. Let the assumptions of §§3.4.1 and 3.5.1 hold for all r, let Λ◦ be defined
in (3.5.12) and Λ̂ ⊂ Λ◦ be given by (3.7.1). Then there exists Π ∈ Icomp(Λ◦), uniquely defined

modulo O(h∞) microlocally near Λ̂, such that the principal symbol of Π is nonvanishing on

Λ̂ and, with P ∈ Ψcomp(X) defined in Lemma 3.4.3,

Π2 − Π = O(h∞) microlocally near Λ̂, (3.7.2)

[P,Π] = O(h∞) microlocally near Λ̂. (3.7.3)

Same can be said if we replace O(h∞) above by O(hN), require that the full symbol of Π lies
in C3N for some large N (rather than being smooth), and the assumptions of §3.5.1 hold for
r large enough depending on N .

Proof. We argue by induction, finding a family Πk, k ≥ 1, of microlocal idempotents of all
orders near Λ̂ (see Definition 3.6.8) such that [P,Πk] = O(hk+1) microlocally near Λ̂, and
taking their asymptotic limit to obtain Π.

We first construct Π1. Take the microlocal idempotent of all orders Π̃ ∈ Icomp(Λ◦) near

Λ̂ constructed in Proposition 3.6.10. Since the Hamilton field of p = σ(P ) is tangent to Γ±,
dp is annihilated by the subbundles V± from §3.5.4; therefore,

p(ρ±) = p(π±(ρ±)), ρ± ∈ Γ◦±;
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by (3.6.32) and (3.6.33), [P, Π̃] = O(h) microlocally near Λ̂. We write [P, Π̃] = hS0 microlo-

cally near Λ̂, where S0 ∈ Icomp(Λ◦) and by part 4 of Proposition 3.6.9,

σΛ(S0)(ρ−, ρ+) = ã−0 (ρ−)⊗ s+
0 (ρ+) + s−0 (ρ−)⊗ ã+

0 (ρ+), (3.7.4)

with s±0 ∈ C∞(Γ̃±; E±) vanishing on K near K̂ and ã±0 ∈ C∞(Γ̃±; E±) giving the principal

symbol of Π̃ by (3.6.35). Here Γ̃± are the neighborhoods of Γ̂± in Γ◦± defined in (3.6.26).
We look for Π1 in the form

Π1 = eQ0Π̃e−Q0 , (3.7.5)

where Q0 ∈ Ψcomp(X) is compactly supported and thus e±Q0 are pseudodifferential (see for

example Proposition 2.3.7). We calculate microlocally near Λ̂,

e−Q0 [P,Π1]eQ0 = [e−Q0PeQ0 , Π̃] = hS0 + [[P,Q0], Π̃] +O(h2).

Here we use that e−Q0PeQ0 = P + [P,Q0] +O(h2). By (3.7.4), (3.6.32), (3.6.33),

σΛ(S0 + h−1[[P,Q0], Π̃])(ρ−, ρ+)

= ã−0 (ρ−)⊗ (s+
0 (ρ+)− iHpσ(Q0)(ρ+)ã+

0 (ρ+))

+(s−0 (ρ−) + iHpσ(Q0)(ρ−)ã−0 (ρ−))⊗ ã+
0 (ρ+).

It is thus enough to take any Q0 such that for the restrictions q±0 = σ(Q0)|Γ̃± , the following

transport equations hold near Γ̂±:

Hpq
±
0 = ∓is±0 /ã±0 , q±0 |K̃ = 0. (3.7.6)

Such q±0 exist and are unique and smooth enough by Lemma 3.5.2, giving Π1. Note that

Lemma 3.5.2 can be applied near Γ̂±, instead of the whole Γ◦±, since etHp(Γ̂±) ⊂ Γ̂± for
∓t ≥ 0 by part (2) of Lemma 3.5.1.

Now, assume that we have constructed Πk for some k > 0. Let a±0 be the components of

the principal symbol of Πk given by (3.6.35). Then microlocally near Λ̂, [P,Πk] = hk+1Sk,
where Sk ∈ Icomp(Λ◦) and by part 4 of Proposition 3.6.9,

σΛ(Sk)(ρ−, ρ+) = a−0 (ρ−)⊗ s+
k (ρ+) + s−k (ρ−)⊗ a+

0 (ρ+),

where s±k ∈ C∞(Γ̃±; E±) vanish on K near K̂. We then take

Πk+1 = (1 + hkQk)Πk(1 + hkQk)
−1 (3.7.7)

where Qk is a compactly supported pseudodifferential operator. Microlocally near Λ̂,

[P,Πk+1] = hk+1Sk + hk[[P,Qk],Πk] +O(hk+2).

Therefore, q±k = σ(Qk)|Γ̃± need to satisfy the transport equations near Γ̂±

Hpq
±
k = ∓is±k /a

±
0 , q±k |K̃ = 0. (3.7.8)
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Such q±k exist and are unique and smooth enough again by Lemma 3.5.2, giving Πk+1.
To show that the operator Π satisfying (3.7.2) and (3.7.3) is unique microlocally near

Λ̂, we show by induction that each such Π satisfies Π = Πk + O(hk) microlocally near Λ̂.

First of all, Π has the form (3.7.5) for some operator Q0 microlocally near Λ̂, by part 2
of Proposition 3.6.9; moreover, by the proof of this fact, we can take σ(Q0)|K = 0 near

K̂. Now, σ(Q0)|Γ̂± are determined uniquely by the transport equations (3.7.6), and this

gives Π = Π1 + O(h) microlocally near Λ̂. Next, if Π = Πk + O(hk) for some k > 0,
then, as follows from the proof of Part 2 of Proposition 3.6.9, Π has the form (3.7.7) for

some operator Qk microlocally near Λ̂, such that σ(Qk)|K = 0 near K̂. Then σ(Qk)|Γ̂± are

determined uniquely by the transport equations (3.7.8), and this gives Π = Πk+1 +O(hk+1)

microlocally near Λ̂.

3.7.2 Annihilating ideals

Let Π ∈ Icomp(Λ◦) be the operator constructed in Theorem 3.3. In this section, we construct

pseudodifferential operators Θ± annihilating Π microlocally near Λ̂; they are key for the
microlocal estimates in §3.8. More precisely, we obtain

Proposition 3.7.1. If δ > 0 in the definition (3.7.1) of Ŵ is small enough, then there exist
compactly supported Θ± ∈ Ψcomp(X) such that:

(1) ΠΘ− = O(h∞) and Θ+Π = O(h∞) microlocally near Λ̂;

(2) σ(Θ±) = ϕ± near Ŵ , with ϕ± defined in Lemma 3.5.1;

(3) if P is the operator constructed in Lemma 3.4.3, then

[P,Θ−] = −ihΘ−Z− +O(h∞), [P,Θ+] = ihZ+Θ+ +O(h∞) (3.7.9)

microlocally near Ŵ , where Z± ∈ Ψcomp(X) are compactly supported and σ(Z±) = c±
near Ŵ , with c± defined in Lemma 3.5.1;

(4) if Im Θ+ = 1
2i

(Θ+ −Θ∗+) and ζ = σ(h−1 Im Θ+), then

Hpζ = −c+ζ −
1

2
{ϕ+, c+} on Γ+ near Ŵ ; (3.7.10)

(5) there exists an operator Ξ : C∞(X) → C∞0 (X), satisfying parts 1 and 2 of Proposi-
tion 3.6.13 and such that

1− Π = Θ−Ξ +O(h∞) microlocally near Ŵ × Ŵ . (3.7.11)
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Proof. The operators Θ± satisfying conditions (1) and (2) exist by part 1 of Proposi-

tion 3.6.11. Next, since [P,Π] = O(h∞) microlocally near Λ̂, we find

Π[P,Θ−] = O(h∞), [P,Θ+]Π = O(h∞)

microlocally near Λ̂; condition (3) now follows from part 2 of Proposition 3.6.11. The symbols
σ(Z±) can be computed using the identity Hpϕ± = ∓c±ϕ± from part (2) of Lemma 3.5.1.
Condition (5) follows immediately from Proposition 3.6.13, keeping in mind that by making

δ small we can make Ŵ contained in an arbitrary neighborhood of K̂.
Finally, we verify condition (4). Taking the adjoint of the identity [P,Θ+] = ihZ+Θ+ +

O(h∞) and using that P is self-adjoint, we get microlocally near Ŵ ,

[P,Θ∗+] = ihΘ∗+Z
∗
+.

Therefore, microlocally near Ŵ

2[P, h−1 Im Θ+] = Z+Θ+ −Θ∗+Z
∗
+ = [Z+,Θ+] + 2i((Im Θ+)Z∗+ + Θ+ ImZ+).

By comparing the principal symbols, we get (3.7.10).

3.8 Resolvent estimates

In this section we give various estimates on the resolvent R(ω), in particular proving The-
orem 3.1. In §3.8.1, we reduce Theorem 3.1 to a microlocal estimate in a neighborhood of
the trapped set, which is further split into two estimates: on the kernel of the projector Π
given by Theorem 3.3, proved in §3.8.2, and on the image of Π, proved in §3.8.3. In §3.8.4
we obtain a restriction on the wavefront set R(ω) in ω on the image of Π, needed in §3.10.
Finally, in §3.8.5, we discuss the consequences of our methods for microlocal concentration
of resonant states and the corresponding semiclassical measures.

3.8.1 Reduction to the trapped set

We take δ > 0 small enough so that the results of §3.7.1,3.7.2 hold, and define following (3.7.1)
(with δ1 chosen in §3.5.4),

Ŵ := Uδ ∩ p−1([α0 − δ1/2, α1 + δ1/2]), W ′ := Uδ/2 ∩ p−1([α0 − δ1/4, α1 + δ1/4]), (3.8.1)

so that W ′ is a neighborhood of K ∩ p−1([α0, α1]) compactly contained in Ŵ . Here Uδ is
defined in (3.5.8).

For the reductions of this subsection, it is enough to assume that ω satisfies (3.4.1). The
region (3.1.5) will arise as the intersection of the regions (3.8.9) and (3.8.11) where the two
components of the estimate will hold.



CHAPTER 3. RESONANCES FOR R-NORMALLY HYPERBOLIC TRAPPING 167

To prove Theorem 3.1, it is enough to show the estimate

‖ũ‖H1 ≤ Ch−2‖f̃‖H2 +O(h∞) (3.8.2)

for each ũ = ũ(h) ∈ H1 with ‖ũ‖H1 bounded polynomially in h and for f̃ = P(ω)ũ, where
ω = ω(h) satisfies (3.1.5).

Subtracting from ũ the function v constructed in Lemma 3.4.5, we may assume that

WFh(f̃) ⊂ W ′.

Let S(ω) be the operator constructed in Lemma 3.4.3, S ′(ω) be its elliptic parametrix near

U ⊃ Ŵ constructed in Lemma 3.3.3, and put

u := S(ω)ũ, f := S ′(ω)f̃ ,

so by (3.4.9), for the operator P constructed in Lemma 3.4.3,

(P − ω)u = f microlocally near Ŵ , WFh(f) ⊂ Ŵ . (3.8.3)

By ellipticity (Proposition 3.3.2) and since WFh(f) ⊂ W ′,

WFh(u) ∩ Ŵ ⊂ p−1([α0 − δ1/4, α1 + δ1/4]). (3.8.4)

Let ϕ± be the functions constructed in Lemma 3.5.1. By Lemma 3.4.4, u satisfies the
conditions (see Figure 3.5)

WFh(u) ∩ Ŵ ⊂ {|ϕ+| ≤ δ/2}, (3.8.5)

WFh(u) ∩ Γ◦− ⊂ W ′. (3.8.6)

Indeed, if ρ ∈ WFh(u) ∩ U , then either ρ ∈ Γ+ (in which case (3.8.5) and (3.8.6) fol-
low immediately) or there exists T ≥ 0 such that for γ(t) = etHp(ρ), γ([−T, 0]) ⊂ U and

γ(−T ) ∈WFh(f̃) ⊂ W ′. In the second case, if ρ ∈ Ŵ , then by convexity of Uδ (part (5) of

Lemma 3.5.1) we have γ([−T, 0]) ⊂ Ŵ . To show (3.8.5), it remains to use that Hpϕ
2
+ ≤ 0

on Ŵ , following from part (2) of Lemma 3.5.1. For (3.8.6), note that if ρ ∈ Γ−, then
γ(−T ) ∈ Γ− ∩W ′; however, etHp(Γ− ∩W ′) ⊂ Γ− ∩W ′ for all t ≥ 0 and thus ρ ∈ W ′.

By Lemma 3.4.6, we reduce (3.8.2) to

‖A1u‖L2 ≤ Ch−2‖f‖L2 +O(h∞), (3.8.7)

where A1 ∈ Ψcomp(X) is any compactly supported operator elliptic on W ′.
Now, let Π ∈ Icomp(Λ◦) be the operator constructed in Theorem 3.3 in §3.7.1. Note that

(P − ω)Πu = Πf +O(h∞) microlocally near Ŵ , (3.8.8)

since [P,Π] = O(h∞) microlocally near Ŵ × Ŵ , WFh(Π) ⊂ Λ◦ ⊂ Γ◦− × Γ◦+, and by (3.8.6).
We finally reduce (3.8.7) to the following two estimates, which are proved in the following

subsections:
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Ŵ

W ′

K
Γ+Γ+

Γ−

Γ−

Figure 3.5: A phase space picture of the geodesic flow near Ŵ . The shaded region corre-
sponds to (3.8.5) and (3.8.6).

Proposition 3.8.1. Assume that u, f are h-tempered families satisfying (3.8.3)–(3.8.6) and

Reω ∈ [α0, α1], Imω ∈ [−(νmin − ε)h,C0h]. (3.8.9)

Then there exists compactly supported A1 ∈ Ψcomp(X) elliptic on W ′ such that

‖A1(1− Π)u‖L2 ≤ Ch−1‖Ξf‖L2 +O(h∞), (3.8.10)

where Ξ is the operator from part (5) of Proposition 3.7.1; note that by part 1 of Proposi-
tion 3.6.13, ‖Ξ‖L2→L2 = O(h−1).

Proposition 3.8.2. Assume that u, f are h-tempered families satisfying (3.8.3)–(3.8.6) and

Reω ∈ [α0, α1], Imω ∈ [−C0h,C0h] \
(
− νmax + ε

2
h,−νmin − ε

2
h
)
, (3.8.11)

Then there exists compactly supported A1 ∈ Ψcomp(X) elliptic on W ′ such that

‖A1Πu‖L2 ≤ Ch−1‖Πf‖L2 +O(h∞). (3.8.12)

Note that by Proposition 3.6.1 and the reduction to the model case of §3.6.2, we have
‖Π‖L2→L2 = O(h−1/2).
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3.8.2 Estimate on the kernel of Π

In this section, we prove Proposition 3.8.1, which is a microlocal estimate on the kernel
of Π (or equivalently, on the image of 1 − Π). We will use the identity (3.7.11) together
with the commutator formula (3.7.9) to effectively shift the spectral parameter to the upper
half-plane, where a standard positive commutator argument gives us the estimate.

By (3.8.8), we have microlocally near Ŵ ,

(P − ω)(1− Π)u = (1− Π)f +O(h∞) (3.8.13)

Let Θ− ∈ Ψcomp(X) and Ξ be the operators constructed in Proposition 3.7.1, and denote

v := Ξu, g := Ξf.

Then microlocally near Ŵ ,

(1− Π)u = Θ−v, (1− Π)f = Θ−g. (3.8.14)

Indeed, by part 2 of Proposition 3.6.13, (3.8.6), and the fact that WFh(Π) ⊂ Λ◦ ⊂ Γ◦−×Γ◦+,

we see that 1− Π = Θ−Ξ +O(h∞) microlocally near (WFh(u) \ Ŵ )× Ŵ , since each of the
featured operators is microlocalized away from this region. Combining this with (3.7.11),

we see that 1 − Π = Θ−Ξ + O(h∞) microlocally near WFh(u) × Ŵ , and thus also near

WFh(f)× Ŵ , yielding (3.8.14).
By part 2 of Proposition 3.6.13 together with (3.8.4)–(3.8.6) and part (4) of Lemma 3.5.1,

WFh(v) ∪WFh(g) ⊂ p−1([α0 − δ1/4, α1 + δ1/4]), (3.8.15)

(WFh(v) ∪WFh(g)) ∩ Ŵ ⊂ {|ϕ+| ≤ δ/2}. (3.8.16)

We now obtain a differential equation on v; the favorable imaginary part of the operator
in this equation, coming from commuting Θ− with P , is the key component of the proof.

Proposition 3.8.3. Let Z− be the operator from (3.7.9). Then microlocally near Ŵ ,

(P − ihZ− − ω)v = g +O(h∞). (3.8.17)

Proof. Given (3.8.14), the equation (3.8.13) becomes (P − ω)Θ−v = Θ−g +O(h∞) microlo-

cally near Ŵ . Using (3.7.9), we get microlocally near Ŵ ,

Θ−(P − ihZ− − ω)v = Θ−g +O(h∞).

To show (3.8.17), it remains to apply propagation of singularities (part 2 of Proposition 3.3.4),

for the operator Θ−. Indeed, by part (4) of Lemma 3.5.1, for each ρ ∈ Ŵ , there exists t ≥ 0

such that the Hamiltonian trajectory {esHϕ− (ρ) | 0 ≤ s ≤ t} lies entirely inside Ŵ and
etHϕ− (ρ) lies in {ϕ+ = −δ} and by (3.8.16) does not lie in WFh((P − ihZ−−ω)v−Θ−g).



CHAPTER 3. RESONANCES FOR R-NORMALLY HYPERBOLIC TRAPPING 170

We now use a positive commutator argument. Take a self-adjoint compactly supported
X− ∈ Ψcomp(X) such that WFh(X−) is compactly contained in Ŵ and σ(X−) = χ(ϕ−) near

Ŵ ∩WFh(v), where ϕ− is defined in Lemma 3.5.1, χ ∈ C∞0 (−δ, δ), sχ′(s) ≤ 0 everywhere,
and χ = 1 near [−δ/2, δ/2]. This is possible by (3.8.15) and (3.8.16). Put Imω = hν;
by (3.8.17) and since P is self-adjoint,

Im〈X−v, g〉 =
h

2
〈(Z∗−X− + X−Z− + 2νX−)v, v〉

+
1

2i
〈[P,X−]v, v〉+O(h∞) = h〈Y−v, v〉+O(h∞),

(3.8.18)

where Y− ∈ Ψcomp(X) is compactly supported, WFh(Y−) ⊂ WFh(X−) ⊂ Ŵ and, using the
function c− from part (2) of Lemma 3.5.1 together with part (3) of Proposition 3.7.1, we

write near Ŵ ∩WFh(v),

σ(Y−) = (c− + ν)χ(ϕ−)− 1

2
Hpχ(ϕ−) = (c− + ν)χ(ϕ−)− 1

2
c−ϕ−χ

′(ϕ−).

However, ν ≥ −(νmin − ε) by (3.8.9) and by (3.5.9), c− > (νmin − ε) on Ŵ ; therefore

σ(Y−) ≥ 0 near WFh(v), σ(Y−) > 0 near WFh(v) ∩W ′. (3.8.19)

To take advantage of (3.8.19), we use the following combination of sharp G̊arding inequality
with propagation of singularities:

Lemma 3.8.4. Assume that Z,Q ∈ Ψcomp(X) are compactly supported, WFh(Z),WFh(Q)

are compactly contained in Ŵ , Z∗ = Z, and

σ(Z) ≥ 0 near WFh(v), σ(Z) > 0 near WFh(v) ∩W ′.

Then
‖Qv‖2

L2 ≤ C〈Zv, v〉+ Ch−2‖g‖2
L2 +O(h∞). (3.8.20)

Proof. Without loss of generality, we may assume that Q is elliptic on WFh(Z)∪W ′. There
exists compactly supported Q1 ∈ Ψcomp(X), elliptic on W ′, such that σ(Z−Q∗1Q1) ≥ 0 near
WFh(v) andQ is elliptic on WFh(Q1). Applying sharp G̊arding inequality (Proposition 3.3.6)
to Z −Q∗1Q1, we get

‖Q1v‖2
L2 ≤ C〈Zv, v〉+ Ch‖Qv‖2

L2 +O(h∞). (3.8.21)

Now, by (3.8.15), (3.8.16), and since Hpϕ
2
− > 0 on Ŵ \Γ− by part (2) of Lemma 3.5.1, each

backwards flow line of Hp starting on WFh(Q) reaches either WFh(Q1) or the complement

of WFh(v), while staying in Ŵ ; by propagation of singularities (Proposition 3.3.4) applied
to (3.8.17),

‖Qv‖L2 ≤ C‖Q1v‖L2 + Ch−1‖g‖L2 +O(h∞). (3.8.22)

Combining (3.8.21) and (3.8.22), we get (3.8.20).
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Now, there exists A1 ∈ Ψcomp(X) compactly supported, elliptic on W ′ and with WFh(A1)

compactly contained in Ŵ , such that the estimate

|〈X−v, g〉| ≤ ε̃h‖A1v‖2
L2 + Cε̃h

−1‖g‖2
L2 +O(h∞) (3.8.23)

holds for each ε̃ > 0 and constant Cε̃ dependent on ε̃. Taking ε̃ small enough and combin-
ing (3.8.18), (3.8.20) (for Z = Y− and Q = A1), and (3.8.23), we arrive to

‖A1v‖L2 ≤ Ch−1‖g‖L2 +O(h∞).

Since (1− Π)u = Θ−v microlocally near Ŵ , we get (3.8.10).

3.8.3 Estimate on the image of Π

In this section, we prove Proposition 3.8.2, which is a microlocal estimate on the image of Π.
We will use the pseudodifferential operator Θ+ microlocally solving Θ+Π = O(h∞) to obtain
an additional pseudodifferential equation satisfied by elements of the image of Π. This will
imply that for a pseudodifferential operator A microlocalized near K, the principal part of
the expression 〈AΠu(h),Πu(h)〉 depends only on the integral of σ(A) over the flow lines
of V+, with respect to an appropriately chosen measure. A positive commutator estimate
finishes the proof.

By (3.8.8), we have microlocally near Ŵ ,

(P − ω)Πu = Πf +O(h∞). (3.8.24)

Let Θ+ ∈ Ψcomp(X) be the operator constructed in Proposition 3.7.1, then by (3.8.6),

Θ+Πu = O(h∞) microlocally near Ŵ . (3.8.25)

We start with

Lemma 3.8.5. Let ζ := σ(h−1 Im Θ+). Take the function ψ on Γ+ ∩ Ŵ such that

{ϕ+, ψ} = 2ζ, ψ|K = 0. (3.8.26)

Assume that A ∈ Ψcomp(X) satisfies WFh(A) b Ŵ and∫
(eψσ(A)) ◦ esHϕ+ ds = 0 on K. (3.8.27)

The integral in (3.8.27), and all similar integrals in this subsection, is taken over the interval

corresponding to a maximally extended flow line of Hϕ+ in Γ+ ∩ Ŵ .

Then there exists compactly supported A0 ∈ Ψcomp(X) with WFh(A0) b Ŵ such that

|〈AΠu,Πu〉| ≤ Ch‖A0Πu‖2
L2 +O(h∞).
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Proof. By (3.8.27), there exists q ∈ C∞0 (Ŵ ) such that {ϕ+, e
ψq} = eψσ(A) on Γ+. We can

rewrite this as
{ϕ+, q}+ 2ζq = σ(A) on Γ+. (3.8.28)

Take Q, Y ∈ Ψcomp(X) microlocalized inside Ŵ and such that σ(Q) = q and

σ(A) = {ϕ+, q}+ 2ζq + σ(Y )ϕ+.

Then A = (ih)−1(QΘ+ −Θ∗+Q) + YΘ+ +O(h)Ψcomp and thus for some A0,

〈AΠu,Πu〉 =
〈QΘ+Πu,Πu〉 − 〈QΠu,Θ+Πu〉

ih
+ 〈YΘ+Πu,Πu〉

+O(h)‖A0Πu‖2
L2 +O(h∞).

The first three terms on the right-hand side are O(h∞) by (3.8.25).

Now, take compactly supported self-adjoint X+ ∈ Ψcomp(X) such that WFh(X+) is com-

pactly contained in Ŵ and the symbol χ+ := σ(X+) satisfies χ+ ≥ 0 everywhere, χ+ > 0 on
W ′, and ∫

(eψχ+) ◦ esHϕ+ ds = 1 on K ∩ p−1([α0 − δ1/4, α1 + δ1/4]). (3.8.29)

Putting Imω = hν, we have by (3.8.24)

Im〈X+Πu,Πf〉 = hν〈X+Πu,Πu〉+
1

2i
〈[P,X+]Πu,Πu〉+O(h∞)

= h〈Y+Πu,Πu〉+O(h∞),
(3.8.30)

where Y+ ∈ Ψcomp(X) is compactly supported, WFh(Y+) ⊂WFh(X+) ⊂ Ŵ , and

σ(Y+) = νχ+ −Hpχ+/2.

We now want to use Lemma 3.8.5 together with G̊arding inequality to show that 〈Y+Πu,Πu〉
has fixed sign, positive for ν ≥ −(νmin − ε)/2 and negative for ν ≤ −(νmax + ε)/2. For that,
we need to integrate σ(Y+) over the Hamiltonian flow lines of ϕ+ on Γ+, with respect to the
measure from (3.8.27). This relies on

Lemma 3.8.6. If c+ is defined in Lemma 3.5.1, then∫
(eψHpχ+) ◦ esHϕ+ ds = −c+ on K ∩ p−1([α0 − δ1/4, α1 + δ1/4]). (3.8.31)
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Proof. By part (2) of Lemma 3.5.1, we have on Γ+ ∩ Ŵ

(esHϕ+ )∗∂s(e
−sHϕ+ )∗Hp = −[Hp, Hϕ+ ] = c+Hϕ+ .

Therefore, we can write (at ρ ∈ K and s such that esHϕ+ (ρ) ∈ Ŵ )

(e−sHϕ+ )∗Hp = Hp + w(s)Hϕ+ on K

where w(s) is the smooth function on K × R given by

∂sw(s) = c+ ◦ esHϕ+ , w(0) = 0.

Now, differentiating (3.8.29) along Hp and integrating by parts, we have on K ∩ p−1([α0 −
δ1/4, α1 + δ1/4])∫ (

Hp(e
ψχ+)

)
◦ esHϕ+ ds =

∫
(Hp + w(s)∂s)

(
(eψχ+) ◦ esHϕ+

)
ds

= −
∫

(eψc+χ+) ◦ esHϕ+ ds;

therefore, ∫
(eψHpχ+) ◦ esHϕ+ ds = −

∫
(eψ(c+ +Hpψ)χ+) ◦ esHϕ+ ds. (3.8.32)

Now, we find on Γ+ ∩ Ŵ by (3.8.26) and (3.7.10),

Hϕ+Hpψ = (Hp + c+)Hϕ+ψ = 2(Hp + c+)ζ = −Hϕ+c+.

We have on K ∩ Ŵ , Hpψ = 0; thus

c+ +Hpψ = c+ ◦ π+ on Γ+ ∩ Ŵ

and by (3.8.32) and (3.8.29), on K ∩ p−1([α0 − δ1/4, α1 + δ1/4]),∫
(eψHpχ+) ◦ esHϕ+ ds = −c+

∫
(eψχ+) ◦ esHϕ+ ds = −c+.

This finishes the proof of (3.8.31).

Using (3.8.29), (3.8.31), and Lemma 3.8.5 (taking into account (3.8.4)), we find for some

compactly supported A1 ∈ Ψcomp with WFh(A1) ⊂ Ŵ and A1 elliptic on W ′ ∪WFh(X+),

〈Y+Πu,Πu〉 = 〈Z+Πu,Πu〉+O(h)‖A1Πu‖2
L2 +O(h∞)

where Z+ ∈ Ψcomp(X) is any self-adjoint compactly supported operator with WFh(Z+) ⊂ Ŵ
and

σ(Z+) = (ν + (c+ ◦ π+)/2)χ+ on Γ+.
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Then by (3.8.30),

Im〈X+Πu,Πf〉 = h〈Z+Πu,Πu〉+O(h2)‖A1Πu‖2
L2 +O(h∞). (3.8.33)

Now, by (3.5.9), νmin− ε < c+ < νmax + ε on K, therefore, keeping in mind that WFh(Πu) ⊂
Γ◦+, we find

σ(Z+) ≥ 0 near WFh(Πu) for ν ≥ −(νmin − ε)/2, (3.8.34)

σ(Z+) ≤ 0 near WFh(Πu) for ν ≤ −(νmax + ε)/2. (3.8.35)

Moreover, in both cases σ(Z+) 6= 0 on WFh(Πu) ∩ W ′. We now combine sharp G̊arding
inequality and propagation of singularities for the operator Θ+:

Lemma 3.8.7. Assume that Z,Q ∈ Ψcomp(X) are compactly supported, WFh(Z),WFh(Q)

are compactly contained in Ŵ , Z∗ = Z, and

σ(Z) ≥ 0 near WFh(Πu), σ(Z) > 0 near WFh(Πu) ∩W ′.

Then
‖QΠu‖2

L2 ≤ C〈ZΠu,Πu〉+O(h∞). (3.8.36)

Proof. We argue similarly to the proof of Lemma 3.8.4, with (3.8.22) replaced by

‖QΠu‖L2 ≤ C‖Q1Πu‖L2 +O(h∞). (3.8.37)

The estimate (3.8.37) follows from propagation of singularities (Proposition 3.3.4) applied

to (3.8.25). Indeed, by part (4) of Lemma 3.5.1 together with (3.8.4), for each ρ ∈ Ŵ ∩
WFh(Πu) ⊂ Γ+, there exists t ∈ R such that etHϕ+ (ρ) ∈ W ′ and esHϕ+ (ρ) ∈ Ŵ for each s
between 0 and t.

Using (3.8.36) (for Z = ±Z+, Q = A1), (3.8.33), and an analog of (3.8.23), we complete
the proof of (3.8.12).

3.8.4 Microlocalization in the spectral parameter

In this section, we provide a restriction on the wavefront set of solutions to the equation
(P − ω)u = f in the spectral parameter ω, needed in §3.10. We use the method of §3.8.3,
however since Reω is now a variable, we will get an extra term coming from commutation
with the multiplication operator by ω. Because of the technical difficulties of studying
operators on product spaces (namely, a pseudodifferential operator on X does not give rise
to a pseudodifferential operator on X × (α0, α1) since the corresponding symbol does not
decay under differentiation in ξ and thus does not lie in the class Sk of §3.3.1), we use the
Fourier transform in the ω variable.
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Proposition 3.8.8. Fix ν ∈ [−C0, C0] and put ω = α+ihν, where α ∈ (α0, α1) is regarded as
a variable. Assume that u(x, α;h) ∈ C([α0, α1];H1), f(x, α;h) ∈ C([α0, α1];H2) have norms
bounded polynomially in h, satisfying (3.8.3)–(3.8.6) uniformly in α. Define the semiclassical
Fourier transform

û(x, s;h) =

∫ α1

α0

e−
isα
h u(x, α;h) dα, (3.8.38)

and f̂(x, s;h) accordingly. Then there exists A1 ∈ Ψcomp(X) elliptic on W ′ such that:
1. If ν ≥ −(νmin − ε)/2, then for any fixed s0 ∈ R,

‖Πf̂‖L2
s((−∞,s0])L2

x(X) = O(h∞) =⇒ ‖A1Πû(s0)‖L2
x(X) = O(h∞). (3.8.39)

2. If ν ≤ −(νmax + ε)/2, then for any fixed s0 ∈ R,

‖Πf̂‖L2
s([s0,∞))L2

x(X) = O(h∞) =⇒ ‖A1Πû(s0)‖L2
x(X) = O(h∞). (3.8.40)

Proof. We consider case 1; case 2 is handled similarly using (3.8.35) instead of (3.8.34). Since
u(α), f(α) are h-tempered uniformly in α, their Fourier transforms û(s), f̂(s) are h-tempered
and satisfy (3.8.3)–(3.8.6) in the L2 sense in s; therefore, the corresponding O(h∞) errors
will be bounded in L2

s for expressions linear in û, f̂ and in L1
s for expressions quadratic in

û, f̂ . We also note that for each j, the derivatives ∂js û(s), ∂js f̂(s) are h-tempered uniformly
in s ∈ R and also in the L2 sense in s.

Taking the Fourier transform of (3.8.8), we get

(hDs + P − ihν)Πû(s) = Πf̂(s) +O(h∞)L2
s(R) microlocally near Ŵ . (3.8.41)

We use the operators X+,Z+, A1 from §3.8.3. Similarly to (3.8.33), we find

Im〈X+Πû(s),Πf̂(s)〉 =
h

2
∂s〈X+Πû(s),Πû(s)〉

+h〈Z+Πû(s),Πû(s)〉+O(h2)‖A1Πû(s)‖2
L2
x

+O(h∞)L1
s(R).

Integrating this over s ∈ (−∞, s0], by the assumption of (3.8.39), we find

〈X+Πû(s0),Πû(s0)〉+ 2

∫ s0

−∞
〈Z+Πû(s),Πû(s)〉 ds

≤ Ch‖A1Πû(s)‖2
L2
s((−∞,s0])L2

x
+O(h∞).

(3.8.42)

Applying Lemma 3.8.7 to Q = A1 and Z = Z+,X+, and using (3.8.34), we get

‖A1Πû(s)‖2
L2
x
≤ C〈Z+Πû(s),Πû(s)〉+O(h∞)L1

s(R), (3.8.43)

‖A1Πû(s0)‖2
L2
x
≤ C〈X+Πû(s0),Πû(s0)〉+O(h∞). (3.8.44)

Combining (3.8.42) with (3.8.43), integrated over s ∈ (−∞, s0], and (3.8.44), we get the
conclusion of (3.8.39).
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3.8.5 Localization of resonant states

In this section, we study an application of the estimates of the preceding subsections to
microlocal behavior of resonant states, namely elements of the kernel of P(ω) for a resonance
ω. Assume that we are given a sequence hj → 0, and ω(h) ∈ C, ũ(h) ∈ H1, defined for h in
this sequence, such that

P(ω)ũ = 0, ‖ũ‖H1 = 1;

Reω ∈ [α0, α1], Imω ∈ [−(νmin − ε)h,C0h];
(3.8.45)

the condition on ω is just (3.8.9). We also use the operators S(ω) and P from Lemma 3.4.3
and put

u := S(ω)ũ, (3.8.46)

so that
(P − ω)u = O(h∞) microlocally near U . (3.8.47)

We say that the sequence u(hj) converges to some Radon measure µ on T ∗X, and we call µ
the semiclassical defect measure of u (see [137, Chapter 5]) if for each compactly supported
A ∈ Ψ0(M), we have

〈Au, u〉 →
∫
T ∗M

σ(A) dµ as hj → 0. (3.8.48)

Such µ is necessarily a nonnegative measure, see [137, Theorem 5.2].

Theorem 3.4. Let ũ(h) be a sequence of resonant states corresponding to some resonances

ω(h), as in (3.8.45), and u defined in (3.8.46). Take the neighborhood Ŵ of K∩p−1([α0, α1])
defined in (3.7.1). Then:

(1) WFh(ũ) ∩ U ⊂ Γ+ ∩ p−1([α0, α1]);

(2) for each A1 ∈ Ψcomp(X) elliptic on K ∩ p−1([α0, α1]), there exists a constant c > 0
independent of h such that ‖A1u‖L2 ≥ c;

(3) u = Πu + O(h∞) and Θ+u = O(h∞) microlocally near Ŵ , where Π is constructed in
Theorem 3.3 in §3.7.1 and Θ+ is the pseudodifferential operator from Proposition 3.7.1;

(4) there exists a smooth family of smooth measures µρ, ρ ∈ K ∩ p−1([α0, α1]), on the flow

line segments π−1
+ (ρ) ∩ Ŵ ⊂ Γ+ of V+, independent of the choice of u, such that if u

converges to some measure µ on T ∗M in the sense of (3.8.48), and Reω(hj) → ω∞,
h−1 Imω(hj)→ ν as hj → 0, then µ|Ŵ has the form

µ|Ŵ =

∫
K∩p−1(ω∞)

µρ dµ̂(ρ), (3.8.49)
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for some nontrivial measure µ̂ on K ∩ p−1(ω∞), such that for each b ∈ C∞(K),∫
K∩p−1(ω∞)

Hpb− (2ν + c+)b dµ̂ = 0, (3.8.50)

with the function c+ defined in Lemma 3.5.1.

Remark. The equation (3.8.50) is similar to the equation satisfied by semiclassical defect
measures for eigenstates for the damped wave equation, see [137, (5.3.21)].

Proof. Part (1) follows immediately from Lemma 3.4.4, part (2) follows from Lemma 3.4.6
and implies that µ|Ŵ is a nontrivial measure in part (4). By the discussion in §3.8.1, u
satisfies (3.8.3)–(3.8.6), with f = 0. The first statement of part (3) then follows from
Proposition 3.8.1. Indeed, we have (1−Π)u = O(h∞) microlocally near the set W ′ introduced
in (3.8.1); it remains to apply propagation of singularities (Proposition 3.3.4) to (3.8.13),
using Lemma 3.4.1. The second statement of part (3) now follows from (3.8.25).

Finally, we prove part (4). First of all, µ|U is supported on Γ+ by part (1), and on p−1(ω∞)
by (3.8.47) and the elliptic estimate (Proposition 3.3.2; see also [137, Theorem 5.3]). Next,

note that by Lemma 3.8.5 and since u = Πu+O(h∞) microlocally near Ŵ , we have for each

a ∈ C∞0 (Ŵ ) and the function ψ given by (3.8.26),∫
(eψa)(esHϕ+ (ρ)) ds = 0 for all ρ ∈ K ∩ p−1(ω∞) =⇒

∫
a dµ = 0.

This implies (3.8.49), with∫
a dµρ :=

∫
(eψa)(esHϕ+ (ρ)) ds, a ∈ C∞0 (Ŵ ), ρ ∈ K ∩ p−1(ω∞).

To see (3.8.50), we note that by (3.8.47), for each a ∈ C∞0 (Ŵ ) we have (see the derivation
of [137, (5.3.21)]) ∫

Hpa− 2νa dµ = 0. (3.8.51)

Put b(ρ) =
∫
a dµρ for ρ ∈ K ∩ p−1(ω∞). Similarly to Lemma 3.8.6 (replacing 1 by b(ρ) on

the right-hand side of (3.8.29)), we compute∫
Hpa dµρ = Hpb(ρ)− c+(ρ)b(ρ), ρ ∈ K ∩ p−1(ω∞)

and (3.8.50) follows by (3.8.51).
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3.9 Grushin problem

In this section, we construct a well-posed Grushin problem for the scattering resolvent,
representing resonances in the region (3.8.9) as zeroes of a certain determinant F (ω) defined
in (3.9.25) below. Together with the trace formulas of §3.10, this makes possible the proof
of the Weyl law in §3.11.

We assume that the conditions of §§3.4.1 and 3.5.1 hold, fix ε > 0 (to be chosen in

Theorem 3.2), and use the neighborhoods W ′ ⊂ Ŵ of K ∩ p−1([α0, α1]) defined in (3.8.1);
let δ, δ1 > 0 be the constants used to define these neighborhoods. Take compactly supported
Q1, Q2 ∈ Ψcomp(X) such that (with Uδ defined in Lemma 3.5.1)

Q1 = 1 +O(h∞) microlocally near Uδ/4 ∩ p−1([α0 − δ1/6, α1 + δ1/6]),

Q2 = 1 +O(h∞) microlocally near Uδ/3 ∩ p−1([α0 − δ1/5, α1 + δ1/5]),

WFh(Q1) b Uδ/3 ∩ p−1([α0 − δ1/5, α1 + δ1/5]), WFh(Q2) b W ′.

(3.9.1)

We will impose more restrictions on Q1 later in Lemma 3.9.2.
Using the operator P(ω) : H1 → H2 from §3.4.1 and the operator S(ω) constructed in

Lemma 3.4.3, define the holomorphic family of operators

G(ω) :=

(
P(ω) S(ω)Q1ΠQ2

Q1ΠQ2S(ω) 1−Q1ΠQ2

)
: H1 ⊕ L2(X)→ H2 ⊕ L2(X).

Here Π ∈ Icomp(Λ◦) is the operator constructed in Theorem 3.3 in §3.7.1; it is a microlocal
idempotent commuting with the operator P from Lemma 3.4.3 microlocally near the set
Λ̂ = Λ◦∩ (Ŵ ∩ Ŵ ). Note that, since Q1, Q2 are microlocalized away from fiber infinity, G(ω)
is a compact perturbation of P(ω)⊕ 1, and therefore Fredholm of index zero.

In this section, we will prove

Proposition 3.9.1. There exists a global constant7 N such that for ω satisfying (3.8.9),

‖G(ω)−1‖H2⊕L2→H1⊕L2 = O(h−N). (3.9.2)

Moreover, if

G(ω)−1 =

(
R11(ω) R12(ω)
R21(ω) R22(ω)

)
, (3.9.3)

then R22(ω) = 1−L22(ω) +O(h∞)D′→C∞0 , where L22(ω) ∈ Icomp(Λ◦) is microlocalized inside

Λ̂ and the symbol σΛ(L22) defined in (3.6.30) satisfies

σΛ(L22(ω))(ρ, ρ) =
σ(Q1)(ρ)2 + (p(ρ)− ω)σ(Q1)(ρ)

σ(Q1)(ρ)2 + (p(ρ)− ω)(σ(Q1)(ρ)− 1)
, ρ ∈ K̂. (3.9.4)

7A more careful analysis, as in §3.8, could give the optimal value of N ; we do not pursue this here since
the value of N is irrelevant for our application in §3.11.
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To prove (3.9.2), we consider families of distributions u(h) ∈ H1, f(h) ∈ H2, v(h), g(h) ∈
L2(X), bounded polynomially in h in the indicated spaces and satisfying G(u, v) = (f, g),
namely

P(ω)u+ S(ω)Q1ΠQ2v = f, (3.9.5)

Q1ΠQ2S(ω)u+ (1−Q1ΠQ2)v = g. (3.9.6)

Note that by (3.4.9), (3.9.5) implies

(P − ω)S(ω)u+Q1ΠQ2v = S ′(ω)f +O(h∞) microlocally near U . (3.9.7)

Here S ′(ω) is an elliptic parametrix of S(ω) near U constructed in Proposition 3.3.3.
To show (3.9.2), it is enough to establish the bound

‖u‖H1 + ‖v‖L2 ≤ Ch−N(‖f‖H2 + ‖g‖L2) +O(h∞). (3.9.8)

We start with a technical lemma:

Lemma 3.9.2. There exists Q1 ∈ Ψcomp(X) satisfying (3.9.1) and such that

σ(Q1)2 + (p− ω)(σ(Q1)− 1) 6= 0 on K for all ω ∈ [α0, α1]. (3.9.9)

Proof. It suffices to take Q1 such that σ(Q1)|K = ψ(p), where ψ ∈ C∞0 (α0− δ1/5, α1 + δ1/5)
is equal to 1 near [α0 − δ1/6, α1 + δ1/6] and

ψ(λ)2 + (λ− ω)(ψ(λ)− 1) 6= 0, λ ∈ R, ω ∈ [α0, α1]. (3.9.10)

We now show that such ψ exists. The equation (3.9.10) holds automatically for λ 6∈ (α0 −
δ1/5, α1 + δ1/5), as ψ = 0 there and the left-hand side of (3.9.10) equals ω − λ 6= 0. This
however also shows that a real-valued ψ with the desired properties does not exist. We take
Reψ ∈ C∞0 (α0 − δ1/5, α1 + δ1/5) equal to 1 near [α0 − δ1/6, α1 + δ1/6] and take values in
[0, 1] and Imψ ∈ C∞0 (α1 + δ1/6, α1 + δ1/5) a nonnegative function to be chosen later. Then
the left-hand side of (3.9.10) is equal to 1 for λ ∈ [α0 − δ1/6, α1 + δ1/6] and is positive for
λ ∈ [α0 − δ1/5, α0 − δ1/6]. Next, the imaginary part of (3.9.10) is

Imψ(λ)(2 Reψ(λ) + λ− ω).

Since 2 Reψ(λ) + λ−ω > 0 for λ ∈ [α1 + δ1/6, α1 + δ1/5], it remains to take Imψ(λ) > 0 on
a large compact subinterval of (α1 + δ1/6, α1 + δ1/5); then ψ satisfies (3.9.10).

Using Lemma 3.9.2, we determine v microlocally outside of the elliptic region:

Proposition 3.9.3. Let Q1 be chosen in Lemma 3.9.2. Then there exist Le21(ω), Le22(ω) ∈
Icomp(Λ◦) holomorphic in ω, microlocalized inside Λ̂, and such that for all u, v, f, g satisfy-
ing (3.9.5), (3.9.6),

v = Le21f + (1− Le22)g (3.9.11)

microlocally outside of Γ+∩Ŵ∩p−1([α0−δ1/8, α1+δ1/8]). Moreover, σΛ(Le22) satisfies (3.9.4)
for ρ 6∈ p−1([α0 − δ1/8, α1 + δ1/8]).
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Proof. Using Proposition 3.3.3, construct compactly supported Re(ω) ∈ Ψcomp(X) such that

Re(ω)(P − ω) = 1 +O(h∞) microlocally near Ŵ \ p−1(α0 − δ1/8, α1 + δ1/8). By (3.9.7), we
get

S(ω)u = Re(ω)(S ′(ω)f −Q1ΠQ2v) +O(h∞)

microlocally near Ŵ \ p−1(α0 − δ1/8, α1 + δ1/8). Substituting this into (3.9.6), we get

(1− L′)v = g −Q1ΠQ2R
e(ω)S ′(ω)f +O(h∞) (3.9.12)

microlocally outside of Γ+ ∩ Ŵ ∩ p−1([α0 − δ1/8, α1 + δ1/8]), where L′ = Q1ΠQ2(1 +

Re(ω)Q1ΠQ2) ∈ Icomp(Λ◦) and WFh(L
′) ⊂ Λ̂.

Let σΛ(L′) be the symbol of L′, defined in (3.6.30). By (3.6.31)–(3.6.33), and since

σΛ(Π)|K = 1 near Ŵ (see part 1 of Proposition 3.6.9 or §3.7.1), we find for ρ ∈ K \ p−1(α0−
δ1/8, α1 + δ1/8),

σΛ(L′)(ρ, ρ) = σ(Q1)(ρ)(1 + σ(Q1)(ρ)/(p(ρ)− ω));

it follows from (3.9.9) that

σΛ(L′)|K 6= 1 outside of p−1(α0 − δ1/8, α1 + δ1/8). (3.9.13)

By Proposition 3.6.6, there exists Le22(ω) ∈ Icomp(Λ◦), with WFh(L
e
22) ⊂ Λ̂, such that (1 −

Le22)(1−L′) = 1+O(h∞) microlocally outside of p−1([α0−δ1/8, α1 +δ1/8]), and note that the
symbol σΛ(Le22) satisfies (3.9.4) for ρ 6∈ p−1([α0 − δ1/8, α1 + δ1/8]) by (3.6.34). By (3.9.12),
we get (3.9.11) with Le12(ω) = −(1− Le22(ω))Q1ΠQ2R

e(ω)S ′(ω).

By Proposition 3.9.3, replacing v by Aev, where Ae ∈ Ψcomp(X) is compactly supported,

WFh(Ae) ⊂ U ∩p−1(α0−δ1/7, α1 +δ1/7), and Ae = 1+O(h∞) near Ŵ ∩p−1([α0−δ1/8, α1 +
δ1/8]), we see that it is enough to prove (3.9.8) in the case

WFh(v) ⊂ U ∩ p−1([α0 − δ1/7, α1 + δ1/7]). (3.9.14)

Using Lemma 3.4.5, consider u′ ∈ H1 such that ‖u′‖H1 ≤ Ch−1‖f‖H2 and WFh(P(ω)u′−f) ⊂
WFh(Q1) ∩ p−1([α0 − δ1/7, α1 + δ1/7]). Subtracting u′ from u, we see that is suffices to
prove (3.9.8) for the case

WFh(f) ⊂WFh(Q1) ∩ p−1([α0 − δ1/7, α1 + δ1/7]). (3.9.15)

By (3.9.14), the wavefront set of P(ω)u = f − S(ω)Q1ΠQ2v satisfies (3.9.15). Arguing as
in §3.8.1, and keeping in mind (3.9.7), we see that u satisfies (3.8.4)–(3.8.6); in fact, (3.8.4)
can be strengthened to

WFh(u) ∩ Ŵ ⊂ p−1([α0 − δ1/7, α1 + δ1/7]). (3.9.16)

and (3.8.6) can be strengthened to

WFh(u) ∩ Γ◦− ⊂ Uδ/3 ∩ p−1([α0 − δ1/7, α1 + δ1/7]). (3.9.17)

We can now solve for v:
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Proposition 3.9.4. Assume that u, v, f, g satisfy (3.9.5), (3.9.6), (3.9.14), (3.9.15). Then

v = Q1ΠS ′(ω)f + (1−Q1(P − ω + 1)ΠQ2)g +O(h∞)C∞0 . (3.9.18)

Proof. Since Π2 = Π +O(h∞) microlocally near Ŵ × Ŵ and Q1 = 1 +O(h∞) microlocally
near K ∩ p−1([α0 − δ1/6, α1 + δ1/6], we have

ΠQ1Π = Π +O(h∞) microlocally near (Ŵ ∩ p−1([α0 − δ1/6, α1 + δ1/6]))× Ŵ . (3.9.19)

We rewrite (3.9.6) as

Q1ΠQ2(S(ω)u− g) + (1−Q1ΠQ2)(v − g) = 0. (3.9.20)

It follows immediately that WFh(v−g) ⊂WFh(Q1) and thus Q2(v−g) = v−g+O(h∞)C∞0 .
Also, by (3.9.6), (3.9.14), and (3.9.16), WFh(g) ⊂ U ∩ p−1([α0 − δ1/7, α1 + δ1/7]). Applying
Π to (3.9.20) and using (3.9.14), (3.9.16), and (3.9.19), we get ΠQ2S(ω)u−ΠQ2g = O(h∞)

microlocally near Ŵ . By (3.9.17), we have ΠQ2S(ω)u = ΠS(ω)u+O(h∞)C∞0 ; therefore,

ΠS(ω)u = ΠQ2g +O(h∞) microlocally near Ŵ . (3.9.21)

Then (3.9.20) becomes

v = Q1ΠQ2v + (1−Q1ΠQ2)g +O(h∞)C∞0 . (3.9.22)

Applying Π to (3.9.7), using that [P,Π] = O(h∞) microlocally near Ŵ × Ŵ , and keeping in
mind (3.9.17), we get

(P − ω)ΠS(ω)u+ ΠQ2v = ΠS ′(ω)f +O(h∞) microlocally near Ŵ . (3.9.23)

Together, (3.9.21) and (3.9.23) give

ΠQ2v = ΠS ′(ω)f − (P − ω)ΠQ2g +O(h∞) microlocally near Ŵ .

By (3.9.22), we now get (3.9.18).

By Proposition 3.9.4, we see that

‖v‖L2 ≤ Ch−N(‖f‖H2 + ‖g‖L2) +O(h∞). (3.9.24)

By Proposition 3.8.1 (using (3.9.7) instead of (3.8.3)), we get for some A1 ∈ Ψcomp(X) elliptic
near W ′,

‖A1(1− Π)S(ω)u‖L2 ≤ Ch−N(‖f‖H2 + ‖g‖L2) +O(h∞).

Combining this with (3.9.21), we estimate ‖A1u‖L2 by the right-hand side of (3.9.24). Ap-
plying Lemma 3.4.6 to (3.9.5), we can estimate ‖u‖H1 by the same quantity, completing the
proof of (3.9.8).
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It remains to describe the operator R22 from (3.9.3). We assume that u, v, f, g sat-
isfy (3.9.5), (3.9.6) and f = 0; then R22g = v. By Proposition 3.9.3, v = (1−Le22)g+O(h∞)

microlocally outside of Ŵ ∩ p−1([α0− δ1/8, α1 + δ1/8]); it then suffices to describe v microlo-

cally near Ŵ ∩ p−1([α0− δ1/8, α1 + δ1/8]). Let Ae be the operator introduced before (3.9.14)
and Re(ω) be an elliptic parametrix for P − ω constructed in the proof of Proposition 3.9.3.
Replacing (u, v) by (u + S ′(ω)Re(ω)Q1ΠQ2(1 − Ae)v, Aev), we may assume that (3.9.14)
and (3.9.15) hold, and in fact the resulting f is O(h∞)C∞0 and the resulting g coincides with

the original g microlocally near Ŵ ∩ p−1([α0 − δ1/8, α1 + δ1/8]). By Proposition 3.9.4, we
now get for the original v and g,

v = (1−Q1(P − ω + 1)ΠQ2)g +O(h∞) microlocally near Ŵ ∩ p−1([α0 − δ1/8, α1 + δ1/8]).

Note that Q1(P−ω+1)ΠQ2 ∈ Icomp(Λ◦) and its principal symbol satisfies (3.9.4) in p−1([α0−
δ1/8, α1+δ1/8]), since σ(Q1)|K = 1 in that region. This finishes the proof of Proposition 3.9.1.

By Proposition 3.9.1, R22(ω)−1 is a compactly supported operator mapping H−Nh → HN
h

for all N , therefore it is trace class. We can then define the determinant (see for instance [123,
(A.6.38)])

F (ω) := detR22(ω), (3.9.25)

which is holomorphic in the region (3.8.9) and F (ω) = 0 if and only ifR22(ω) is not invertible
(see [123, Proposition A.6.16]). The key properties of F needed in §3.11 are established in

Proposition 3.9.5. 1. Resonances in the region (3.8.9) coincide (with the multiplicities
defined in (3.4.3)) with zeroes of F (ω).

2. For some constants C and N , we have |F (ω)| ≤ eCh
−N

for ω in (3.8.9), and |F (ω)| ≥
e−Ch

−N
for ω in the resonance free region (3.1.5).

3. For ω in the resonance free region (3.1.5), we have

∂ωF (ω)

F (ω)
= −Tr((1−Q1ΠQ2 −Q1ΠS(ω)R(ω)S(ω)Q1ΠQ2)∂ωL22(ω)) +O(h∞).

Here L22(ω) is defined in Proposition 3.9.1.

Proof. 1. By Schur’s complement formula [137, (D.1.1)], and since G(ω) is invertible by
Proposition 3.9.1, we know that P(ω) is invertible if and only if R22(ω) is, and in fact

P(ω)−1 = R11(ω)−R12(ω)R22(ω)−1R21(ω). (3.9.26)

To see that the multiplicity of a resonance ω0 defined by (3.4.3) coincides with the multiplicity
of ω0 as a zero of the function F (ω) (and in particular, to demonstrate that the multiplicity
defined by (3.4.3) is a positive integer), it is enough to show that

1

2πi
Tr

∮
ω0

P(ω)−1∂ωP(ω) dω =
1

2πi
Tr

∮
ω0

R22(ω)−1∂ωR22(ω) dω; (3.9.27)
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indeed, since ∂ωR22(ω) is trace class, we can put the trace inside the integral on the right-
hand side of (3.9.27), yielding ∂ωF (ω)/F (ω); therefore, the right-hand side gives the mutli-
plicity of ω0 as a zero of F (ω) by the argument principle.

Since ∂ω(G(ω)−1) = −G(ω)−1(∂ωG(ω))G(ω)−1, we have

∂ωR22(ω) = −R21(ω)(∂ωP(ω))R12(ω) +A(ω)R22(ω) +R22(ω)B(ω),

where A(ω),B(ω) : L2(X)→ L2(X) are bounded operators holomorphic at ω0. By (3.9.26),
(3.9.27) follows from the two identities

Tr

∮
ω0

R12(ω)R22(ω)−1R21(ω)∂ωP(ω) dω = Tr

∮
ω0

R22(ω)−1R21(ω)(∂ωP(ω))R12(ω) dω,

Tr

∮
ω0

R22(ω)−1(A(ω)R22(ω) +R22(ω)B(ω)) dω = 0.

Both of them follow from the cyclicity of the trace, replacingR22(ω)−1 by its finite-dimensional
principal part at ω0 and putting the trace inside the integral.

2. By Proposition 3.9.1, the trace class norm ‖R22(ω) − 1‖Tr is bounded polynomially
in h. Using the bound | det(1 + T )| ≤ e‖T‖Tr (see for example [123, (A.6.44)]), we get
|F (ω)| ≤ eCh

−N
. By Theorem 3.1, we have ‖R(ω)‖H2→H1 ≤ Ch−2 when ω satisfies (3.1.5).

Using Schur’s complement formula again, we get

R22(ω)−1 = 1−Q1ΠQ2 −Q1ΠQ2S(ω)R(ω)S(ω)Q1ΠQ2. (3.9.28)

Then ‖R22(ω)−1 − 1‖Tr ≤ Ch−N and thus |F (ω)|−1 = | det(R22(ω)−1)| ≤ eCh
−N

.
3. By Proposition 3.9.1, we have ∂ωR22(ω) = −∂ωL22(ω) +O(h∞)D′→C∞0 , thus

∂ωF (ω)

F (ω)
= −Tr(R22(ω)−1∂ωL22(ω)) +O(h∞).

By (3.9.28), it then suffices to prove that

Tr(Q1Π(1−Q2)S(ω)R(ω)S(ω)Q1ΠQ2∂ωL22(ω)) = O(h∞).

For that, it suffices to show that the intersection of the wavefront set of the operator on the
left-hand side with the diagonal in T ∗X is empty. We assume the contrary, then there exists
ρ ∈ T ∗X such that

(ρ, ρ) ∈WFh(Q1Π(1−Q2)S(ω)R(ω)S(ω)Q1ΠQ2∂ωL22(ω)).

Since both Π and ∂ωL22 are microlocalized inside Λ◦ ⊂ Γ◦−∩Γ◦+, we see that ρ ∈ K◦ = Γ◦+∩Γ◦−.
There exists ρ′ ∈ T ∗X such that

(ρ, ρ′) ∈WFh(S(ω)R(ω)S(ω)Q1ΠQ2∂ωL22(ω)), (ρ′, ρ) ∈WFh(Q1Π(1−Q2)).

For any h-tempered f ∈ L2(X), we have WFh(S(ω)Q1ΠQ2∂ωL22(ω)f) ⊂ Γ◦+ ∩ Ŵ , therefore
by Lemma 3.4.4 we have WFh(R(ω)S(ω)Q1ΠQ2∂ωL22(ω)f) ∩ U ⊂ Γ+. It follows that
ρ′ ∈ Γ+. Since (ρ′, ρ) ∈ WFh(Q1Π(1 − Q2)), we see that ρ′ = ρ ∈ K◦. However, then
ρ ∈WFh(Q1) ∩WFh(1−Q2), which is impossible since Q2 = 1 +O(h∞) microlocally near
WFh(Q1).
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3.10 Trace formula

In this section, we establish an asymptotic expansion for contour integrals of the logarith-
mic derivative of the determinant F (ω) of the effective Hamiltonian of the Grushin problem
of §3.9, defined in (3.9.25). By Proposition 3.9.5, this reduces to computing contour inte-
grals of operators of the form ΠR(ω), where Π is the projector constructed in Theorem 3.3
in §3.7.1. This in turn is done by approximating R(ω) microlocally on the image of Π
by pseudodifferential operators, using Schrödinger propagators and microlocalization in the
spectral parameter established in §3.8.4.

We operate under the pinching condition (3.1.7) of Theorem 3.2, namely νmax < 2νmin,
and choose ε > 0 such that νmax + ε < 2(νmin − ε). Take χ ∈ C∞0 (α0, α1) with α0, α1

from (3.4.1). Consider an almost analytic extension χ̃(ω) of χ, that is χ̃ ∈ C∞(C) such that
χ̃|R = χ and ∂ω̄χ̃(ω) = O(| Imω|∞). We may take χ̃ such that supp(χ̃) ⊂ {Reω ∈ (α0, α1)}.

The main result of this section is

Proposition 3.10.1. Take

ν− ∈
[
− (νmin − ε),−

νmax + ε

2

]
, ν+ ∈

[
− νmin − ε

2
, C0

]
. (3.10.1)

Let F (ω) be defined in (3.9.25) and put

I±χ := (2πh)n−1

∫
Imω=hν±

χ̃(ω)
∂ωF (ω)

F (ω)
dω. (3.10.2)

Then, with dVolσ = σn−1
S /(n− 1)! the symplectic volume form,

I−χ − I+
χ = 2πi

∫
K

χ(p) dVolσ +O(h). (3.10.3)

Remark. More precise trace formulas are possible; in particular, one can get a full asymp-
totic expansion in h of each of I±χ . For simplicity, we prove here a less general version which
suffices for the analysis of §3.11.

The key feature of the expansions for the integrals (3.10.2), which produces a nontrivial
asymptotics for resonances in Theorem 3.2, is that the principal part of I±χ depends on the
sign of ±. The reason for this dependence is the difference of directions for propagation
in the resolvent approximation R±ψ of Proposition 3.10.2 for the two cases; this in turn is
explained by the difference between (3.8.39) and (3.8.40), which is due to the difference of
the signs of the ‘commutator’ Z+ between (3.8.34) and (3.8.35).

We start the proof by using Proposition 3.8.8 to replace R(ω) in the formula for ∂ωF (ω)
/F (ω) from Proposition 3.9.5 by an operator R±ψ (ω) obtained by integrating the Schrödinger

propagator e−it(P−ω)/h over a bounded range of times t.
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Proposition 3.10.2. Fix ψ ∈ C∞0 (R) such that ψ = 1 near zero. For ω ∈ C, define the
operators R±ψ (ω) : L2(X)→ L2(X) by

R+
ψ (ω) :=

i

h

∫ 0

−∞
eis(P−ω)/hψ(s) ds; (3.10.4)

R−ψ (ω) := − i
h

∫ ∞
0

eis(P−ω)/hψ(s) ds; (3.10.5)

Then, if suppψ is contained in a small enough neighborhood of zero,

I±χ = −(2πh)n−1 Tr

∫
Imω=hν±

χ̃(ω)(1−Q1ΠQ2

−Q1R±ψ (ω)ΠQ1ΠQ2)∂ωL22(ω) dω +O(h∞).

(3.10.6)

Proof. We concentrate on the case of I+
χ , the case of I−χ is handled similarly, using (3.8.40) in

place of (3.8.39). We denote ω = α+ihν+, where α ∈ (α0, α1). By part 3 of Proposition 3.9.5,
it suffices to prove the trace norm bound∥∥∥∥∫

Imω=hν+

χ̃(ω)Q1(ΠS(ω)R(ω)S(ω)−R+
ψ (ω)Π)Q1ΠQ2∂ωL22(ω) dω

∥∥∥∥
Tr

= O(h∞).

Since the operator on the left-hand side is compactly supported and microlocalized away
from the fiber infinity, it is enough to prove an estimate of the L2 → L2 operator norm
instead of the trace class norm. Take arbitrary h-independent family f̃ = f̃(h) ∈ L2(X)
with ‖f̃‖L2 ≤ 1 and put

f(α) := χ̃(ω)Q1ΠQ2∂ωL22(ω)f̃ , u(α) := S(ω)R(ω)S(ω)f(α).

Then f(x, α) is compactly supported in both x ∈ X and α ∈ (α0, α1), ‖f‖L∞α L2
x

is polynomi-
ally bounded in h, and WFh(f(α)) ⊂ Γ+∩W ′. Since R(ω)H2→H1 = O(h−2) by Theorem 3.1,
we see that u(α) ∈ H2 is compactly supported in α ∈ (α0, α1) and the norm ‖u‖L∞α L2

x
is

bounded polynomially in h. Using Lemma 3.4.4 similarly to §3.8.1, we see that u, f sat-
isfy (3.8.3)–(3.8.6), uniformly in α.

It now suffices to prove that for each choice of f̃ , independent of α, we have∫ α1

α0

Q1(Πu(α)−R+
ψ (ω)Πf(α)) dα = O(h∞)L2 . (3.10.7)

Define the semiclassical Fourier transforms û(s), f̂(s) by (3.8.38). Then (3.10.7) becomes

Q1

(
Πû(0)− i

h

∫ 0

−∞
eis(P−ihν+)/hψ(s)Πf̂(s) ds

)
= O(h∞)L2 . (3.10.8)

By (3.8.41) and Proposition 3.3.1, we find microlocally near W ′,

Πû(0) =
i

h

∫ 0

−∞
eis(P−ihν+)/h(ψ(s)Πf̂(s)− ihψ′(s)Πû(s)) ds+O(h∞). (3.10.9)
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Take ε̃ > 0 such that ψ = 1 near [−ε̃, ε̃], so that ψ′(s) is compactly supported in {|s| > ε̃}.
Since χ(ω) and ∂ωL22(ω) depend smoothly on α, we see that ‖∂jαf(α)‖L∞α L2

x
= O(h−1/2) for

all j. By repeated integration by parts, we get

‖f̂(s)‖L2
s((−∞,−ε̃])L2

x
= O(h∞).

Then by (3.8.39), Πû(s) = O(h∞) microlocally near W ′ locally uniformly in s ∈ (−∞,−ε̃],
and thus Q1e

is(P−ihν+)/hΠû(s) = O(h∞)L2 uniformly in s ∈ (−∞, 0] ∩ suppψ′. By (3.10.9),
we now get (3.10.8).

Now, note that, since the expression under the integral in (3.10.6) is almost analytic in
ω, we can replace the integral over Imω = hν± by the integral over the real line, with an
O(h∞) error. Then

I−χ − I+
χ = (2πh)n−1 TrAχ +O(h∞),

Aχ :=

∫
R
χ(α)∂αL22(α)Q1(R−ψ (α)−R+

ψ (α))ΠQ1ΠQ2 dα.

Proposition 3.10.1 now follows from Proposition 3.6.7, the fact that WFh(Aχ) ⊂ Ŵ × Ŵ ,
and the following

Proposition 3.10.3. The operator Aχ lies in Icomp(Λ◦) and its principal symbol, as defined
by (3.6.30), satisfies σΛ(Aχ) ◦ jK = 2πiχ(p), with jK : K◦ → Λ◦ defined in (3.6.2).

Proof. Given the multiplication formula (3.6.31), the fact that σ(Q1) = σ(Q2) = 1 and
σΛ(Π) ◦ jK = 1 on K ∩ p−1([α0, α1]) and suppχ ⊂ (α0, α1), it is enough to prove the
proposition with Aχ replaced by

A′χ := − i
h

∫
R2

e−isα/hχ(α)∂αL22(α)Q1e
isP/hψ(s) dsdα.

Denote L(α) = χ(α)∂αL22(α)Q1; it is an operator in Icomp(Λ◦). By applying a microlocal
partition of unity to L(α), we may reduce to the case when both L(α) and eisP/h have local
parametrizations (see (3.3.3) for the first one and for example [137, Theorem 10.4] for the
second one)

L(α)u(x) = (2πh)−(N+n)/2

∫
RN+n

e
i
h

Φ(x,y,θ)a(x, y, θ, α;h)u(y) dydθ,

eisP/hu(y) = (2πh)−n
∫
R2n

e
i
h

(S(y,ζ,s)−z·ζ)b(y, ζ, s;h)u(z) dzdζ.

Here S(y, ζ, s) = y · ζ + sp(y, ζ) +O(s2) and b(y, ζ, 0; 0) = 1. Then A′χ takes the form

A′χu(x) = −ih−1(2πh)−(N+3n)/2

∫
RN+3n

e
i
h

(Φ(x,y,θ)+S(y,ζ,s)−z·ζ−sα)

a(x, y, θ, α;h)b(y, ζ, s;h)ψ(s)u(z) dydθdzdζdsdα.
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Re ω

Imω

ν+h

ν−h

α0 α1α′′0 α′′1

Figure 3.6: The contour ∂Ω(h) (in blue). The horizontal shaded region is {Imω ∈ (−(νmax +
ε)h/2,−(νmin − ε)h/2)}, where Theorem 3.1 does not provide polynomial resolvent bounds;
the vertical shaded region is the support of χ̃.

We now apply the method of stationary phase in the y, ζ, s, α variables. The stationary
points are given by s = 0, α = p(z, ζ), y = z, ζ = −∂zΦ(x, z, θ). We get

A′χu(x) = −2πi(2πh)−(N+n)/2

∫
RN+n

e
i
h

Φ(x,z,θ)c(x, z, θ;h)u(z) dθdz,

where c is a classical symbol and c(x, z, θ; 0) = a(x, z, θ, p(z,−∂zΦ(x, z, ζ)); 0). It fol-
lows that A′χ ∈ Icomp(Λ◦) and σΛ(A′χ)(ρ−, ρ+) = −2πiσΛ(L(p(ρ−)))(ρ−, ρ+). By (3.9.4),
σΛ(L22(α))(ρ, ρ) = p(ρ)−α+1 when ρ ∈ K∩p−1([α0, α1]), and thus σΛ(∂αL22(α))(ρ, ρ) = −1.
Therefore, we find σΛ(A′χ)(ρ, ρ) = 2πiχ(p(ρ)) for ρ ∈ K.

3.11 Weyl law for resonances

In this section, we prove Theorem 3.2, using the Grushin problem from §3.9, the trace
formula of §3.10, and several tools from complex analysis. The argument below is quite
standard, see for instance [84, 106, 109], and is simplified by the fact that we do not aim
for the optimal O(h) remainder in the Weyl law, instead carrying out the argument in a
rectangle of width ∼ 1 and height ∼ h. For more sophisticated techniques needed to obtain
the optimal remainder, see [107].

First of all, by Proposition 3.9.5, resonances in the region of interest are (with multiplic-
ities) the zeroes of the holomorphic function F (ω) defined in (3.9.25). Take α′′0 ∈ (α0, α

′
0),

α′′1 ∈ (α′1, α1). Fix ν± satisfying (3.10.1) and let {ωj}M(h)
j=1 denote the set of zeroes (counted

with multiplicities) of F (ω) in the region (see Figure 3.6)

Ω(h) := {Reω ∈ [α′′0, α
′′
1], Imω ∈ [ν−h, ν+h]}
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By part 2 of Proposition 3.9.5 and Jensen’s inequality, see for example [36, §2], we have the
polynomial bound, for some N,C,

M(h) ≤ Ch−N . (3.11.1)

By a standard argument approximating the indicator function of [α′0, α
′
1] by smooth functions

from above and below, it is enough to prove that for each χ ∈ C∞0 (α0, α1),

(2πh)n−1

M(h)∑
j=1

χ(Reωj) =

∫
K

χ(p) dVolσ +O(h). (3.11.2)

Let χ̃(ω) be an almost analytic continuation of χ, as discussed in the beginning of §3.10. We
may assume that supp χ̃ ⊂ {Reω ∈ (α′′0, α

′′
1)}.

By Proposition 3.10.1, we have (with the integral over the vertical parts of ∂Ω(h) van-
ishing since χ̃ = 0 there)

(2πh)n−1

2πi

∮
∂Ω(h)

χ̃(ω)
∂ωF (ω)

F (ω)
dω =

∫
K

χ(p) dVolσ +O(h). (3.11.3)

By Lemma α in [124, §3.9] and the exponential estimates of part 2 of Proposition 3.9.5
(splitting the region Ω(h) into boxes of size h and applying Lemma α to each of these boxes,
transformed into the unit disk by the Riemann mapping theorem), we have for some fixed
N ,

∂ωF (ω)

F (ω)
=

M(h)∑
j=1

1

ω − ωj
+G(ω); G(ω) = O(h−N), ω ∈ Ω(h) ∩ supp χ̃.

Applying Stokes theorem to (3.11.3) (over the contour comprised of ∂Ω(h) minus the sum
of circles of small radius r centered at each ωj, and letting r → 0) we get

(2πh)n−1

M(h)∑
j=1

χ̃(ωj) =

∫
K

χ(p) dVolσ−
(2πh)n−1

2πi

∫
Ω(h)

∂ωF (ω)

F (ω)
∂ω̄χ̃(ω) dω̄ ∧ dω +O(h).

Since χ̃ is almost analytic and Ω(h) lies O(h) close to the real line, we have ∂ω̄χ̃(ω) = O(h∞)
for ω ∈ Ω(h). Therefore, the second integral on the right-hand side is O(h∞) and we get

(2πh)n−1

M(h)∑
j=1

χ̃(ωj) =

∫
K

χ(p) dVolσ +O(h).

Since χ̃(ω) = χ(Reω) +O(h) for ω ∈ Ω(h), we get

(2πh)n−1

M(h)∑
j=1

χ(Reωj) =

∫
K

χ(p) dVolσ +O(h(1 + hn−1M(h))). (3.11.4)

Since one can take χ to be any compactly supported function on (α0, α1), and M(h) =
O(h−N) for some fixed N and any choice of (α′′0, α

′′
1), by induction we see from (3.11.4) that

M(h) = O(h1−n). Given this bound, (3.11.4) implies (3.11.2), which finishes the proof.
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3.A Example of a manifold with r-normally

hyperbolic trapping

In this appendix, we provide a simple example of an even asymptotically hyperbolic manifold
(as defined in §3.4.4) whose geodesic flow satisfies the dynamical assumptions of §3.5.1 and
the pinching condition (3.1.7), therefore our Theorems 3.1–3.4 apply. This example is a
higher dimensional generalization of the hyperbolic cylinder, considered for instance in [36,
Appendix B].

The resonances for the provided example can be described explicitly via the eigenvalues of
the Laplacian on the underlying compact manifoldN , using separation of variables. However,
our results apply to small perturbations of the metric (see §3.5.2), as well as to subprincipal
perturbations in the considered operator, when separation of variables no longer takes place.

Let (N, g̃) be a compact n − 1 dimensional Riemannian manifold (at the end of this
appendix, we will impose further conditions on g̃). We consider the manifold M = Rr ×Nθ

with the metric
g = dr2 + cosh2 r g̃(θ, dθ).

Then M has two infinite ends {r = ±∞}; near each of these ends, one can represent it as an
even asymptotically hyperbolic manifold by taking the boundary defining function x̃ = e∓r:

g =
dx̃2

x̃2
+

(1 + x̃2)2

4x̃2
g̃(θ, dθ).

The resonances for the Laplace–Beltrami operator on M therefore fit into the framework
of §3.4.1, as demonstrated in §3.4.4. The associated flow etHp is the geodesic flow on the
unit cotangent S∗M , extended to a homogeneous flow of degree zero on the complement of
the zero section in T ∗M .

We now verify the assumptions of §3.5.1. If ξr, ξθ are the momenta dual to r, θ, then

p2 = ξ2
r + cosh−2 r g̃−1(θ, ξθ),

where g̃−1 is the dual metric to g, defined on the fibers of T ∗N . We then have

Hpr =
ξr
p
, Hpξr =

p2 − ξ2
r

p
tanh r.

The trapped set K and the incoming/outgoing tails Γ± are given by

Γ± = {ξr = ±p tanh r}, K = {r = 0, ξr = 0},

or strictly speaking, by the intersections of the sets above with the set U from (3.4.21).
Consider the following defining functions of Γ±:

ϕ± = ξr ∓ p tanh r,
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then {ϕ+, ϕ−}|K = 2p and thus assumptions (1) and (2) of §3.5.1 are satisfied. Next,

Hpϕ± = ∓c±ϕ±, c± = 1± ξr
p

tanh r.

In particular, c±|K = 1 and, arguing as in the proof of Lemma 3.5.1, we get

νmin = νmax = 1.

In particular, the pinching condition (3.1.7) is satisfied.
Finally, in order for the r-normal hyperbolicity assumption (3) of §3.5.1 to be satisfied,

we need to make µmax � 1, with µmax defined in (3.5.3). This is a condition on the under-
lying compact Riemannian manifold (N, g̃), since µmax is the maximal expansion rate of the
geodesic flow of g̃ on the unit cotangent bundle S∗N . To satisfy this condition, we can start
with an arbitrary compact Riemannian manifold and multiply its metric by a large constant
C2; indeed, if ϕt is the geodesic flow on the original manifold, then ϕC−1t is the geodesic flow
on the rescaled manifold and the resulting µmax is divided by C.
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Chapter 4

Global asymptotics of waves and
resonances for black holes and their
perturbations

4.1 Introduction

The subject of this chapter are decay properties of solutions to the wave equation for the
rotating Kerr (cosmological constant Λ = 0) and Kerr–de Sitter (Λ > 0) black holes, as well
as for their stationary perturbations. In the recent decade, there has been a lot of progress
in understanding the upper bounds on these solutions, producing a polynomial decay rate
O(t−3) for Kerr and an exponential decay rate O(e−νt) for Kerr–de Sitter (the latter is
modulo constant functions). The weaker decay for Λ = 0 is explained by the presence of
an asymptotically Euclidean infinite end; however, this polynomial decay comes from low
frequency contributions.

We instead concentrate on the decay of solutions with initial data localized at high fre-
quencies ∼ λ� 1; it is related to the geometry of the trapped set K̃, consisting of lightlike
geodesics that never escape to the spatial infinity or through the event horizons. The trapped
set for both Kerr and Kerr–de Sitter metrics is r-normally hyperbolic, and this dynamical
property is stable under stationary perturbations of the metric – see §4.3.6. The key quan-
tities associated to such trapping are the minimal and maximal transversal expansion rates
0 < νmin ≤ νmax, see (4.2.9), (4.2.10). Using Chapter 3, we show the exponential decay rate
O(λ1/2e−(νmin−ε)t/2) +O(λ−∞), valid for t = O(log λ) (Theorem 4.1). This bound is new for
the Kerr case, complementing Price’s law.

Our methods give a more precise microlocal description of long time propagation of high
frequency solutions. In Theorem 4.2, we split a solution u(t) into two approximate solutions
to the wave equation, uΠ(t) and uR(t), with the rate of decay of uΠ(t) between e−(νmax+ε)t/2

and e−(νmin−ε)t/2 and uR(t) bounded from above by λe−(νmin−ε)t, all modulo O(λ−∞) errors.
This splitting is achieved using the Fourier integral operator Π constructed in Chapter 3
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using the global dynamics of the flow.
For the Λ > 0 case, we furthermore study resonances, or quasi-normal modes, the complex

frequencies z of solutions to the wave equation of the form e−iztv(x). Under a pinching
condition νmax < 2νmin which is numerically verified to be true for a large range of parameters
(see Figure 4.2(a)), we show existence of a band of quasi-normal modes satisfying a Weyl law –
Theorem 4.3. In particular, this provides a large family of exact high frequency solutions to
the wave equation that decay no faster than e−(νmax+ε)t/2. We finally compare our theoretical
prediction on the imaginary parts of resonances in the band with the exact quasi-normal
modes for Kerr computed by the authors of [13], obtaining remarkable agreement – see
Figure 4.2(b).

Theorems 4.1–4.3 are related to the resonance expansion and quantization condition
proved for the slowly rotating Kerr–de Sitter in Chapter 2. In this chapter, however, we
use dynamical assumptions stable under perturbations, rather than complete integrability
of geodesic flow on Kerr(–de Sitter), and do not recover the precise results of Chapter 2.

Statement of results. The Kerr(–de Sitter) metric, described in detail in §4.3.1, depends
on three parameters, M (mass), a (speed of rotation), and Λ (cosmological constant). We
assume that the dimensionless quantities a/M and ΛM2 lie in a small neighborhood (see
Figure 4.1(a)) of either the Schwarzschild(–de Sitter) case,

a = 0, 9ΛM2 < 1, (4.1.1)

or the subextremal Kerr case
Λ = 0, |a| < M. (4.1.2)

Our results apply as long as certain dynamical conditions are satisfied, and likely hold for
a larger range of parameters, see the remark following Proposition 4.3.2. To facilitate the
discussion of perturbations, we adopt the abstract framework of §4.2.2, with the spacetime
X̃0 = Rt × X0 and a Lorentzian metric g̃ on X̃0 which is stationary in the sense that ∂t
is Killing. The space slice X0 is noncompact because of the spatial infinity and/or event
horizon(s); to measure the distance to those, we use a function µ ∈ C∞(X0; (0,∞)), such
that Xδ := {µ > δ} is compact for each δ > 0. For the exact Kerr(–de Sitter metric), the
function µ is defined in (4.3.6).

We study solutions to the wave equation in X̃0,

�g̃u(t) = 0, t ≥ 0; u|t=0 = f0, ∂tu|t=0 = f1, (4.1.3)

with f0, f1 ∈ C∞0 (X0) and the time variable shifted so that the metric continues smoothly
past the event horizons – see (4.3.43). To simplify the statements, and because our work
focuses on the phenomena driven by the trapped set, we only study the behavior of solutions
in Xδ1 for some small δ1 > 0. Define the energy norm

‖u(t)‖E := ‖u(t)‖H1(Xδ1 ) + ‖∂tu(t)‖L2(Xδ1 ). (4.1.4)
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Theorem 4.1. Fix T,N > 0, ε, δ1 > 0, and let (X̃0, g̃) be the Kerr(–de Sitter) metric
with M,a,Λ near one of the cases (4.1.1) or (4.1.2), or its small stationary perturbation as
discussed in §4.3.6 (the maximal size of the perturbation depending on T,N).

Assume that f0(λ), f1(λ) ∈ C∞0 (Xδ1) are localized at frequency ∼ λ → ∞ in the sense
of (4.1.6). Then the solution uλ to (4.1.3) with initial data f0, f1 satisfies the bound

‖uλ(t)‖E ≤ C(λ1/2e−(νmin−ε)t/2 + λ−N)‖uλ(0)‖E , 0 ≤ t ≤ T log λ. (4.1.5)

Here we say that f = f(λ) is localized at frequencies ∼ λ, if for each coordinate neigh-

borhood U in X0 and each χ ∈ C∞0 (U), the Fourier transforms χ̂f(ξ) in the corresponding
coordinate system satisfy for each N ,∫

R3\{C−1
U,χ≤|ξ|≤CU,χ}

〈ξ〉N |χ̂f(ξ)|2 dξ = O(λ−N), (4.1.6)

where CU,χ > 0 is a constant independent of λ. For the proof, it is more convenient to
use semiclassical rescaling of frequencies ξ 7→ hξ, where h = λ−1 → 0 is the semiclassical
parameter, and the notion of h-wavefront set WFh(f) ⊂ T ∗X0. The requirement that fj is
microlocalized at frequencies ∼ h−1 is then equivalent to stating that WFh(fj) is contained
in a fixed compact subset of T ∗X0 \0, with 0 denoting the zero section; see §4.2.1 for details.

The main component of the proof of Theorem 4.1 is the following

Theorem 4.2. Under the assumptions of Theorem 4.1, for each families f0(h), f1(h) ∈
C∞0 (Xδ1) with WFh(fj) contained in a fixed compact subset of T ∗X0 \ 0 and u(h) the corre-
sponding solution to (4.1.3), for t0 large enough there exists a decomposition

u(t, x) = uΠ(t, x) + uR(t, x), t0 ≤ t ≤ T log(1/h), x ∈ Xδ/2,

such that �g̃uΠ(t),�g̃uR(t) are O(hN)HN
h

on Xδ1 uniformly in t ∈ [t0, T log(1/h)], and we

have uniformly in t0 ≤ t ≤ T log(1/h),

‖uΠ(t0)‖E ≤ Ch−1/2‖u(0)‖E , (4.1.7)

‖uΠ(t)‖E ≤ Ce−(νmin−ε)t/2‖uΠ(t0)‖E + ChN‖u(0)‖E , (4.1.8)

‖uΠ(t)‖E ≥ C−1e−(νmax+ε)t/2‖uΠ(t0)‖E − ChN‖u(0)‖E , (4.1.9)

‖uR(t)‖E ≤ C(h−1e−(νmin−ε)t + hN)‖u(0)‖E . (4.1.10)

The decomposition u = uΠ+uR is achieved in §4.2.4 using the Fourier integral operator Π
constructed for r-normally hyperbolic trapped sets in Chapter 3. The component uΠ enjoys
additional microlocal properties, such as localization on the outgoing tail and approximately
solving a pseudodifferential equation – see the proof of Theorem 4.4 in §4.2.4 and §3.8.5.
We note that (4.1.9) gives a lower bound on the rate of decay of the approximate solution
uΠ, if ‖uΠ(t0)‖E is not too small compared to ‖u(0)‖E , and the existence of a large family
of solutions with the latter property follows from the construction of uΠ. We remark that
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Figure 4.1: (a) The numerically computed admissible range of parameters for the subex-
tremal Kerr–de Sitter black hole (light shaded) and a schematic depiction of the range of
parameters to which our results apply (dark shaded). (b) An illustration of Theorem 4.3;
(4.1.13) counts resonances in the outlined box and the unshaded regions above and below
the box represent (4.1.11).

Theorems 4.1 and 4.2 are completely independent from the behavior of linear waves at low
frequency. In fact, we do not even use the boundedness in time of solutions for the wave
equation, assuming merely that they grow at most exponentially (which is trivially true in
our case); this suffices since O(h∞) remainders overcome such growth for t = O(log(1/h)). If
a boundedness statement is available, then our results can be extended to all times, though
the corresponding rate of decay stays fixed for t� log(1/h) because of the O(h∞) term.

To formulate the next result, we restrict to the case Λ > 0, or its small stationary
perturbation. In this case, the metric has two event horizons and we consider the discrete set
Res of resonances, as defined for example in [128]. As a direct application of Theorems 3.1
and 3.2, we obtain two gaps and a band of resonances in between with a Weyl law (see
Figure 4.1(b)):

Theorem 4.3. Let (X̃0, g̃) be the Kerr–de Sitter metric with M,a,Λ near one of the cases
(4.1.1) or (4.1.2) and Λ > 0, or its small stationary perturbation as discussed in §4.3.6. Fix
ε > 0. Then:

1. For h small enough, there are no resonances in the region

{|Re z| ≥ h−1, Im z ∈ [−(νmin − ε), 0] \ 1
2
(−(νmax + ε),−(νmin − ε))} (4.1.11)

and the corresponding semiclassical scattering resolvent, namely the inverse of the opera-
tor (4.3.54), is bounded by Ch−2 for z in this region.

2. Under the pinching condition

νmax < 2νmin (4.1.12)
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Figure 4.2: (a) Numerically computed minimal and maximal transversal expansion rates for
Λ = 0 and the range of a for which (4.1.12) holds. (b) A log-log plot of the relative errors
|νRmin(l)−νmin/2|

νRmin(l)
, |ν

R
max(l)−νmax/2|

νRmax(l)
, where νRmin(l), νRmax(l) are the minimal/maximal imaginary parts

of resonances in the first band defined by (4.1.14).

and for ε small enough so that νmax + ε < 2(νmin − ε), we have the Weyl law

#(Res∩{0 ≤ Re z ≤ h−1, Im z ∈ [−(νmin − ε), 0]}) = (2πh)1−n(cK̃ + o(1)) (4.1.13)

as h → 0, where cK̃ is the symplectic volume of a certain part of the trapped set K̃,
see (4.2.16).

The pinching condition (4.1.12) is true for the non-rotating case a = 0, since νmin = νmax

there (see Proposition 4.3.8). However, it is violated for the nearly extremal case M − |a| �
M , at least for Λ small enough; in fact, as |a|/M → 1, νmax stays bounded away from zero,
while νmin converges to zero – see Proposition 4.3.9 and Figure 4.2(a). Note that (νmin−ε)/2
is the size of the resonance free strip and thus gives the minimal rate of exponential decay
of linear waves on Kerr–de Sitter, modulo terms coming from finitely many resonances, by
means of a resonance expansion – see for example [128, Lemma 3.1].

To demonstrate the sharpness of the size of the band of resonances {Imω ∈ 1
2
[−νmax −

ε,−νmin +ε]}, we use the exact quasi-normal modes for the Kerr metric computed (formally,
since one cannot meromorphically continue the resolvent in the Λ = 0 case; however, one
could consider the case of a very small positive Λ) by Berti–Cardoso–Starinets [13]. Similarly
to the quantization condition of Chapter 2, these resonances ωmlk are indexed by three integer
parameters m ≥ 0 (depth), l ≥ 0 (angular energy), and k ∈ [−l, l] (angular momentum).
The parameter l roughly corresponds to the real part of the resonance and the parameter
m, to its imaginary part. We define

νRmin(l) := min
k∈[−l,l]

(− Imω0lk), νRmax(l) := max
k∈[−l,l]

(− Imω0lk). (4.1.14)
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We compare νRmin(l), νRmax(l) with νmin/2, νmax/2 and plot the supremum of the relative error
over a/M ∈ [0, 0.95] for different values of l; the error decays like O(l−1) – see Figure 4.2(b).

Previous work. We give an overview of results on decay and non-decay on black hole back-
grounds; for a more detailed discussion of previous results on normally hyperbolic trapped
sets and resonance asymptotics, see §3.1.

The study of boundedness of solutions to the wave equation for the Schwarzschild (Λ =
a = 0) black hole was initiated in [131, 77] and decay results for this case have been proved
in [16, 32, 86, 83]. The slowly rotating Kerr case (Λ = 0, |a| �M) was considered in [4, 28,
30, 121, 122, 125, 92, 82], and the full subextremal Kerr case (Λ = 0, |a| < M) in [52, 53, 29,
31, 104, 105] – see [31] for a more detailed overview. In either case the decay is polynomial in
time, with the optimal decay rate O(t−3). A decay rate of O(t−2l−3), known as Price’s Law,
was proved in [41, 42] for linear waves on the Schwarzschild black hole for solutions living
on the l-th spherical harmonic; the constant in the O(·) depends on l. Our Theorem 4.1
improves on these decay rates in the high frequency regime l = λ� 1, for times O(log λ).

The extremal Kerr case (Λ = 0, |a| = M) was recently studied for axisymmetric solutions
in [5], with a weaker upper bound due to the degeneracy of the event horizon. The earlier
work [6, 7] suggests that one cannot expect the O(t−3) decay to hold in the extremal case.
In the high frequency regime studied here, we do not expect to get exponential decay due
to the presence of slowly damped geodesics near the event horizon, see Figure 4.2(a) above.

The Schwarzschild–de Sitter case (Λ > 0, a = 0) was considered in [103, 17, 33, 90],
proving an exponential decay rate at all frequencies, a quantization condition for resonances,
and a resonance expansion, all relying on separation of variables techniques. In Chapters 1
and 2 and [46], a same flavor of results was proved for the slowly rotating Kerr–de Sitter
(Λ > 0, |a| �M). The problem was then studied from a more geometric perspective, aiming
for results that do not depend on symmetries and apply to perturbations of the metric – the
resonance free strip of [132] for normally hyperbolic trapping, the gluing method of [38], and
the analysis of the event horizons and low frequencies of [128] together give an exponential

decay rate which is stable under perturbations, for Λ > 0, |a| <
√

3
2
M , provided that there

are no resonances in the upper half-plane except for the resonance at zero. Our Theorem 4.3
provides detailed information on the behavior of resonances below the resonance free strip
of [132], without relying on the symmetries of the problem.

Finally, we mention the the Kerr–AdS case (Λ < 0). The metric in this case exhibits
strong (elliptic) trapping, which suggests that the decay of linear waves is very slow because
of the high frequency contributions. A logarithmic upper bound was proved in [68], and
existence of resonances exponentially close to the real axis and a logarithmic lower bound
were established in [54, 69].

Quasi-normal modes (QNMs) of black holes have a rich history of study in the physics
literature, see [79]. The exact QNMs of Kerr black holes were computed in [13], which we
use for Figure 4.2(b). The high-frequency approximation for QNMs, using separation of
variables and WKB techniques, has been obtained in [134, 133, 67]. In particular, for the
nearly extremal Kerr case their size of the resonance free strip agrees with Proposition 4.3.9;
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moreover, they find a large number of QNMs with small imaginary parts, which correspond
to a positive proportion of the Liouville tori on the trapped set lying close to the event
horizon. See [134] for an overview of the recent physics literature on the topic. We finally
remark that the speed of rotation of an astrophysical black hole (NGC 1365) has recently
been accurately measured in [102], yielding a high speed of rotation: a/M ≥ 0.84 at 90%
confidence.

Structure of the chapter. In §4.2, we study semiclassical properties of solutions to the
wave equation on stationary Lorentzian metrics with noncompact space slices. We operate
under the geometric and dynamical assumptions of §4.2.2; while these assumptions are mo-
tivated by Kerr(–de Sitter) metrics and their stationary perturbations, no explicit mention
of these metrics is made. The analysis of §4.2 works in a fixed compact subset of the space
slice, and the results apply under microlocal assumptions in this compact subset (namely,
outgoing property of solutions to the wave equation for Theorems 4.1–4.2 and meromorphic
continuation of the scattering resolvent with an outgoing parametrix for Theorem 4.3) which
are verified for our specific applications in §4.3.4 and §4.3.5. In §4.2.3, we reduce the problem
to the space slice via the stationary d’Alembert–Beltrami operator and show that some of
the assumptions of §§3.4.1, 3.5.1 are satisfied. In §4.2.4, we use the methods of Chapter 3
to prove asymptotics of outgoing solutions to the wave equation.

Next, §4.3 contains the applications of Chapter 3 and §4.2 to the Kerr(–de Sitter) metrics
and their perturbations. In §4.3.1, we define the metrics and establish their basic properties,
verifying in particular the geometric assumptions of §4.2.2. In §4.3.2, we show that the
trapping is r-normally hyperbolic, verifying the dynamical assumptions of §4.2.2. In §4.3.3,
we study in greater detail trapping in the Schwarzschild(–de Sitter) case a = 0 and in
the nearly extremal Kerr case Λ = 0, a = M − ε, in particular showing that the pinching
condition (4.1.12) is violated for the latter case; we also study numerically some properties
of the trapping for the general Kerr case. In §4.3.4, we study solutions to the wave equation
on Kerr(–de Sitter), using the results of §4.2.4 to prove Theorems 4.1 and 4.2. In §4.3.5,
we use the results of Chapter 3 and [128] to prove Theorem 4.3 for Kerr–de Sitter. Finally,
in §4.3.6, we explain why our results apply to small smooth stationary perturbations of
Kerr(–de Sitter) metrics.

4.2 General framework for linear waves

4.2.1 Semiclassical preliminaries

We start by briefly reviewing some notions of semiclassical analysis, following §3.3. For a
detailed introduction to the subject, the reader is directed to [137].

Let X be an n-dimensional manifold without boundary. Following §3.3.1, we consider the
class Ψk(X) of all semiclassical pseudodifferential operators with classical symbols of order
k. If X is noncompact, we impose no restrictions on how fast the corresponding symbols can
grow at spatial infinity. The microsupport of a pseudodifferential operator A ∈ Ψk(X), also
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known as its h-wavefront set WFh(A), is a closed subset of the fiber-radially compactified
cotangent bundle T

∗
X. We denote by Ψcomp(X) the class of all pseudodifferential operators

whose wavefront set is a compact subset of T ∗X (and in particular lies away from the fiber
infinity). Finally, we say that A = O(h∞) microlocally in some open set U ⊂ T

∗
X, if

WFh(A) ∩ U = ∅; similar notions apply to tempered distributions and operators below.
Using pseudodifferential operators, we can study microlocalization of h-tempered distri-

butions, namely families of distributions u(h) ∈ D′(X) having a polynomial in h bound
in some Sobolev norms on compact sets, by means of the wavefront set WFh(u) ⊂ T

∗
X.

Using Schwartz kernels, we can furthermore study h-tempered operators B(h) : C∞0 (X1)→
D′(X2) and their wavefront sets WFh(B) ⊂ T

∗
(X1 × X2). Besides pseudodifferential op-

erators (whose wavefront set is this framework is the image under the diagonal embedding
T
∗
X → T

∗
(X × X) of the wavefront set used in the previous paragraph) we will use the

class Icomp(Λ) of compactly supported and compactly microlocalized Fourier integral oper-
ators associated to some canonical relation Λ ⊂ T ∗(X × X), see §3.3.2; for B ∈ Icomp(Λ),
WFh(B) ⊂ Λ is compact.

The h-wavefront set of an h-tempered family of distributions u(h) can be characterized
using the semiclassical Fourier transform

Fhv(ξ) = (2πh)−n/2
∫
Rn
e−

i
h
x·ξv(x) dx, v ∈ S ′(Rn).

We have (x, ξ) 6∈WFh(u) if and only if there exists a coordinate neighborhood Ux of x in X,
a function χ ∈ C∞0 (Ux) with χ(x) 6= 0, and a neighborhood Uξ of ξ in T

∗
xX such that if we

consider χu as a function on Rn using the corresponding coordinate system, then for each
N , ∫

Uξ

〈ξ〉N |Fh(χu)(ξ)|2 dξ = O(hN). (4.2.1)

The proof is done analogously to [71, Theorem 18.1.27].
One additional concept that we need is microlocalization of distributions depending on

the time variable that varies in a set whose size can grow with h. Assume that u(t;h) is a
family of distributions on (−ε, T (h) + ε) × X, where ε > 0 is fixed and T (h) > 0 depends
on h. For s ∈ [0, T (h)], define the shifted function

us(t;h) = u(s+ t;h), t ∈ (−ε, ε),
so that us ∈ D′((−ε, ε)×X) is a distribution on a time interval independent of h. We then
say that u is h-tempered uniformly in t, if us is h-tempered uniformly in s, that is, for each
χ ∈ C∞0 ((−ε, ε) × X), there exist constants C and N such that ‖χus‖H−Nh ≤ Ch−N for all

s ∈ [0, T (h)]. Next, we define the projected wavefront set W̃Fh(u) ⊂ T ∗X × Rτ , where τ
is the momentum corresponding to t and T ∗X × Rτ is the fiber-radial compactification of
the vector bundle T ∗X × Rτ , with Rτ part of the fiber, as follows: (x, ξ, τ) does not lie in

W̃Fh(u) if and only if there exists a neighborhood U of (x, ξ, τ) in T ∗X × Rτ such that

sup
s∈[0,T (h)]

‖Aus‖L2 = O(h∞)
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for each compactly supported A ∈ Ψcomp((−ε, ε)×X) such that WFh(A)∩((−ε, ε)t×U) = ∅.
If T (h) is independent of h, then W̃Fh(u) is simply the closure of the projection of WFh(u)

onto the (x, ξ, τ) variables. The notion of W̃Fh makes it possible to talk about u being
microlocalized inside, or being O(h∞), on subsets of T

∗
((−ε, T (h) + ε)×X) independent of

t.
We now discuss restrictions to space slices. Assume that u(h) ∈ D′((−ε, T (h)+ε)×X) is

h-tempered uniformly in t and moreover, W̃Fh(u) does not intersect the spatial fiber infinity
{ξ = 0, τ = ∞}. Then u (as well as all its derivatives in t) is a smooth function of t with
values in D′(X), u(t) is h-tempered uniformly in t ∈ [0, T (h)], and

WFh(u(t)) ⊂ {(x, ξ) | ∃τ : (x, ξ, τ) ∈ W̃Fh(u)},

uniformly in t ∈ [0, T (h)]. One can see this using (4.2.1) and the formula for the Fourier
transform of the restriction w of v ∈ S ′(Rn+1) to the hypersurface {t = 0}:

Fhw(ξ) = (2πh)−1/2

∫
R
Fhv(ξ, τ) dτ.

4.2.2 General assumptions

In this section, we study Lorentzian metrics whose space slice is noncompact, and define
r-normal hyperbolicity and the dynamical quantities νmin, νmax in this case.

Geometric assumptions. We assume that:

(1) (X̃0, g̃) is an n+1 dimensional Lorentzian manifold of signature (1, n), and X̃0 = Rt×X0,
where X0, the space slice, is a manifold without boundary;

(2) the metric g̃ is stationary in the sense that its coefficients do not depend on t, or equiv-
alently, ∂t is a Killing field;

(3) the space slices {t = const} are spacelike, or equivalently, the covector dt is timelike with

respect to the dual metric g̃−1 on T ∗X̃0;

The (nonsemiclassical) principal symbol of the d’Alembert–Beltrami operator �g̃ (without
the negative sign), denoted by p̃(x̃, ξ̃), is

p̃(x̃, ξ̃) = −g̃−1
x̃ (ξ̃, ξ̃), (4.2.2)

here x̃ = (t, x) denotes a point in X̃0 and ξ̃ = (τ, ξ) a covector in T ∗x̃ X̃0. The Hamiltonian

flow of p̃ is the (rescaled) geodesic flow on T ∗x̃ X̃0; we are in particular interested in nontrivial
lightlike geodesics, i.e. the flow lines of Hp̃ on the set {p̃ = 0} \ 0, where 0 denotes the zero
section.

Note that we do not assume that the vector field ∂t is timelike, since this is false inside the
ergoregion for rotating black holes. Because of this, the intersections of the sets {τ = const},
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invariant under the geodesic flow, with the energy surface {p̃ = 0} need not be compact in
the ξ direction, and it is possible that ξ will blow up in finite time along a flow line of Hp̃,
while x stays in a compact subset of X0.1 We consider instead the rescaled flow

ϕ̃s := exp(sHp̃/∂τ p̃) on {p̃ = 0} \ 0. (4.2.3)

Here ∂τ p̃(x̃, ξ̃) = −2g̃−1
x̃ (ξ̃, dt) never vanishes on {p̃ = 0} \ 0 by assumption (3). Since

Hp̃t = ∂τ p̃, the variable t grows linearly with unit rate along the flow ϕ̃s. The flow lines
of (4.2.3) exist for all s as long as x stays in a compact subset of X0. The flow is homogeneous,

which makes it possible to define it on the cosphere bundle S∗X̃0, which is the quotient of
T ∗X̃0\0 by the action of dilations. Finally, the flow preserves the restriction of the symplectic
form to the tangent bundle of {p̃ = 0}.

We next assume the existence of a ‘defining function of infinity’ µ on the space slice with
a concavity property:

(4) there exists a function µ ∈ C∞(X0) such that µ > 0 on X0, for δ > 0 the set

Xδ := {µ > δ} ⊂ X0 (4.2.4)

is compactly contained in X0, and there exists δ0 > 0 such that for each flow line γ(s)

of (4.2.3), and with µ naturally defined on T ∗X̃0,

µ(γ(s)) < δ0, ∂sµ(γ(s)) = 0 =⇒ ∂2
sµ(γ(s)) < 0. (4.2.5)

We now define the trapped set:

Definition 4.2.1. Let γ(s) be a maximally extended flow line of (4.2.3). We say that γ(s)
is trapped as s → +∞, if there exists δ > 0 such that µ(γ(s)) > δ for all s ≥ 0 (and

as a consequence, γ(s) exists for all s ≥ 0). Denote by Γ̃− the union of all γ trapped as

s→ +∞; similarly, we define the union Γ̃+ of all γ trapped as s→ −∞. Define the trapped
set K̃ := Γ̃+ ∩ Γ̃− ⊂ {p̃ = 0} \ 0.

If µ(γ(s)) < δ0 and ∂sµ(γ(s)) ≤ 0 for some s, then it follows from assumption (4) that
γ(s) is not trapped as s→ +∞. Also, if γ(s) is not trapped as s→ +∞, then µ(γ(s)) < δ0

and ∂sµ(γ(s)) < 0 for s > 0 large enough. It follows that Γ̃± are closed conic subsets of

{p̃ = 0} \ 0, and K̃ ⊂ {µ ≥ δ0}.
We next split the light cone {p̃ = 0}\0 into the sets C+ and C− of positively and negatively

time oriented covectors:
C± = {p̃ = 0} ∩ {±∂τ p̃ > 0}. (4.2.6)

Since ∂τ p̃ never vanishes on {p̃ = 0} \ 0 by assumption (3), we have {p̃ = 0} \ 0 = C+ t C−.

We fix the sign of τ on the trapped set, in particular requiring that K̃ ⊂ {τ 6= 0}:
1The simplest example of such behavior is p̃ = xξ2 + 2ξτ − τ2, considering the geodesic starting at

x = t = τ = 0, ξ = 1.
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(5) K̃ ∩ C± ⊂ {±τ < 0}.

Dynamical assumptions. We now formulate the assumptions on the dynamical structure
of the flow (4.2.3). They are analogous to the assumptions of §3.5.1 and related to them

in §4.2.3 below. We start by requiring that Γ̃± are regular:

(6) for a large constant r, Γ̃± are codimension 1 orientable Cr submanifolds of {p̃ = 0} \ 0;

(7) Γ̃± intersect transversely inside {p̃ = 0} \ 0, and the intersections K̃ ∩ {t = const} are

symplectic submanifolds of T ∗X̃0.

We next define a natural invariant decomposition of the tangent space to {p̃ = 0} at K̃. Let

(T Γ̃±)⊥ be the symplectic complement of the tangent space to Γ̃±. Since Γ̃± has codimension

2 and is contained in {p̃ = 0}, (T Γ̃±)⊥ is a two-dimensional vector subbundle of T (T ∗X̃0)
containing Hp̃. Since Hp̃t 6= 0 on {p̃ = 0} \ 0, we can define the one-dimensional vector

subbundles of T (T ∗X̃0)

Ṽ± := (T Γ̃±)⊥ ∩ {dt = 0}. (4.2.7)

Since Γ̃± is a codimension 1 submanifold of {p̃ = 0} and Hp̃ is tangent to Γ̃±, we see that Γ̃±
is coisotropic and then Ṽ± are one-dimensional subbundles of T Γ̃±; moreover, since ∂t ∈ T Γ̃±,
we find Ṽ± ⊂ {dτ = 0}. Since K̃ ∩ {t = const} is symplectic, we have

TK̃Γ̃± = TK̃ ⊕ Ṽ±|K̃ , TK̃ p̃
−1(0) = TK̃ ⊕ Ṽ−|K̃ ⊕ Ṽ+|K̃ . (4.2.8)

Since the flow ϕ̃s from (4.2.3) maps the space slice {t = t0} to {t = t0 +s} and Hp̃ is tangent

to T Γ̃±, we see that the splittings (4.2.8) are invariant under ϕ̃s.
We now formulate the dynamical assumptions on the linearization of the flow ϕ̃s with

respect to the splitting (4.2.8). Define the minimal expansion rate in the transverse direction
νmin as the supremum of all ν for which there exists a constant C such that

sup
ρ̃∈K̃
‖dϕ̃∓s(ρ̃)|V±‖ ≤ Ce−νs, s ≥ 0, (4.2.9)

with ‖ · ‖ denoting any smooth t-independent norm on the fibers of T (T ∗X̃0), homogeneous

of degree zero with respect to dilations on T ∗X̃0. Similarly, define νmax as the infimum of all
ν for which these exists a constant c > 0 such that

inf
ρ̃∈K̃
‖dϕ̃∓s(ρ̃)|V±‖ ≥ ce−νs, s ≥ 0. (4.2.10)

We now formulate the dynamical assumption of r-normal hyperbolicity:

(8) νmin > rµmax, where µmax is the maximal expansion rate of the flow along K̃, defined as
the infimum of all ν for which there exists a constant C such that

sup
ρ̃∈K̃
‖dϕ̃s(ρ̃)|TK̃‖ ≤ Ceνs, s ∈ R. (4.2.11)
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The large constant r determines how many terms we need to obtain in semiclassical expan-
sions, and how many derivatives of these terms need to exist – see Chapter 3. Theorem 4.3
simply needs r to be large (in principle, depending on the dimension), while Theorems 4.1
and 4.2 require r to be large enough depending on N, T . For exact Kerr(–de Sitter) metrics,
our assumptions are satisfied for all r, but a small perturbation will satisfy them for some
fixed large r depending on the size of the perturbation.

4.2.3 Reduction to the space slice

We now put a Lorentzian manifold (X̃0, g̃) satisfying assumptions of §4.2.2 into the framework
of Chapter 3. Consider the stationary d’Alembert–Beltrami operator Pg̃(ω), ω ∈ C, the
second order semiclassical differential operator on the space slice X0 obtained by replacing
hDt by −ω in the semiclassical d’Alembert–Beltrami operator h2�g̃. The principal symbol
of Pg̃(ω) is given by

p(x, ξ;ω) = p̃(t, x,−ω, ξ),

where p̃ is defined in (4.2.2) and the right-hand side does not depend on t. We will show
that the operator Pg̃(ω) satisfies a subset of the assumptions of §§3.4.1, 3.5.1.

First of all, we need to understand the solutions in ω to the equation p = 0. Let

p(x, ξ) ∈ C∞(T ∗X0 \ 0)

be the unique real solution ω to the equation p(x, ξ;ω) = 0 such that (t, x,−ω, ξ) ∈ C+, with
the positive time oriented light cone C+ defined in (4.2.6). The existence and uniqueness of
such solution follows from assumption (3) in §4.2.2, and we also find from the definition of
C+ that

∂ωp(x, ξ; p(x, ξ)) < 0, (x, ξ) ∈ T ∗X0 \ 0. (4.2.12)

We can write C+ as the graph of p:

C+ = {(t, x,−p(x, ξ), ξ) | t ∈ R, (x, ξ) ∈ T ∗X0 \ 0}.

The level sets of p are not compact if ∂t is not timelike. To avoid dealing with the fiber
infinity, we use assumption (5) in §4.2.2 to identify a bounded region in T ∗X0 invariant
under the flow and containing the trapped set:

Lemma 4.2.2. There exists an open conic subset W ⊂ C+, independent of t, such that
K̃ ∩C+ ⊂ W, the closure of W in C+ is contained in {τ < 0}, and W is invariant under the
flow (4.2.3).

Proof. Consider a conic neighborhoodW0 of K̃∩C+ in C+ independent of t and such that the
closure of W0 is contained in {µ > δ0/2} ∩ {τ < 0}; this is possible by assumption (5) and

since K̃ is contained in {µ ≥ δ0}. Let W ⊂ C+ be the union of all maximally extended flow

lines of (4.2.3) passing throughW0. ThenW is an open conic subset of C+ containing K̃∩C+
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and invariant under the flow (4.2.3). It remains to show that each point (x̃, ξ̃) ∈ C+∩{τ ≥ 0}
has a neighborhood that does not intersect W . To see this, note that the corresponding
trajectory γ(s) of (4.2.3) does not lie in Γ̃+ ∪ Γ̃− (as otherwise, the projection of γ(s) onto

the cosphere bundle would converge to K̃ as s → +∞ or s → −∞, by Lemma 3.4.1; it
remains to use assumption (5) and the fact that τ is constant on γ(s)). We then see that
γ(s) escapes for both s → +∞ and s → −∞ and does not intersect the closure of W0 and
same is true for nearby trajectories; therefore, a neighborhood of (x̃, ξ̃) does not intersect
W .

Arguing similarly (using an open conic subset W ′0 of C+ such that W0 ⊂ W ′0 and W ′0 ⊂
{µ > δ0/2} ∩ {τ < 0}), we construct an open conic subset W ′ of C+ independent of t and
such that

K̃ ∩ C+ ⊂ W , W ⊂W ′, W ′ ⊂ {τ < 0},
and W ,W ′ are invariant under the flow (4.2.3). Now, take small δ1 > 0 and define

Ũ := C+ ∩ {|1 + τ | < δ1} ∩W ∩ {µ > δ1},
Ũ ′ := C+ ∩ {|1 + τ | < 2δ1} ∩W ′ ∩ {µ > δ1/2}.

(4.2.13)

Then Ũ , Ũ ′ are open subsets of C+ convex under the flow (4.2.3), K̃ ∩ {|1 + τ | < δ1} ⊂ Ũ
(note that K̃ ∩ {τ < 0} ⊂ C+ by assumption (5)), and the closure of Ũ is contained in Ũ ′.
Moreover, the projections of U ,U ′ onto the (x, τ, ξ) variables are bounded because W ,W ′
are conic and W ,W ′ ⊂ {τ 6= 0}.

Let U b U ′ b T ∗X0 be the projections of Ũ , Ũ ′ onto the (x, ξ) variables, so that

Ũ = {(t, x,−p(x, ξ), ξ) | t ∈ R, (x, ξ) ∈ U},

and similarly for U ′. Note that U ⊂ {|p − 1| < δ1} and U ′ ⊂ {|p − 1| < 2δ1}. Since U ′ is
bounded, and by (4.2.12), for δ1 > 0 small enough and (x, ξ) ∈ U ′, p(x, ξ) is the only solution
to the equation p(x, ξ;ω) = 0 in {ω ∈ C | |ω − 1| < 2δ1}.

We now study the Hamiltonian flow of p. Since

∂x,ξp(x, ξ) = −∂x,ξp(x, ξ, p(x, ξ))

∂ωp(x, ξ, p(x, ξ))
,

and for each t,
−∂ωp(x, ξ, p(x, ξ)) = ∂τ p̃(t, x,−p(x, ξ), ξ),

we see that the flow of Hp is the projection of the rescaled geodesic flow (4.2.3) on C+: for
(x, ξ) ∈ T ∗X0 \ 0,

ϕ̃s(t, x,−p(x, ξ), ξ) = (t+ s, x(s),−p(x, ξ), ξ(s)), (x(s), ξ(s)) = esHp(x, ξ). (4.2.14)

We now verify some of the assumptions of §3.4.1. We let X be an n-dimensional manifold
containing X0 (for the Kerr–de Sitter metric it is constructed in §4.3.5) and consider the
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volume form dVol on X0 related to the volume form d Ṽol on X̃0 generated by g̃ by the
formula d Ṽol = dt∧ dVol. The operator Pg̃(ω) is a semiclassical pseudodifferential operator
depending holomorphically on ω ∈ Ω := {|ω − 1| < 2δ1} and p is its semiclassical principal
symbol. We do not specify the spaces H1,H2 here and do not establish any mapping or
Fredholm properties of Pg̃(ω); for our specific applications it is done in §4.3.5. Except for
these mapping properties, the assumptions (1), (2), and (5)–(9) of §3.4.1 are satisfied, with
U ,U ′ defined above, [α0, α1] := [1 − δ1/2, 1 + δ1/2], and the incoming/outgoing tails Γ± on
the space slice given by (for each t)

Γ± = {(x, ξ) | (t, x,−p(x, ξ), ξ) ∈ Γ̃± ∩ {|1 + τ | ≤ δ1} ∩W ∩ {µ ≥ δ1}}, (4.2.15)

and similarly for the trapped set K = Γ+ ∩ Γ−.
Finally, the dynamical assumptions of §3.5.1 are also satisfied, as follows directly from

(4.2.14) and the dynamical assumptions of §4.2.2. Note that the subbundles V± of TΓ±
defined in §3.5.1 coincide with the subbundles Ṽ± of T Γ̃± defined in §4.2.7 under the iden-
tification T(x,ξ)(T

∗X0) ' T(t,x,−p(x,ξ),ξ)(T
∗X̃0) ∩ {dt = dτ = 0}, and the expansion rates

νmin, νmax, µmax defined in (4.2.9)–(4.2.11) coincide with those defined in (3.5.1)–(3.5.3).
To relate the constants for the Weyl laws in Theorem 4.3 and Theorem 3.2, we note that

for [a, b] ⊂ (1− δ1/2, 1 + δ1/2),

Volσ(K ∩ p−1[a, b]) = Volσ̃(K̃ ∩ {a ≤ −τ ≤ b} ∩ {t = const}).

Here Volσ and Volσ̃ stand for symplectic volume forms of order 2n− 2 on T ∗X0 and T ∗X̃0,
respectively. The constant cK̃ from Theorem 4.3 is then given by

cK̃ = Volσ̃(K̃ ∩ {0 ≤ τ ≤ 1} ∩ {t = const}). (4.2.16)

4.2.4 Applications to linear waves

In this section, we apply the results of Chapter 3 to understand the decay properties of linear
waves; Theorem 4.4 below forms the base for the proofs of Theorems 4.1 and 4.2 in §4.3.4.

Consider a family of approximate solutions u(h) ∈ D′((−1, T (h) + 1)t ×X0) to the wave
equation

h2�g̃u(h) = O(h∞)C∞ . (4.2.17)

Here h � 1 is the semiclassical parameter and T (h) > 0 depends on h (for our particular
application, T (h) = T log(1/h) for some constant T ). We assume that u is h-tempered
uniformly in t, as defined in §4.2.1. Then by the elliptic estimate (see for instance Proposi-
tion 3.3.2), u is microlocalized on the light cone:

W̃Fh(u) ⊂ {p̃ = 0}, (4.2.18)

where W̃Fh(u) is defined in §4.2.1. By the restriction statement in §4.2.1, u is a smooth
function of t with values in h-tempered distributions on X0. Moreover, we obtain for 0 <
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Figure 4.3: The phase space picture of the flow, showing shaded WFh(u(t)) for (a) all t and
(b) all t ≥ t1, for u satisfying Definition 4.2.3. The horizontal axis corresponds to µ.

δ1 < δ2 small enough and each t0 ∈ [0, T (h)],

‖u(t0)‖H1
x(Xδ2 ) ≤ C‖u‖H1

t,x([t0−1,t0+1]×Xδ1 ) +O(h∞),

‖u‖L2
t [t0−1,t0+1]L2

x(Xδ1 ) ≤ C‖u‖L∞t [t0−1,t0+1]L2
x(Xδ1 ) +O(h∞).

(4.2.19)

The second of these inequalities is trivial; the first one is done by applying the standard
energy estimate for the wave equation to the function χ(t− t0)u, with χ ∈ C∞0 (−ε, ε) equal
to 1 near 0 and ε > 0 small depending on δ1, δ2.

We furthermore restrict ourselves to the following class of outgoing solutions, see Fig-
ure 4.3(a):

Definition 4.2.3. Fix small δ1 > 0. A solution u to (4.2.17), h-tempered uniformly in

t ∈ (−1, T (h)+1), is called outgoing, if its projected wavefront set W̃Fh(u), defined in §4.2.1,

satisfies (for Ũ defined in (4.2.13))

W̃Fh(u) ∩ {µ > δ1} ⊂ Ũ ∩ {|τ + 1| < δ1/4}, (4.2.20)

W̃Fh(u) ∩ {δ1 ≤ µ ≤ 2δ1} ⊂ {Hp̃µ ≤ 0}. (4.2.21)

The main result of this section is

Theorem 4.4. Fix T,N, ε > 0 and let the assumptions of §4.2.2 hold, including r-normal hy-
perbolicity with r large depending on T,N . Assume that u is an outgoing solution to (4.2.17),
for t ∈ (−1, T log(1/h) + 1), and ‖u(t)‖H−Nh (Xδ1/2) = O(h−N) uniformly in t. Then for t0
large enough and independent of h, we can write

u(t, x) = uΠ(t, x) + uR(t, x), t0 ≤ t ≤ T log(1/h),
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such that h2�g̃uΠ, h
2�g̃uR are O(hN)HN

h
on Xδ1 and, with ‖ · ‖E defined in (4.1.4),

‖uΠ(t0)‖E ≤ Ch−1/2‖u(0)‖E +O(hN), (4.2.22)

‖uΠ(t)‖E ≤ Ce−(νmin−ε)t/2‖uΠ(t0)‖E +O(hN), (4.2.23)

‖uΠ(t)‖E ≥ C−1e−(νmax+ε)t/2‖uΠ(t0)‖E −O(hN), (4.2.24)

‖uR(t)‖E ≤ Ch−1e−(νmin−ε)t‖u(0)‖E +O(hN), (4.2.25)

‖u(t)‖E ≤ Ceεt‖u(0)‖E +O(hN), (4.2.26)

all uniformly in t ∈ [t0, T log(1/h)].

For the proof, we assume that the metric is r-normally hyperbolic for all r, and prove the
bounds for all T,N (so that O(hN) becomes O(h∞)); since semiclassical arguments require
finitely many derivatives to work, the statement will be true for r large depending on T and
N .

We first recall the factorization of Lemma 3.4.3:

Pg̃(ω) = S(ω)(P − ω)S(ω) +O(h∞) microlocally near U , (4.2.27)

where S(ω) is a family of pseudodifferential operators elliptic near U , and such that S(ω)∗ =
S(ω) for ω ∈ R, and P is a self-adjoint pseudodifferential operator, moreover we assume
that it is compactly supported and compactly microlocalized. If we define the self-adjoint
pseudodifferential operator S̃ on X̃0 by replacing ω by −hDt in S(ω), then we get

h2�g̃ = S̃(hDt + P )S̃ +O(h∞) microlocally near Ũ . (4.2.28)

We define
u(t) := (S̃u)(t), 0 ≤ t ≤ T log(1/h),

note that u(t) and its t-derivatives are bounded uniformly in t with values in h-tempered
distributions on X0 by the discussion of restrictions to space slices in §4.2.1 and by (4.2.18).
We have by (4.2.17), (4.2.20), (4.2.21), and (4.2.28),

(hDt + P )u(t) = O(h∞) microlocally near Xδ1 , (4.2.29)

WFh(u(t)) ∩Xδ1 ⊂ {|p− 1| < δ1/4}, (4.2.30)

WFh(u(t)) ∩ {δ1 ≤ µ ≤ 2δ1} ⊂ {Hpµ ≤ 0}, (4.2.31)

uniformly in t ∈ [0, T log(1/h)].
We next use the construction of Lemma 3.5.1, which (combined with the homogeneity

of the flow) gives functions ϕ± defined in a conic neighborhood of K in T ∗X0, such that
Γ± = {ϕ± = 0} in this neighborhood, ϕ± are homogeneous of degree zero, and

Hpϕ± = ∓c±ϕ±, νmin − ε < c± < νmax + ε, (4.2.32)
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where c± are some smooth functions on the domain of ϕ±. Then for small δ > 0,

Uδ := {|ϕ+| ≤ δ, |ϕ−| ≤ δ}

is a small closed conic neighborhood of K in T ∗X0 \ 0.
We now fix δ small enough so that Theorem 3.3 in §3.7.1 and Proposition 3.7.1 apply,

giving a Fourier integral operator Π ∈ Icomp(Λ◦) which satisfies the equations

Π2 = Π +O(h∞), [P,Π] = O(h∞) (4.2.33)

microlocally near the set Ŵ × Ŵ , with

Ŵ := Uδ ∩ {|p− 1| ≤ δ1/2}. (4.2.34)

Here Λ◦ ⊂ Γ− ∩ Γ+ is the canonical relation defined in (3.5.12). Also, we define

W ′ := Uδ/2 ∩ {|p− 1| ≤ δ1/4}. (4.2.35)

We now derive certain conditions on the microlocalization of u for large enough times,
see Figure 4.3(b) (compare with Figure 3.5):

Proposition 4.2.4. For t1 large enough independent of h, the function u(t) satisfies

WFh(u(t)) ∩ Ŵ ⊂ {|ϕ+| < δ/2}, (4.2.36)

WFh(u(t)) ∩ Γ− ⊂ W ′, (4.2.37)

uniformly in t ∈ [t1, T log(1/h)].

Proof. Consider (x, ξ) ∈ WFh(u(t)) ∩ X2δ1 for some t ∈ [t1, T log(1/h)]. Put γ(s) =
esHp(x, ξ). Then by propagation of singularities (see for example Proposition 3.3.4) for
the equation (4.2.29), we see that either there exists s0 ∈ [−t1, 0] such that γ(s0) ∈ {δ1 ≤
µ ≤ 2δ1} ∩WFh(u(t + s0)), or γ(s) ∈ X2δ1 for all s ∈ [−t1, 0]. However, in the first of
these two cases, by (4.2.31) we have γ(s0) ∈ {µ ≤ 2δ1} ∩ {Hpµ ≤ 0}, which implies that
γ(0) ∈ {µ ≤ 2δ1} by assumption (4) in §4.2.2, a contradiction. Therefore,

etHp(x, ξ) ∈ X2δ1 , t ∈ [−t1, 0].

It remains to note that for t1 large enough,

e−t1Hp(Ŵ ∩ {|ϕ+| ≥ δ/2}) ∩X2δ1 = ∅;
et1Hp(Γ− ∩ {|p− 1| < δ1/4} ∩X2δ1) ⊂ W ′;

the first of these statements follows from the fact that Ŵ ∩ {|ϕ+| ≥ δ/2} is a compact set
not intersecting Γ+, and the second one, from Lemma 3.4.1.
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By (4.2.29), (4.2.33), and (4.2.37), and since WFh(Π) ⊂ Γ− × Γ+ we have uniformly in
t ∈ [t1, T log(1/h)],

(hDt + P )Πu(t) = O(h∞) microlocally near Ŵ . (4.2.38)

By Proposition 3.6.1 and §3.6.2, we have

‖Πu(t)‖L2 ≤ Ch−1/2‖u(t)‖L2 . (4.2.39)

We now use the methods of §3.8 to prove a microlocal version of Theorem 4.4 near the
trapped set:

Proposition 4.2.5. There exist compactly supported A0, A1 ∈ Ψcomp(X0) microlocalized

inside Ŵ , elliptic on W ′, and such that for t ∈ [t1, T log(1/h)],

‖A0Πu(t)‖L2 ≤ Ce−(νmin−ε)t/2‖A0Πu(t1)‖L2 +O(h∞), (4.2.40)

‖A0Πu(t)‖L2 ≥ C−1e−(νmax+ε)t/2‖A0Πu(t1)‖L2 −O(h∞), (4.2.41)

‖A1(1− Π)u(t)‖L2 ≤ Ch−1e−(νmin−ε)t‖A0u(t1)‖L2 +O(h∞), (4.2.42)

‖A1u(t)‖L2 ≤ Ceεt‖A0u(t1)‖L2 +O(h∞). (4.2.43)

Proof. We will use the operators Θ±,Ξ constructed in Proposition 3.7.1. The microlocaliza-
tion statements we make will be uniform in t ∈ [t1, T log(1/h)].

We first prove (4.2.42), following the proof of Proposition 3.8.1. Put

v(t) := Ξu(t).

Then similarly to (3.8.14), we find

(1− Π)u(t) = Θ−v(t) +O(h∞) microlocally near Ŵ .

By (4.2.29) and (4.2.38),

(hDt + P )(1− Π)u(t) = O(h∞) microlocally near Ŵ .

Similarly to Proposition 3.8.3, we use the commutation relation [P,Θ−] = −ihΘ−Z−+O(h∞)
together with propagation of singularities for the operator Θ− to find

(hDt + P − ihZ−)v(t) = O(h∞) microlocally near Ŵ . (4.2.44)

Here Z− ∈ Ψcomp(X0) satisfies σ(Z−) = c− near Ŵ .

Let X− ∈ Ψcomp(X0) be the operator used in §3.8.2, satisfying WFh(X−) b Ŵ , σ(X−) ≥ 0
everywhere, and σ(X−) > 0 on W ′. Similarly to (3.8.18), we get

1

2
∂t〈X−v(t),v(t)〉+ 〈Y−v(t),v(t)〉 = O(h∞), (4.2.45)
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where

Y− =
1

2
(Z∗−X− + X−Z−) +

1

2ih
[P,X−]

satisfies WFh(Y−) b Ŵ , and similarly to (3.8.19) we have

σ(Y−) ≥ (νmin − ε)σ(X−) near WFh(v(t)),

and the inequality is strict on W ′. Similarly to Lemma 3.8.4, by sharp G̊arding inequality
we get

〈(Y− − (νmin − ε)X−)v(t),v(t)〉 ≥ ‖A1v(t)‖2
L2 − Ch‖A′0v(t)‖2

L2 −O(h∞) (4.2.46)

for an appropriate choice of A1 and some A′0 ∈ Ψcomp(X0) microlocalized inside Ŵ . Also
similarly to Lemma 3.8.4, by propagation of singularities for the equation (4.2.44) we get for
t1 large enough,

‖A′0v(t)‖2
L2 ≤ C‖A0v(t1)‖2

L2 +O(h∞), t ∈ [t1, 2t1], (4.2.47)

‖A′0v(t)‖2
L2 ≤ C‖A1v(t− t1)‖2

L2 +O(h∞), t ≥ 2t1, (4.2.48)

for an appropriate choice of A0. By (4.2.45) and (4.2.46), we see that

〈X−v(t),v(t)〉 ≤ Ce−2(νmin−ε)t〈X−v(t1),v(t1)〉 − C−1

∫ t

t1

e−2(νmin−ε)(t−s)‖A1v(s)‖2
L2 ds

+Ch

∫ t

t1

e−2(νmin−ε)(t−s)‖A′0v(s)‖2
L2 ds+O(h∞).

Breaking the second integral on the right-hand side in two pieces and estimating each of
them separately by (4.2.47) and (4.2.48), we get for an appropriate choice of A0,

〈X−v(t),v(t)〉 ≤ Ce−2(νmin−ε)t‖A0v(t1)‖2
L2 +O(h∞).

We can moreover assume that X− has the form A∗1A1 + X ∗1X1 +O(h∞) for some pseudodif-
ferential operator X1; this can be arranged since σ(X−) > 0 on WFh(A1) and the argument
of §3.8.2 only depends on the principal symbol of X−, which can be taken to be the square
of a smooth function. Then ‖A1v(t)‖2

L2 ≤ 〈X−v(t),v(t)〉+O(h∞) and we get

‖A1v(t)‖L2 ≤ Ce−(νmin−ε)t‖A0v(t1)‖L2 +O(h∞). (4.2.49)

To prove (4.2.42), it remains to note that (1−Π)u(t) = v(t) +O(h∞) microlocally near Ŵ
and ‖v(t1)‖L2 ≤ Ch−1‖u(t1)‖L2 by part 1 of Proposition 3.6.12.

To prove (4.2.43), we argue similarly to (4.2.45), but use the equation (4.2.29) instead
of (4.2.44). We get

1

2
∂t〈X−u(t),u(t)〉+ 〈Y ′−u(t),u(t)〉 = O(h∞),
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where

Y ′− =
1

2ih
[P,X−]

satisfies WFh(Y ′−) b Ŵ and

σ(Y ′−) ≥ −εσ(X−) near WFh(u(t)),

and the inequality is strict on W ′. The remainder of the proof of (4.2.43) proceeds exactly
as the proof of (4.2.49).

Finally, we prove (4.2.40) and (4.2.41), following the proof of Proposition 3.8.2. Let

X+ ∈ Ψcomp(X0) be the operator defined in §3.8.3, satisfying in particular WFh(X+) b Ŵ ,
σ(X+) ≥ 0 everywhere, and σ(X+) > 0 on W ′. Similarly to (3.8.33), we get from (4.2.38)
that for an appropriate choice of A0,

1

2
∂t〈X+Πu(t),Πu(t)〉+ 〈Z+Πu(t),Πu(t)〉 = O(h)‖A0Πu(t)‖2

L2 +O(h∞), (4.2.50)

where Z+ ∈ Ψcomp(X0), WFh(Z+) b Ŵ ,

νmin − ε
2

σ(X+) ≤ σ(Z+) ≤ νmax + ε

2
σ(X+) near WFh(Πu(t)),

and both inequalities are strict on W ′ ∩WFh(Πu(t)). By Lemma 3.8.7, we deduce that

〈Z+Πu(t),Πu(t)〉 ≥ νmin − ε
2

〈X+Πu(t),Πu(t)〉+ ‖A0Πu(t)‖2
L2 −O(h∞),

〈Z+Πu(t),Πu(t)〉 ≤ νmax + ε

2
〈X+Πu(t),Πu(t)〉 − ‖A0Πu(t)‖2

L2 +O(h∞)

By (4.2.50), we find

(∂t + (νmin − ε))〈X+Πu(t),Πu(t)〉 ≤ O(h∞),

(∂t + (νmax + ε))〈X+Πu(t),Πu(t)〉 ≥ −O(h∞).

Therefore,

〈X+Πu(t),Πu(t)〉 ≤ Ce−(νmin−ε)t〈X+Πu(t1),Πu(t1)〉+O(h∞),

〈X+Πu(t),Πu(t)〉 ≥ C−1e−(νmax+ε)t〈X+Πu(t1),Πu(t1)〉 − O(h∞).

To prove (4.2.39) and (4.2.40), it remains to note that

〈X+Πu(t),Πu(t)〉 ≥ C−1‖A0Πu(t)‖2
L2 −O(h∞),

〈X+Πu(t),Πu(t)〉 ≤ C‖A0Πu(t)‖2
L2 +O(h∞);

the first of these statements follows by Lemma 3.8.7 and the second one is arranged by
choosing A0 to be elliptic on WFh(X+).
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Proof of Theorem 4.4. To construct the component uΠ(t), we use Πu(t) together with the
Schrödinger propagator e−itP/h. Since P ∗ = P and P is compactly supported and compactly
microlocalized, the operator e−itP/h quantizes the flow etHp in the sense of Proposition 3.3.1.
Since WFh(Πu(t)) ⊂ Γ+, we have by (4.2.38),

(hDt + P )e−it1P/hΠu(t) = O(h∞) on Xδ1 , t ≥ t1, (4.2.51)

if t1 is large enough so that

e−t1Hp(Γ+ ∩Xδ1 ∩ {|p− 1| < δ1/4}) ⊂ W ′; (4.2.52)

such t1 exists by Lemma 3.4.1. We then take an elliptic parametrix S̃ ′ of S̃ near Ũ (see
Proposition 3.3.3) and define

uΠ(t) := S̃ ′(e−it1P/hΠu(t− t1)), t ∈ [t0 − 1, T log(1/h)], t0 := 2t1 + 1. (4.2.53)

Then by (4.2.28) and (4.2.51) we get

h2�g̃uΠ = O(h∞) on Xδ1 ,

uniformly in t ∈ [t0, T log(1/h)]. Put

uR(t) := u(t)− uΠ(t), t ∈ [t0, T log(1/h)],

then h2�g̃uR = O(h∞) on Xδ1 as well.
It remains to prove (4.2.22)–(4.2.26). Since WFh(Πu(t)) ⊂ Γ+ and by (4.2.52), we find

‖S̃uΠ(t)‖L2(Xδ1 ) ≤ C‖A0Πu(t− t1)‖L2 +O(h∞);

here A0 is the operator from Proposition 4.2.5. Since [P,Π] = O(h∞) microlocally near

Ŵ × Ŵ , and by (4.2.29) and (4.2.37) (replacing t1 by s ∈ [0, t1] in the definition of uΠ and
differentiating in s) we get

S̃uΠ(t) = Πu(t) +O(h∞) microlocally near Ŵ . (4.2.54)

Therefore,
‖A0Πu(t)‖L2 ≤ C‖S̃uΠ(t)‖L2(Xδ1 ) +O(h∞).

Next, by (4.2.21) each backwards flow line of etHp starting in X2δ1 either stays forever in X2δ1

or reaches the complement of WFh(u(t)) – see the proof of Proposition 4.2.4. By propagation
of singularities for the equation (4.2.29), we find

‖Au(t1)‖L2 ≤ C‖u(0)‖L2(Xδ1 ) +O(h∞), A ∈ Ψcomp(X2δ1).

Also, for t1 large enough, each flow line γ(t), t ∈ [−t1, 0], of Hp such that γ(0) ∈ Xδ1 either
satisfies γ(−t1) ∈ W ′ and γ([−t1, 0]) ⊂ Xδ1 , or there exists s ∈ [−t1, 0] such that γ(s) 6∈
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WFh(u(t)) for t ∈ [t1, T log(1/h)] and γ([s, 0]) ⊂ Xδ1 . This is true since if γ(s) ∈WFh(u(t)),
then γ([s− t1, s]) ⊂ Xδ1 , see the proof of Proposition 4.2.4. By propagation of singularities
for (4.2.29), we get

‖u(t)‖L2(Xδ1 ) ≤ C‖A1u(t− t1)‖L2 +O(h∞), t ∈ [2t1, T log(1/h)]. (4.2.55)

By (4.2.29) and (4.2.51), we have (hDt + P )(S̃uR(t)) = O(h∞) on Xδ1 . Using propagation
of singularities for this equation in a manner similar to (4.2.55), we obtain by (4.2.54)

‖S̃uR(t)‖L2(Xδ1 ) ≤ C‖A1(1− Π)u(t− t1)‖L2 +O(h∞), t ∈ [2t1, T log(1/h)].

Combining these estimates with (4.2.39)–(4.2.43), we arrive to

‖S̃uΠ(t0)‖L2(Xδ1 ) ≤ Ch−1/2‖u(0)‖L2(Xδ1 ) +O(h∞),

‖S̃uΠ(t)‖L2(Xδ1 ) ≤ Ce−(νmin−ε)t/2‖S̃uΠ(t0)‖L2(Xδ1 ) +O(h∞),

‖S̃uΠ(t)‖L2(Xδ1 ) ≥ C−1e−(νmax+ε)t/2‖S̃uΠ(t0)‖L2(Xδ1 ) −O(h∞),

‖S̃uR(t)‖L2(Xδ1 ) ≤ Ch−1e−(νmin−ε)t‖u(0)‖L2(Xδ1 ) +O(h∞),

‖u(t)‖L2(Xδ1 ) ≤ Ceεt‖u(0)‖L2(Xδ1 ) +O(h∞),

holding uniformly in t ∈ [t0 − 1, T log(1/h)]. To obtain (4.2.22)–(4.2.26) from here, we need

to remove the operator S̃ from the estimates; for that, we can use the fact that S̃ is bounded
uniformly in h on L2

t,x together with the equivalency of the norms h‖ · ‖L∞t Ex and ‖ · ‖L2
t,x

for

solutions of the wave equation (4.2.17) given by (4.2.19) and the functions of interest being
microlocalized at frequencies ∼ h−1.

4.3 Applications to Kerr(–de Sitter) metrics

4.3.1 General properties

The Kerr(–de Sitter) metric in the Boyer–Lindquist coordinates is given by the formulas [20]

g = −ρ2
(dr2

∆r

+
dθ2

∆θ

)
− ∆θ sin2 θ

(1 + α)2ρ2
(a dt− (r2 + a2)dϕ)2

+
∆r

(1 + α)2ρ2
(dt− a sin2 θ dϕ)2.

Here M > 0 denotes the mass of the black hole, a its angular speed of rotation, and Λ ≥ 0
is the cosmological constant (with Λ = 0 in the Kerr case and Λ > 0 in the Kerr–de Sitter
case);

∆r = (r2 + a2)
(

1− Λr2

3

)
− 2Mr, ∆θ = 1 + α cos2 θ,

ρ2 = r2 + a2 cos2 θ, α =
Λa2

3
.
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The metric is originally defined on

X̃0 := Rt ×X0, X0 := (r−, r+)r × S2,

here θ ∈ [0, π] and ϕ ∈ S1 = R/(2πZ) are the spherical coordinates on S2. The numbers r− <
r+ are the roots of ∆r defined below; in particular, ∆r > 0 on (r−, r+) and ±∂r∆r(r±) < 0.
The metric becomes singular on the surfaces {r = r±}, known as the event horizons ; however,
this can be fixed by a change of coordinates, see §4.3.4.

The Kerr(–de Sitter) family admits the scaling M 7→ sM,Λ 7→ s−2Λ, a 7→ sa, r 7→ sr, t 7→
st for s > 0; therefore, we often consider the parameters a/M and ΛM2 invariant under this
scaling. We assume that a/M,ΛM2 lie in a neighborhood of the Schwarzschild(–de Sitter)
case (4.1.1) or the Kerr case (4.1.2). Then for Λ > 0, ∆r is a degree 4 polynomial with real
roots r1 < r2 < r− < r+, with r− > M . For Λ = 0, ∆r is a degree 2 polynomial with real
roots r1 < M < r−; we put r+ = ∞. The general set of Λ and a for which ∆r has all real
roots as above was studied numerically in [2, §3], and is pictured on Figure 4.1(a) in the
introduction. Note that in [2], the roots are labeled r−− < r− < r+ < rC ; we do not adopt
this (perhaps more standard) convention in favor of the notation of the previous chapters
and [128], and since the roots r1, r2 are irrelevant in our analysis.

The symbol p̃ defined in (4.2.2) using the dual metric is (denoting by τ the momentum
corresponding to t)

p̃ = ρ−2G, G = Gr +Gθ,

Gr = ∆rξ
2
r −

(1 + α)2

∆r

((r2 + a2)τ + aξϕ)2,

Gθ = ∆θξ
2
θ +

(1 + α)2

∆θ sin2 θ
(a sin2 θ τ + ξϕ)2.

Note that
∂(t,ϕ,θ,ξθ)Gr = 0, ∂(t,ϕ,r,ξr)Gθ = 0, (4.3.1)

therefore {Gr, Gθ} = 0 and Gθ, τ, ξϕ are conserved quantities for the geodesic flow (4.2.3).
To handle the poles {θ = 0} and {θ = π}, where the spherical coordinates (θ, ϕ) break

down, introduce new coordinates (in a neighborhood of either of the poles)

x1 = sin θ cosϕ, x2 = sin θ sinϕ; (4.3.2)

note that sin2 θ = x2
1 + x2

2 is a smooth function in this coordinate system. For the corre-
sponding momenta ξ1, ξ2, we have

ξθ = (x1ξ1 + x2ξ2) cot θ, ξϕ = x1ξ2 − x2ξ1,

note that ξϕ is a smooth function vanishing at the poles. Then Gr, Gθ are smooth functions
near the poles, with

Gθ = (1 + α)(ξ2
1 + ξ2

2) when x1 = x2 = 0. (4.3.3)
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The vector field ∂t is not timelike inside the ergoregion, described by the inequality

∆r ≤ a2∆θ sin2 θ. (4.3.4)

For a 6= 0, this region is always nonempty. However, the covector dt is always timelike:

G|ξ=dt = (1 + α)2
(a2 sin2 θ

∆θ

− (r2 + a2)2

∆r

)
< 0, (4.3.5)

since ∆r < r2 + a2.
We now verify the geometric assumptions (1)–(4) of §4.2.2. Assumptions (1)–(3) have

been established already; assumption (4) is proved by

Proposition 4.3.1. Consider the function µ(r) ∈ C∞(r−, r+) defined by

µ(r) :=
∆r(r)

r4
. (4.3.6)

Then there exists δ0 > 0 such that for each (x̃, ξ̃) ∈ T ∗X̃0,

µ(x̃) < δ0, ξ̃ 6= 0, p̃(x̃, ξ̃) = 0, Hp̃µ(x̃, ξ̃) = 0 =⇒ H2
p̃µ(x̃, ξ̃) < 0. (4.3.7)

Moreover, δ0 can be chosen to depend continuously on M,Λ, a.

Proof. First of all, we calculate

∂rµ(r) = −4∆r − r∂r∆r

r5
, 4∆r − r∂r∆r = 2((1− α)r2 − 3Mr + 2a2), (4.3.8)

therefore ∂rµ(r) < 0 for α ≤ 1/2 and r > 6M . Since ∂r∆r(r±) 6= 0, we see that for δ0 small
enough and µ(r) < δ0, we have ∂rµ(r) 6= 0. Therefore, we can replace the condition Hp̃µ = 0
in (4.3.7) by Hp̃r = 0, which implies that ξr = 0; in this case, H2

p̃µ has the same sign as
−∂rµ∂rGr. We calculate for ξr = 0,

∂rGr = −(1 + α)2((r2 + a2)τ + aξϕ)

∆2
r

Ψ(r),

Ψ(r) := 4rτ∆r − ((r2 + a2)τ + aξϕ)∂r∆r.

(4.3.9)

Next, denote
A := (r2 + a2)τ + aξϕ, B := a sin2 θ τ + ξϕ, (4.3.10)

then

ρ2τ = A− aB, Ψ =
(4r∆r − ρ2∂r∆r)A− 4ar∆rB

ρ2
. (4.3.11)

Using the equation p̃ = 0, we get

A2

∆r

≥ B2

∆θ sin2 θ
on {p̃ = ξr = 0} ∩ {0 < θ < π}. (4.3.12)
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Since ∆θ sin2 θ ≤ 1 everywhere for α ≤ 1, and B = 0 for sin θ = 0, we find

A2 ≥ ∆rB
2. (4.3.13)

In particular, we see that A 6= 0, since otherwise B = 0, implying that τ = ξϕ = 0 and thus
ξ̃ = 0 since p̃ = ξr = 0. Now, H2

p̃µ has the same sign as

∂rµ((4r∆r − ρ2∂r∆r)A
2 − 4ar∆rAB). (4.3.14)

We now calculate by (4.3.8) and since ∂r∆r ≤ 2r, for α ≤ 1/2

4r∆r − ρ2∂r∆r = 2r((1− α)r2 − 3Mr + 2a2)− a2 cos2 θ∂r∆r

≥ r(r2 − 6Mr + 2a2),

and thus, since ∆r ≤ r2 + a2 and |a| < M , and by (4.3.13),

(4r∆r − ρ2∂r∆r)A
2 − 4ar∆rAB ≥ A2r(r2 − 6Mr + 2a2 − 4|a|

√
∆r)

≥ A2r(r2 − 10Mr − 4M2).

We see that (4.3.7) holds for r large enough, namely r > 14M .
We now assume that r ≤ 14M and µ < δ0. Then (here the constants do not depend on

δ0 and are locally uniform in M,Λ, a)

∆r = O(δ0), |∂r∆r| ≥ C−1, ∂rµ = r−4∂r∆r +O(δ0).

Then for δ0 small enough, by (4.3.13) the expression (4.3.14) has the same sign as

A2∂r∆r(−ρ2∂r∆r +O(
√
δ0)) < 0,

as required.

4.3.2 Structure of the trapped set

We now study the structure of trapping for Kerr(–de Sitter) metrics, summarized in the
following

Proposition 4.3.2. For (ΛM2, a/M) in a neighborhood of the union of (4.1.1) and (4.1.2),
assumptions (5)–(8) of §4.2.2 are satisfied, with µmax = 0 (see (4.2.11)) and the trapped set
(see Definition 4.2.1) given by

K̃ = {G = ξr = ∂rGr = 0, ξ̃ 6= 0} ⊂ T ∗X̃0 \ 0. (4.3.15)
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Remark. The assumptions on M,Λ, a can quite possibly be relaxed. The only parts of the
proof that need us to be in a neighborhood of (4.1.1) or (4.1.2) are (4.3.17) and (4.3.18).

Several other statements require that α is small (in particular, (4.3.26) requires α <
√

2−1√
2+1

),

but this is true for the full admissible range of parameters depicted on Figure 4.1(a) in the
introduction.
Remark. Some parts of Proposition 4.3.2 have previously been verified in [128, §6.4] in the

case |a| <
√

3
2
M .

We start by analysing the set K̃ defined by (4.3.15); the fact that K̃ is indeed the trapped

set is established later, in Proposition 4.3.5. We first note that K̃ is a closed conic subset
of {p̃ = 0} \ 0, invariant under the flow (4.2.3); indeed, ξr = 0 implies Hp̃r = 0, ∂rGr = 0
implies Hp̃ξr = 0, Hp̃τ = Hp̃ξϕ = 0 everywhere, and ∂rGr depends only on r, ξr, τ, ξϕ.

By (4.3.9), and since (r2 + a2)τ + aξϕ = p̃ = 0 implies ξ̃ = 0, we see that

Ψ = 0 on K̃. (4.3.16)

Assumption (5) in §4.2.2 follows from the inequality

τ((r2 + a2)τ + aξϕ) > 0 on K̃. (4.3.17)

For the Schwarzschild(–de Sitter) case (4.1.1), this is trivial (noting that τ = 0 implies ξ̃ = 0);
for the Kerr case (4.1.2), it follows from (4.3.16) together with the fact that ∂r∆r > 0. The

general case now follows by perturbation, using that, by Proposition 4.3.1, K̃ is contained
in a fixed compact subset of X0.

We next claim that
∂2
rG < 0 on K̃. (4.3.18)

By (4.3.9), this is equivalent to requiring that τ∂rΨ > 0 on K̃. Now, in either of the
cases (4.1.1) or (4.1.2), we calculate

Ψ(r) = 2(τr3 − 3Mτr2 + a(aτ − ξϕ)r +Ma(aτ + ξϕ)). (4.3.19)

In particular,
Ψ(M) = 4Mτ(a2 −M2), ∂2

rΨ(r) = 12τ(r −M).

Since |a| < M , we see that

τΨ(M) < 0; τ∂2
rΨ(r) > 0 for r > M.

Therefore, if r > r− > M and Ψ(r) = 0, then τ∂rΨ(r) > 0 and we get (4.3.18) in the
cases (4.1.1) and (4.1.2); the general case follows by perturbation, similarly to (4.3.17).

To study the behavior of K̃ in the angular variables, we introduce the equatorial set

K̃e := K̃ ∩ {θ = π/2, ξθ = 0}. (4.3.20)
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This is a closed conic subset of K̃ invariant under the flow (4.2.3) (which is proved similarly

to the invariance of K̃). We have

∂ξϕG 6= 0 on K̃e. (4.3.21)

Indeed,

∂ξϕG = 2(1 + α)2
(
− a((r2 + a2)τ + aξϕ)

∆r

+ aτ + ξϕ

)
on {θ = π/2}. (4.3.22)

Also, the equation G = 0 implies

((r2 + a2)τ + aξϕ)2

∆r

=
(a sin2 θ τ + ξϕ)2

∆θ sin2 θ
on K̃ ∩ {ξθ = 0}. (4.3.23)

Putting θ = π/2 into (4.3.23), we solve for ∆r and substitute it into (4.3.22), obtaining

∂ξϕG = 2(1 + α)2 r2τ(aτ + ξϕ)

(r2 + a2)τ + aξϕ
6= 0 on K̃e, (4.3.24)

implying (4.3.21).
At the poles {θ = 0, π}, we have

|∂ξ1G|+ |∂ξ2G| > 0. (4.3.25)

This follows immediately from (4.3.3), as ξ1 = ξ2 = 0 would imply Gθ = 0, which is
impossible given that ξr = 0, G = 0, and ξ̃ 6= 0.

Finally, we claim that

K̃ ∩ {ξθ = ∂θG = 0} ∩ {0 < θ < π} = K̃e, (4.3.26)

∂2
θG > 0 on K̃e. (4.3.27)

To see this, note that 0 < ∆r < r2 + a2, ∆θ ≥ 1, and (r2 + a2)τ + aξϕ 6= 0 by (4.3.17); we
get from (4.3.23)

((r2 + a2)τ + aξϕ)2 < (r2 + a2)
(a sin2 θ τ + ξϕ)2

sin2 θ
on K̃ ∩ {ξθ = 0},

or, using that |a| < M < r,

ξ2
ϕ

sin2 θ
> (r2 + a2)τ 2 > 2a2τ 2 on K̃ ∩ {ξθ = 0}. (4.3.28)

Next, if ξθ = 0, then

∂θG =
2(1 + α)2(a sin2 θτ + ξϕ) cos θ

∆2
θ sin3 θ

((1 + α)a sin2 θ τ − (1 + α cos(2θ))ξϕ).
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In particular, using (4.3.28) we obtain (4.3.27) for α = 0:

∂2
θG = 2(ξ2

ϕ − a2τ 2) > 0 on K̃e,

and the case of small α follows by perturbation. It remains to prove (4.3.26). Assume the
contrary, that ∂θG = 0, ξθ = 0, but θ 6= π/2. By (4.3.23), a sin2 θτ + ξϕ 6= 0; therefore,
(1 + α)a sin2 θ τ = (1 + α cos(2θ))ξϕ. Combining this with (4.3.28), we get (1 + α) sin θ >√

2(1 + α cos(2θ)), which implies that (1 + α) >
√

2(1 − α), a contradiction with the fact
that α is small.

It follows from (4.3.18), (4.3.21), (4.3.25), and (4.3.26) that at each point of K̃ the
matrix of partial derivatives G, ξr, ∂rG in the variables (r, ξr, ∗), where ∗ stands for one of
θ, ξθ, ξϕ, ξ1, ξ2, is invertible. This gives

Proposition 4.3.3. The set K̃ defined by (4.3.15) is a smooth codimension 2 submanifold

of {p̃ = 0}\0, and its projection K̂ onto the x̂ = (t, θ, ϕ), ξ̂ = (τ, ξθ, ξϕ) variables is a smooth
codimension 1 submanifold of T ∗(R× S2).

We now study the global dynamics of the flow, relating it to the set K̃. Take (x̃0, ξ̃0) ∈
{p̃ = 0} \ 0 and let (x̃(t), ξ̃(t)) be the corresponding Hamiltonian trajectory of (4.2.3).
Consider the function

Φ0(r) = Gr(x̃
0, ξ̃0) + (1 + α)2

((r2 + a2)τ 0 + aξ0
ϕ)2

∆r(r)
.

Note that Gr(x̃(t), ξ̃(t)), τ(t), ξϕ(t) are constant in t and (r(t), ξr(t)) is a rescaled Hamiltonian
flow trajectory of

H0(r, ξr) := ∆r(r)ξ
2
r − Φ0(r);

in particular, (r(t), ξr(t)) solve the equation

∆r(r)ξ
2
r = Φ0(r). (4.3.29)

The key property of Φ0 is given by

Proposition 4.3.4. For each r ∈ (r−, r+),

Φ0(r) ≥ 0, ∂rΦ
0(r) = 0 =⇒ ∂2

rΦ
0(r) > 0. (4.3.30)

Proof. Assume that Φ0(r) ≥ 0. Then we can find (x̃1, ξ̃1) ∈ T ∗X̃0 such that (t1, θ1, ϕ1) =
(t0, θ0, ϕ0), r̃1 = r, τ 1 = τ 0, ξ1

ϕ = ξ0
ϕ, ξ1

r = 0, and p̃(x̃1, ξ̃1) = 0; indeed, it suffices to start

with (x̃0, ξ̃0), put r1 = r, ξ1
r = 0, and change the ξ1

θ component (or one of ξ1
1 , ξ

1
2 components

if we are at the poles of the sphere) so that Gθ(x̃
1, ξ̃1) = Gθ(x̃

0, ξ̃0) + Φ0(r). If additionally

∂rΦ
0(r) = 0, then (x̃1, ξ̃1) ∈ K̃; it remains to apply (4.3.18).



CHAPTER 4. GLOBAL ASYMPTOTICS OF WAVES AND RESONANCES 219

We now consider the following two cases:
Case 1: |Φ0(r)| + |∂rΦ0(r)| > 0 for all r ∈ (r−, r+). In this case, the set of solutions
to (4.3.29) is a closed one-dimensional submanifold of T ∗(r−, r+) and the Hamiltonian field of
H0 is nonvanishing on this manifold. This manifold has no compact connected components,
as the function Φ0(r) cannot achieve a local maximum on it by (4.3.30). It follows that the
geodesic (x̃(t), ξ̃(t)) escapes in both time directions.
Case 2: there exists r′ ∈ (r−, r+) such that Φ0(r′) = ∂rΦ

0(r′) = 0. Then

(t0, r′, θ0, ϕ0, τ 0, 0, ξ0
θ , ξ

0
ϕ) ∈ K̃,

therefore the projection (x̂0, ξ̂0) lies in K̂ (see Proposition 4.3.3). By (4.3.30), we see that
∂2
rΦ

0(r′) > 0 and (r − r′)∂rΦ
0(r) > 0 for r 6= r′. Then the set of solutions to the equa-

tion (4.3.29) is equal to the union Γ0
+ ∪ Γ0

−, where

Γ0
± = {ξr = ∓ sgn(τ 0) sgn(r − r′)

√
Φ0(r)/∆r(r)},

note that Γ0
± are smooth one-dimensional submanifolds of T ∗(r−, r+) intersecting transversely

at (r′, 0). The trajectory (x̃(t), ξ̃(t)) is trapped as t→ ∓∞ if and only if (r0, ξ0
r ) ∈ Γ0

±. Note
that by (4.3.17), τ 0 is negative on C+ and positive on C−.

The analysis of the two cases above implies

Proposition 4.3.5. The incoming/outgoing tails Γ̃± (see Definition 4.2.1) are given by (here

K̂ is defined in Proposition 4.3.3)

Γ̃± := {(r, x̂, ξr, ξ̂) | (x̂, ξ̂) ∈ K̂, ξr = ∓ sgn(τ̂) sgn(r − r′
x̂,ξ̂

)
√

Φx̂,ξ̂(r)/∆r(r)},

where

Φx̂,ξ̂(r) = −Gθ(x̂, ξ̂) + (1 + α)2 ((r2 + a2)τ̂ + aξ̂ϕ)2

∆r(r)
,

and r′
x̂,ξ̂

is the only solution to the equation Φx̂,ξ̂(r) = 0; moreover, ∂rΦx̂,ξ̂(r
′
x̂,ξ̂

) = 0 and

∂2
rΦx̂,ξ̂(r

′
x̂,ξ̂

) > 0. Furthermore, Γ̃± are conic smooth codimension 1 submanifolds of {p̃ =

0}\0 intersecting transversely, and their intersection is equal to the set K̃ defined in (4.3.15).

We also see from (4.3.18) and the fact that ∂τ p̃ 6= 0 on {p̃ = 0}\0 (as follows from (4.3.5))

that the matrix of Poisson brackets of functions G, ∂rG, ξr, t on K̃ is nondegenerate, which
implies that the intersections K̃∩{t = const} are symplectic submanifolds of T ∗X̃0. Together
with Proposition 4.3.5, this verifies assumptions (6) and (7) of §4.2.2.

It remains to verify r-normal hyperbolicity of the flow ϕ̃s defined in (4.2.3). We start by
showing that the maximal expansion rate in the directions of the trapped set µmax, defined
in (4.2.11), is equal to zero:
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Proposition 4.3.6. For each ε > 0, there exists a constant C such that for each v ∈ TK̃,

|dϕ̃sv| ≤ Ceε|s||v|.

Here | · | denotes any fixed smooth homogeneous norm on the fibers of TK̃.

Proof. Using the group property of the flow, it suffices to show that for each ε > 0 there
exists T > 0 such that for each v ∈ TK̃,

|dϕ̃Tv| < eεT |v|. (4.3.31)

Since K̃ is a closed conic set, and K̃ ∩ {τ = 1} ∩ {t = 0} is compact, it suffices to show

that for each flow line γ(s) of (4.2.3) on K̃, there exists T such that (4.3.31) holds for each

v = v(0) tangent to K̃ at γ(0). Denote v(s) = dϕsv(0).

If γ(s) is a trajectory of (4.2.3) on TK̃, then r, ξr = 0, τ are constant on γ(s) and the
generator of the flow does not depend on the variable t; therefore, it suffices to show (4.3.31)
for the restriction of the matrix of dϕ̃T to the ∂θ, ∂ϕ, ∂ξθ , ∂ξϕ variables. This is equivalent to
considering the Hamiltonian flow of G in the θ, ϕ, ξθ, ξϕ variables only, on T ∗S2. Recall that

the equatorial set K̃e = K̃ ∩ {θ = π/2, ξθ = 0} defined in (4.3.20) is invariant under ϕ̃s. We
then consider two cases:
Case 1: γ(s) 6∈ K̃e for all s. Then the differentials of G and ξϕ are linearly independent
by (4.3.25) and (4.3.26). Since {G, ξϕ} = 0, by Arnold–Liouville theorem (see for example
Proposition 2.3.8), there is a local symplectomorphism from a neighborhood of γ(s) in T ∗S2 to
T ∗T2, where T2 is the two-dimensional torus, which conjugates G to some function f(η1, η2);
here (y1, y2, η1, η2) are the canonical coordinates on T ∗T2. The corresponding evolution of
tangent vectors is given by ∂svy(s) = ∇2f(η(s))vη(s), ∂svη(s) = 0, and (4.3.31) follows.

Case 2: γ(s) ∈ K̃e for all s. Since ∂svξϕ(s) = 0 and ∂sv does not depend on vϕ(s), it suffices
to estimate vθ(s), vξθ(s). We then find

∂svθ(s) = 2vξθ(s), ∂svξθ(s) = −∂2
θG(γ(s))vθ(s)− ∂2

θξϕG(γ(s))vξϕ(s).

Now, by (4.3.27), ∂2
θG(γ(s)) is a positive constant; (4.3.31) follows.

We finally show that the minimal expansion rate νmin, defined in (4.2.9), is positive. By

Proposition 4.3.5, (x̃, ξ̃) ∈ Γ̃± if and only if

(x̂, ξ̂) ∈ K̂, ϕ̃±(x̃, ξ̃) = 0,

where
ϕ̃±(x̃, ξ̃) = ξr ∓ sgn(∂τG) sgn(r − r′

x̂,ξ̂
)
√

Φx̂,ξ̂(r)/∆r(r).

Since HG is tangent to Γ̃±, we have HGϕ̃± = 0 on Γ̃±; it follows that

HGϕ̃±(x̃, ξ̃)

∂τG
= ∓ν̃±(x̃, ξ̃)ϕ̃±(x̃, ξ̃) when (x̂, ξ̂) ∈ K̂, (4.3.32)
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for some functions ν̃±. By calculating ∂ξrHGϕ̃±|K̃ , we find ν̃+|K̃ = ν̃−|K̃ = ν̃, where

ν̃ =

√
−2∆r∂2

rGr

|∂τG|
; (4.3.33)

note that ∂2
rGr < 0 on K̃ by (4.3.18) and ∂τG 6= 0 on {p̃ = 0}\0 by assumption (3) in §4.2.2.

Let Ṽ± be the one-dimensional subbundles of T Γ̃± defined in (4.2.7), invariant under the

flow ϕ̃s. Since dϕ̃∓ vanishes on TK̃ and is not identically zero on TK̃Γ̃±, we can fix a basis

v± of Ṽ±|K̃ by requiring that
dϕ̃∓ · v± = 1.

Denote by V = HG/∂τG the generator of the flow ϕ̃s. The Lie derivative LV v± is a multiple
of v±; to compute it, we use the identity

0 = V (dϕ̃∓ · v±) = LV (dϕ̃∓) · v± + dϕ̃∓ · LV v±.

Since (4.3.32) holds on Γ̃+ ∪ Γ̃−, we get on vectors tangent to Γ̃±,

LV (dϕ̃∓) = d(±ν̃∓ϕ̃∓) = ±ν̃dϕ̃∓ on K̃.

It follows that
∂s(dϕ̃

s v±) = ±(ν̃ ◦ ϕ̃s)v±,

which implies immediately

Proposition 4.3.7. The expansion rates defined in (4.2.9) and (4.2.10) are given by

νmin = lim inf
T→∞

inf
(x,ξ)∈K

〈ν〉T , νmax = lim sup
T→∞

sup
(x,ξ)∈K

〈ν〉T ,

where ν̃ > 0 is the function on K̃ defined in (4.3.33) and

〈ν̃〉T :=
1

T

∫ T

0

ν̃ ◦ ϕs ds.

Together, Proposition 4.3.6 and 4.3.7 verify assumption (8) of §4.2.2 and finish the proof
of Proposition 4.3.2.

4.3.3 Trapping in special cases

We now establish some properties of the trapped set K̃ and the local expansion rate ν̃, defined
in (4.3.33), in two special cases. We start with the Schwarzschild(–de Sitter) case (4.1.1),
when everything can be described explicitly:
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Proposition 4.3.8. For a = 0, we have

K̃ =
{
ξr = 0, r = 3M, τ 6= 0, Gθ =

27M2

1− 9ΛM2
τ 2
}
, (4.3.34)

ν̃ =

√
1− 9ΛM2

3
√

3M
. (4.3.35)

Proof. We recall from (4.3.16) that K̃ is given by the equations G = 0, ξr = 0,Ψ = 0, where
Ψ is computed using (4.3.19):

Ψ(r) = 2τr2(r − 3M).

Since τ 6= 0 on K̃ by (4.3.17), we see that Ψ = 0 is equivalent to r = 3M . Now, ∆r(3M) =
3M2(1−9ΛM2); therefore, Gr = − 27M2

(1−9ΛM2)
τ 2 for ξr = 0 and r = 3M and we obtain (4.3.34).

Next, by (4.3.9), we find

∂2
rGr = −r

2τ

∆2
r

∂rΨ(r) = − 18

(1− 9ΛM2)2
τ 2 on K̃.

Finally, we compute

∂τG = − 54M2

1− 9ΛM2
τ on K̃,

and (4.3.35) follows.

We next consider the case when Λ = 0 and a approaches the maximal rotation speed
M from below, calculating the expansion rates on two equators to show that the pinching
condition (4.1.12) is violated:

Proposition 4.3.9. Fix M and assume that

Λ = 0, a = M − ε, 0 < ε� 1.

Then K̃e, defined in (4.3.20), is the union of two conical sets

E± = {r = R±(ε), ξr = 0, ξϕ = F±(ε)τ, θ = π/2, ξθ = 0, τ 6= 0},

where R+(ε), F+(ε) are smooth functions of ε, R−(ε), F−(ε) are smooth functions of
√
ε, and

(see Figure 4.4)

R+(ε) = 4M +O(ε), F+(ε) = 7M +O(ε);

R−(ε) = M +
√

8εM/3 +O(ε), F−(ε) = −2M −
√

6εM +O(ε).
(4.3.36)

Finally, the expansion rates ν̃ defined in (4.3.33) are given by (see also Figure 4.2(a) in the
introduction)

ν̃ =
3
√

3

28M
+O(ε) on E+; ν̃ =

√
ε/2M

M
+O(ε) on E−. (4.3.37)
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Figure 4.4: The graphs of r and ξϕ/τ on the trapped equators E±, as functions of a for
Λ = 0.

Proof. The set K̃e is defined by equations ξr = ξθ = 0, θ = π/2, and (see (4.3.16))

((r2 + a2)τ + aξϕ)2 = ∆r(r)(aτ + ξϕ)2,

4rτ∆r(r) = ((r2 + a2)τ + aξϕ)∂r∆r(r).
(4.3.38)

Recall that ∆r(r) = r2 + a2 − 2Mr. Putting A = (r2 + a2)τ + aξϕ and B = aτ + ξϕ, we
rewrite these as

A2 = ∆r(r)B
2,

4(A− aB)∆r(r) = Ar∂r∆r(r).

The second equation can be written as (r2 + 2a2 − 3Mr)A = 2a∆r(r)B. Solving for B and
substituting into the first equation, we get

4a2∆r(r)− (r2 + 2a2 − 3Mr)2 = 0. (4.3.39)

This is a fourth order polynomial equation in r with coefficients depending on ε and with a
root at r = 0; we will study the behavior of the other three roots as ε→ 0. We write (4.3.39)
as

(r −M)2(r − 4M) = −8εM2 +O(ε2). (4.3.40)

By the implicit function theorem, for ε small enough, the equation (4.3.39) has a solution
R = R+(ε) = 4M + O(ε). We next identify the two roots lying near r = M ; they are
solutions to the equations

r −M = ±M
√

8 +O(ε)

4M − r
·
√
ε.

The solution with the negative sign lies to the left of r− > M , therefore we ignore it. The
solution with the positive sign, which we denote by R−(ε), exists for ε small enough by the
implicit function theorem and we find R−(ε) = M +

√
8εM/3 +O(ε).
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To find the values of ξϕ/τ corresponding to r = R±(ε), we use the second equation
in (4.3.38); this completes the proof of (4.3.36). Finally, we calculate at r = R+(ε), ξϕ =
F+(ε)τ ,

∆r = 9M2 +O(ε), ∂2
rG = −32

3
τ 2 +O(ε), ∂τG = −224

3
M2τ +O(ε),

and at r = R−(ε), ξϕ = F−(ε)τ ,

∆r =
2M

3
ε+O(ε2), ∂2

rG = −9M

ε
τ 2 +O(ε−1/2), ∂τG = −2

√
6M

ε
M2τ +O(1);

(4.3.37) follows.

4.3.4 Results for linear waves

In this section, we apply Theorem 4.4 in §4.2.4 and the analysis of §§4.3.1, 4.3.2 to obtain
Theorems 4.1 and 4.2.

We start by formulating a well-posed problem for the wave equation on the Kerr–de Sitter
background. For that, we in particular need to shift the time variable, see §§1.2, 2.2.1. Let
µ be the defining function of the event horizons and/or spatial infinity defined in (4.3.6) and
fix a small constant δ1, used in Theorem 4.4 as well as in (4.2.13). To continue the metric
smoothly past the event horizons, we make the change of variables

t = t∗ + Ft(r), ϕ = ϕ∗ + Fϕ(r), (4.3.41)

where Ft, Fϕ are smooth real-valued functions on (r−, r+) such that

• F ′t(r) = ± 1+α
∆r(r)

(r2 +a2)+f±(r) and F ′ϕ(r) = ± 1+α
∆r(r)

a near r = r±, where f± are smooth

functions (for the Kerr case Λ = 0, we only require this at r = r−)

• Ft(r) = Fϕ(r) = 0 near {µ ≥ δ1/10} (and also for r large enough in the Kerr case
Λ = 0);

• the covector dt∗ is timelike everywhere; equivalently, the level surfaces of t∗ are space-
like.

See for example [128, §6.1 and (6.15)] for how to construct such Ft, Fϕ. The metric in the
coordinates (t∗, r, θ, ϕ∗) continues smoothly through {r = r−} and {r = r+} (the latter for

Λ > 0), to an extension X̃−δ1 := {µ > −δ1} of X̃0 past the event horizons. Since Ft = Fϕ = 0
near {µ ≥ δ1/10}, our change of variables does not affect the arguments in §4.2.

The principal symbol of h2�g̃ in the new variables, denoted by p̃∗, is given by

p̃∗(r, θ, τ ∗, ξr, ξθ, ξϕ∗) = p̃(r, θ, τ ∗, ξr − ∂rFt(r)τ ∗ − ∂rFϕ(r)ξϕ∗ , ξθ, ξϕ∗).
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In particular, if ξθ = ξϕ∗ = 0, then for r close to r− or to r+ (the latter case for Λ > 0),

p̃∗ = ∆r(ξr − f±(r)τ ∗)2 ∓ 2(1 + α)(r2 + a2)τ ∗(ξr − f±(r)τ ∗) +
(1 + α)2a2 sin2 θ

∆θ

(τ ∗)2.

Then in the new coordinates,

g̃−1(dr, dr) = −∆r, g̃−1(dr, dt∗) = ±(1 + α)(r2 + a2) + ∆rf±(r). (4.3.42)

Therefore, the surfaces {r = r0} are timelike for µ(r0) > 0, lightlike for µ(r0) = 0, and
spacelike for µ(r0) < 0, and g̃−1(dµ, dt∗) < 0 near the event horizon(s). Moreover, for Λ = 0
the d’Alembert–Beltrami operator

�g̃ =
1

ρ2
Dr(∆rDr) +

1

ρ2 sin θ
Dθ(sin θDθ)

+
(a sin2 θ Dt +Dϕ)2

ρ2 sin2 θ
− ((r2 + a2)Dt + aDϕ)2

ρ2∆r

belongs to Melrose’s scattering calculus on the space slices near r = ∞ (see [129, §2]) in
the sense that it is a polynomial in the differential operators Dt, Dr, r

−1Dθ, r
−1Dϕ with

coefficients smooth up to {r−1 = 0} in the r−1, θ, ϕ variables (where of course θ, ϕ are
replaced by a different coordinate system on S2 near the poles {sin θ = 0}).

Consider the initial-value problem for the wave equation (here s ≥ 0 is integer)

�g̃u = 0, t∗ ≥ 0; u|t∗=0 = f0, ∂t∗u|t∗=0 = f1;

f0 ∈ Hs+1(X−δ1), f1 ∈ Hs(X−δ1).
(4.3.43)

This problem is well-posed, based on standard methods for hyperbolic equations [123, §6.5]

and the following crude energy estimate: if we consider functions on X̃−δ1 as functions of t∗

with values in functions on X−δ1 , then for t′ ≥ 0,

‖u(t′)‖Hs+1(X−δ1 ) + ‖∂t∗u(t′)‖Hs(X−δ1 )

≤ CeCt
′
(‖u(0)‖Hs+1(X−δ1 ) + ‖∂t∗u(0)‖Hs(X−δ1 ) + ‖e−Ct∗�g̃u‖Hs((0,t′)×X−δ1 )).

(4.3.44)

To prove (4.3.44) for s = 0, we use the standard energy estimate on Ω = X̃−δ1∩{0 ≤ t∗ ≤ t′}
for hyperbolic equations (see [123, §2.8], Proposition 1.2.1, or [46, §1.1]), with the timelike
vector field N equal to ∂t (a Killing field) for large r (in the case Λ = 0) and to g̃−1(dt∗) close
to the event horizon(s); by (4.3.42), the boundary ∂Ω is spacelike and N points inside of Ω
on {t∗ = 0} and outside of it elsewhere on ∂Ω. The higher order estimates are obtained from
here as in [123, (6.5.14)], commuting with differential operators in the scattering calculus.

We now assume that f0 = f0(h), f1 = f1(h) are such that ‖f0‖H1(X−δ1 ) + ‖f1‖L2(X−δ1 ) is

bounded polynomially in h and f0, f1 are localized at frequencies ∼ h−1, namely (see the
discussion in §4.2.1)

WFh(f0) ∪WFh(f1) ⊂ T ∗X−δ1 \ 0.
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Let u be the corresponding solution to (4.3.43) and assume that it is extended to small nega-
tive times (which can be done by taking a smaller δ1 and using the local existence result back-
wards in time). By (4.3.44), we see that u is h-tempered uniformly for t∗ ∈ [0, T log(1/h)].

Similarly to (4.2.18), W̃Fh(u) ⊂ {p̃∗ = 0}. Moreover, using standard microlocal analysis for
hyperbolic equations, we get a pseudodifferential one-to-one correspondence between (f0, f1)
and (u+(0), u−(0)), where u± are the components of u microlocalized on C±, the positive and
negative parts of the light cone, each solving an equation of the form (hDt+P±)u± = O(h∞)
for some spatial pseudodifferential operators P± (similarly to (4.2.28)). This gives

WFh(u) ∩ {t∗ = 0} ⊂ {(0, x, τ, ξ) | p̃∗(x, τ, ξ) = 0, (x, ξ) ∈WFh(f0) ∪WFh(f1)}.

In particular, we get
WFh(u) ∩ {t∗ = 0} ⊂ T ∗X̃−δ1 \ 0. (4.3.45)

By the same correspondence, if WFh(u)∩ {t∗ = 0} is compact and covered by finitely many

open subsets of T ∗X̃−δ1 \ 0, then we can apply the associated pseudodifferential partition of
unity to f0, f1 to split u into several solutions to the wave equation such that the wavefront
set of each solution at t∗ = 0 is contained in one of the covering sets. The resulting solutions
can then each be analysed separately.

We next assume that
supp f0 ∪ supp f1 ⊂ Xδ1 .

We obtain some restrictions on the microlocalization of u for large times. For that, we need
to consider the dynamics of the geodesic flow on the extended spacetime X̃δ1 . Define the
flow ϕ̂s similarly to (4.2.3), rescaling the geodesic flow so that the variable t∗ is growing with

speed 1. Since t = t∗, ϕ = ϕ∗ on X̃δ1/10, the flow lines of ϕ̃s and ϕ̂s coincide on X̃δ1/10. If γ(s)

is a flow line of ϕ̂s such that γ(0) ∈ X̃δ1/10 and γ is not trapped for positive times according
to Definition 4.2.1, then either γ(s) escapes to the Euclidean infinity (for Λ = 0) or γ(s)
crosses one of the event horizons at some fixed positive time s0, and µ(γ(s)) < 0 is strictly
decreasing for s > s0 (see the discussion following [128, (6.22)], verifying [128, (2.8)]); in the
latter case, we say that γ escapes through the event horizons.

The next statement makes nontrivial use of the structure of the infinite ends (in particular,
using [89, 129, 35] for the asymptotically Euclidean end for Λ = 0) and is the key step for
obtaining control on the escaping parts of the solution for long times:

Proposition 4.3.10. Assume that all flow lines of ϕ̂s starting on WFh(u)∩{t∗ = 0} escape,
either to the spatial infinity or through the event horizons. Then there exists T0 > 0 such
that uniformly in t∗,

‖u(t∗)‖H1(Xδ1 ) + ‖∂t∗u(t∗)‖L2(Xδ1 ) = O(h∞), t∗ ∈ [T0, T log(1/h)]. (4.3.46)

Proof. We first consider the case when WFh(u) ∩ {t∗ = 0} is contained in a small neigh-
borhood of some (x̃, ξ̃) ∈ T ∗Xδ1 \ 0, and, for γ(s) = ϕ̂s(x̃, ξ̃), there exists T0 > 0 such that

γ([0, T0]) ⊂ X̃−3δ1/4 and γ(T0) ∈ {µ < −δ1/2}. By propagation of singularities for the wave
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equation (see for example Proposition 3.3.4), we see that WFh(u)∩{t∗ = T0} ⊂ {µ < −δ1/2};
it follows that

‖u(T0)‖H1(X−δ1/2) + ‖∂t∗u(T0)‖L2(X−δ1/2) = O(h∞).

Then the same bound holds for t∗ ≥ T0 in place of T0 by (4.3.44) (replacing δ1 by δ1/2).
For the remainder of this proof, we consider the opposite case, when Λ = 0 and each

flow line of ϕ̂s starting on WFh(u) ∩ {t∗ = 0} escapes to the spatial infinity. Fix a large
constant R1; we require in particular that Xδ1 ⊂ {r < R1}. By propagation of singularities,
similarly to the previous paragraph, we may shift the time parameter and assume that
WFh(u) ∩ {t∗ = 0} is contained in a small neighborhood of some (x̃0, ξ̃0) ∈ T ∗X̃0 \ 0, where
r0 > R1, ∂sµ(ϕ̂s(x̃0, ξ̃0))|s=0 < 0. In fact, by (4.3.44) and finite speed of propagation, we
may assume that for t∗ near 0, the support of u in x is contained in a compact subset of
{r > R1}. Without loss of generality, we assume that τ0 < 0. The trajectory ϕ̂s(x̃0, ξ̃0) does
not intersect {r ≤ R1} for s ≥ 0.

We replace the Kerr spacetime (X̃0, g̃) with a different spacetime (Rt ×R3
r,θ,ϕ, g̃1), where

(r, θ, ϕ) are the spherical coordinates on R3 and g̃1 is the stationary Lorentzian metric defined
on R4 by

g̃−1
1 := χ1(r)g̃−1

0 + (1− χ1(r))g̃−1,

where g̃−1
0 = τ 2−ξ2

r −ξ2
θ/r

2−ξ2
ϕ/(r

2 sin2 θ) is the Minkowski metric on R4, χ1 ∈ C∞0 ([0, R1)),

0 ≤ χ1 ≤ 1 everywhere, and χ1 = 1 on [0, R1/2]. The dual metrics g̃−1 and g̃−1
0 are close

to each other for large r in the sense of scattering metrics, that is, as quadratic forms in
τ, ξr, r

−1ξθ, r
−1ξϕ, therefore for R1 large enough, g̃−1

1 is the dual to a Lorentzian metric, the
surfaces {t = const} are spacelike, and ∂t is a timelike vector field. Note that the new
spacetime no longer contains an event horizon.

We now show that g̃−1
1 is nontrapping for large R1 and a correct choice of χ1, that is,

each lightlike geodesic escapes to the spatial infinity in both time directions. It suffices to
prove that if p̃1(x̃, ξ̃) = −g̃−1

1,x̃(ξ̃, ξ̃), then (compare with assumption (4) in §4.2.2)

r > 0, p̃1 = 0, ξ̃ 6= 0, Hp̃1r(x̃, ξ̃) = 0 =⇒ H2
p̃1
r(x̃, ξ̃) > 0.

Indeed,
Hp̃1r = 2ξr(χ1(r) + (1− χ1(r))∆r/ρ

2);

therefore, Hp̃1r = 0 implies ξr = 0 and H2
p̃1
r has the same sign as

−∂rp̃1 = −χ′1(r)(p̃0 − p̃)− χ1(r)∂rp̃0 − (1− χ1(r))∂rp̃;

it remains to note that we can take rχ′1(r) bounded by 3, p̃0 − p̃ is small for large r in the
sense of scattering metrics, and both r∂rp̃0 and r∂rp̃ are homogeneous of degree 2 in ξ̃ and
bounded from above by a negative constant on {τ 2 + r−2ξ2

θ + r−2ξ2
ϕ = 1} ∩ {p̃1 = ξr = 0},

uniformly in r−1 ≥ 0 for ∂rp̃0 and uniformly in r−1 ∈ [0, δ1) for ∂rp̃.
Let u1 be the solution to the wave equation on the new spacetime (R4, g̃1) such that

u1|t=0 = u|t∗=0, ∂tu1|t=0 = ∂t∗u|t∗=0. It is enough to prove that, with W̃Fh(u1) defined
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in §4.2.1,

W̃Fh(u1) ∩ {r < R1} = ∅, 0 ≤ t ≤ T log(1/h). (4.3.47)

Indeed, in this case �g̃((1−χ1(r))u1) = O(h∞)C∞ ; by (4.3.44), we have W̃Fh(u1) = W̃Fh(u)
for t ∈ [0, T log(1/h)], and (4.3.46) follows since Xδ1 ⊂ {r < R1}.

To show (4.3.47), we use the Fourier transform in time,

û1(λ) =

∫
R
eiλtψ1(t)u1(t) dt, Imλ > 0.

Here ψ1(t) is supported in [−δ,∞) and is equal to 1 on [δ,∞), for some small fixed δ > 0.
The integral converges, as ‖u1(t)‖H2(R3) ≤ Ceεt for each ε > 0, as follows from the standard
energy estimate for the wave equation (see the paragraph following (4.3.44)) applied for the
timelike Killing vector field ∂t.

Let P̂ (λ) be the stationary d’Alembert–Beltrami operator for the metric ĝ, constructed
by replacing Dt by −λ in the operator �ĝ; the semiclassical version defined in §4.2.3 is given

by the relation P̂h(ω) = h2P̂ (h−1ω). Then

P̂ (λ)û1(λ) = f̂1(λ), Imλ > 0,

where f1 = [�ĝ, ψ1(t)]u1(t). We note that WFh(f1) is contained in a small neighborhood

of (x̃0, ξ̃0) and f1 is compactly supported; therefore, f̂1(h−1ω + iE) = O(h∞)SωC∞0 (R3) for

ω outside of a small neighborhood of −τ0 > 0, and WFh(f̂1(h−1ω + iE)) lies in a small
neighborhood of (x0, ξ0) for all ω.

We now apply the results of [89, 129, 35]. For this, note that for any fixed λ, the operator

P̂ (λ) lies in Melrose’s scattering calculus on the radially compactified R3, and for Imλ > 0,

the operator P̂ (λ) is elliptic in this calculus in the microlocal sense (that is, elliptic as ξ

and/or r go to infinity) – in fact, near r = ∞ the operator P̂ (λ) is close to ∆0 − λ2, where

∆0 is the flat Laplacian on R3. Moreover, P̂ (λ) is a symmetric operator when λ ∈ R. This
implies that the proofs of [129, 35] apply. Similarly to [89, Theorem 2], for Imλ > 0, the

operator P̂ (λ) is Fredholm H2(R3) → L2(R3) and invertible for λ outside of a discrete set;

we can then fix E > 0 such that P̂ (λ+ iE) is invertible for all λ ∈ R.

Next, the Hamiltonian flow of the principal symbol p̂(ω) of P̂h(ω) corresponds to lightlike
geodesics of the metric ĝ, similarly to (4.2.14). Therefore, this flow is nontrapping at all
energies ω 6= 0. By [129], we get for each χ0 ∈ C∞0 (R3),

‖χ0P̂ (λ+ iE)−1χ0‖L2→L2 ≤ C〈λ〉−1, λ ∈ R; (4.3.48)

in fact, the constant in the estimate is bounded as E → 0, but we do not use this here. Finally,
by [35, Lemma 2], we see that P̂h(ω+ ihE)−1 is semiclassically outgoing for ω near −τ0, that
is, the wavefront set of û1(h−1ω+ iE) is contained in the union of WFh(f̂1(h−1ω+ iE)) and
all Hamiltonian flow lines of p̂(ω) starting on WFh(f̂1(h−1ω + iE)) ∩ {p̂(ω) = 0}. Since no
geodesic starting near (x̃0, ξ̃0) intersects {r ≤ R1} for positive times, we get WFh(û1(h−1ω+
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iE)) ∩ T ∗Xδ1 = ∅ for ω in a neighborhood of −τ0. For ω outside of this neighborhood, we
use the rapid decay of f̂1(ω) established before, together with (4.3.48), to get

û1(λ+ iE) = O(h∞〈λ〉−∞)C∞({r<R1}).

It remains to use the Fourier inversion formula

u1(t) =
1

2π

∫
R
e−i(λ+iE)tû1(λ+ iE) dλ

to get (4.3.47).

Any solution satisfying (4.3.46) is trivial from the point of view of Theorems 4.1 and 4.2
(putting uΠ = 0). Therefore, we may assume that WFh(u) ∩ {t∗ = 0} is contained in a
small neighborhood of some (x̃, ξ̃) such that the corresponding geodesic does not escape. By
assumption (5) in §4.2.2, see also Lemma 4.2.2, we may assume that

WFh(u) ∩ {t∗ = 0} ⊂ (C+ ∩ {τ < 0}) ∪ (C− ∩ {τ > 0}),

here C± are defined in (4.2.6). We can reduce the case WF(u) ∩ {t∗ = 0} ⊂ C− to the case
WFh(u) ∩ {t∗ = 0} ⊂ C+ by taking the complex conjugate of u, and take a dyadic partition
of unity together with the natural rescaling of the problem ξ̃ 7→ sξ̃, h 7→ sh, to reduce to the
case

WFh(u) ∩ {t∗ = 0} ⊂ C+ ∩ {|1 + τ | < δ1/8}. (4.3.49)

Proposition 4.3.11. For W̃Fh(u) defined in §4.2.1, we have

W̃Fh(u) ⊂ {|1 + τ | < δ1/4}. (4.3.50)

Proof. Consider a function ψ ∈ C∞0 (−1 − δ1/2,−1 + δ1/2) such that ψ = 1 near [−1 −
δ1/4,−1 + δ1/4]. If u solves the wave equation on (−δ,∞), then we extend it to a function

on the whole X̃−δ1 smoothly and so that suppu ⊂ {t∗ > −2δ}. Define

u′ := (1− ψ(hDt∗))u,

then, since the metric is stationary, �g̃u′ = (1 − ψ(hDt∗))�g̃u = O(h∞)S (X̃−δ1∩{t
∗≥−δ/2}).

By (4.3.49), we get WFh(u
′) ∩ {t∗ = 0} = ∅. Then by the energy estimate (4.3.44), applied

to u′, we get W̃Fh(u
′) = ∅, uniformly in t∗ ∈ [0, T log(1/h)]. It remains to note that

W̃Fh(ψ(hDt∗)u) ⊂ {|1 + τ | < δ1/4}.

We can now give

Proofs of Theorems 4.1 and 4.2. Without loss of generality (replacing δ1 by δ1/3) we may
assume that supp f0 ∪ supp f1 ⊂ X3δ1 .
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Choose small tε > 0 and a cutoff function χ = χ(µ), with suppχ ⊂ {µ > 2δ1} and χ = 1
near {µ ≥ 3δ1}, such that, with the flow ϕ̃t defined in (4.2.3),

(x̃, ξ̃) ∈ suppχ, ϕ̃tε(x̃, ξ̃) ∈ supp(1− χ), ξ̃ 6= 0 =⇒ Hp̃

∂τ p̃
µ(ϕ̃tε(x̃, ξ̃)) < 0. (4.3.51)

The existence of such χ and tε follows from Proposition 4.3.1, see the proof of [47, Lemma 5.5(1)].
Take N(h) = dT log(1/h)/tεe and consider the functions u(0) := u and

u(j) ∈ C∞(X̃−δ1 ∩ {t∗ ≥ jtε}), 1 ≤ j ≤ N(h),

�g̃u
(j) = 0, u(j)(jtε) = χu(j−1)(jtε), ∂t∗u

(j)(jtε) = χ∂t∗u
(j−1)(jtε).

By (4.3.44), u(j) are h-tempered uniformly in j and in t∗ ∈ [jtε, T log(1/h) + 2]. Moreover,

similarly to Proposition 4.3.11, we get W̃Fh(u
(j)) ⊂ {|1 + τ | < δ1/4} uniformly in j. Then,

u(j)−u(j−1) are solutions to the wave equation with initial data (1−χ)(u(j−1)(jtε), ∂t∗u
(j−1)(jtε)),

therefore by (4.3.51)

WFh(u
(j) − u(j−1)) ∩ {t∗ = jtε} ⊂ {|1 + τ | < δ1/4} ∩ {µ > δ1} ∩

{
Hp̃

∂τ p̃
µ < 0

}
.

Then all the trajectories of ϕ̂s starting on WFh(u
(j)−u(j−1))∩{t∗ = jtε} escape as s→ +∞;

by Proposition 4.3.10, we see that

W̃Fh(u
(j) − u(j−1)) ∩ {µ > δ1} = ∅, t∗ ∈ [jtε + T0, T log(1/h)],

uniformly in j, where T0 is a fixed large constant. Adding these up, we get

W̃Fh(u
(j) − u) ∩ {µ > δ1} = ∅, t∗ ∈ [jtε + T0, T log(1/h)]. (4.3.52)

By propagation of singularities for the wave equation and using that WFh(u
(j)) ∩ {t∗ =

jtε} ⊂ {µ > 2δ1}, we see, uniformly in j,

WFh(u) ∩ {δ1 ≤ µ ≤ 2δ1} ∩ {jtε ≤ t∗ − T0 ≤ (j + 1)tε} ⊂ {|1 + τ | < δ1/4} ∩
{
Hp̃

∂τ p̃
µ < 0

}
.

Combining this with (4.3.52) (and another application of propagation of singularities for
times up to T0), we get uniformly in t∗ ∈ [0, T log(1/h)],

W̃Fh(u) ∩ {δ1 ≤ µ ≤ 2δ1} ⊂ {|1 + τ | < δ1/4} ∩
{
Hp̃

∂τ p̃
µ < 0

}
. (4.3.53)

This implies that for any bounded fixed T1, the semiclassical singularities of u(t + T1) in
Xδ1 come via propagation of singularities from the semiclassical singularities of u(t) in Xδ1 –
that is, no new singularities arrive from the outside. We can then apply propagation of
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singularities to see that W̃Fh(u) ∩ {µ > δ1} ⊂ W uniformly in t∗ ∈ [T0, T log(1/h)], where
W ⊂ C+ is constructed in Lemma 4.2.2; indeed, every trajectory of ϕ̃s starting on {|1 + τ | <
δ1/4} ∩ {µ > δ1} \W escapes as s→ +∞. Together with (4.3.50) and (4.3.53), this implies
that for t ≥ T0, u satisfies the outgoing condition of Definition 4.2.3.

We can finally apply Theorem 4.4 in §4.2.4, giving Theorem 4.2 and additionally the
bounds (the first one of which is a combination of (4.2.22), (4.2.23), and (4.2.25))

‖u(t)‖E ≤ C(h−1/2e−(νmin−ε)t/2 + h−1e−(νmin−ε)t + hN)‖u(0)‖E ,
‖u(t)‖E ≤ Ceεt‖u(0)‖E .

The first of these bounds gives Theorem 4.1 for (νmin − ε)t ≥ log(1/h); the second one gives

‖u(t)‖E ≤ Ch−1/2e−(νmin−3ε)t/2‖u(0)‖E , (νmin − ε)t ≤ log(1/h),

which is the bound of Theorem 4.1 with ε replaced by 3ε.

4.3.5 Results for resonances

In this section, we use the results of Chapter 3 together with the analysis of §§4.3.1, 4.3.2
to prove Theorem 4.3. As in the statement of this theorem, we consider the Kerr–de Sitter
case Λ > 0.

We first use [128, §6] to define resonances for Kerr–de Sitter and put them into the
framework of §3.4. We use the change of variables (4.3.41); the metric in the coordinates

(t∗, r, θ, ϕ∗) continues smoothly through the event horizons to X̃−δ1 = {µ > −δ1}, see [128,
§6.1].

Following [128, §6.2] (but omitting the ρ2 factor), we consider the the stationary d’Alembert–
Beltrami operator P (z), obtained by replacing Dt∗ by −z ∈ C in �g̃. It is an operator on
the space slice X−δ1 = {µ > −δ1}r × S2

θ,ϕ. We consider the semiclassical version

Pg̃(ω) := h2P (h−1ω),

where h→ 0 is a small parameter; this definition agrees with the one used in §4.2.3.
Following [128, §6.5], we embed X−δ1 as an open set into a compact manifold without

boundary X, extend P (z) to a second order differential operator on X depending holomor-
phically on z, and construct a complex absorbing operator Q(z) ∈ Ψ2(X), whose Schwartz
kernel is supported inside the square of the nonphysical region {µ < 0}. Then [128, Theo-
rem 1.1] for Im z ≥ −C1 and s large enough depending on C1, P (z)− iQ(z) is a holomorphic
family of Fredholm operators X s → Hs−1(X), where

X s = {u ∈ Hs(X) | (P (0)− iQ(0))u ∈ Hs−1(X)},

and resonances are defined as the poles of its inverse. The semiclassical version is

P(ω) := Pg̃(ω)− h2Q(h−1ω) : X s
h → Hs−1

h (X),

‖u‖X sh = ‖u‖Hs
h(X) + ‖(P (0)− iQ(0))u‖Hs−1

h (X).
(4.3.54)
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We now claim that the operator P(ω) satisfies all the assumptions of §§3.4.1, 3.5.1. Most of
these assumptions have already been verified in §4.2.3, relying on the assumptions of §4.2.2
which in turn have been verified in §§4.3.1, 4.3.2. Given the definition of the spacesH1 := X s

h ,
H2 := Hs−1

h (X), and the Fredholm property discussed above, it remains to verify assump-
tions (10) and (11) of §3.4.1, namely the existence of an outgoing parametrix. This is done
by modifying the proof of [128, Theorem 2.15] exactly as at the end of §3.4.4.

Theorem 4.3 now follows directly by Theorems 3.1 and 3.2; the constant cK̃ is given
by (4.2.16).

4.3.6 Stability

We finally discuss stability of Theorems 4.1–4.3, under perturbations of the metric. We
assume that (X̃0, g̃) is a Lorentzian manifold which is a small smooth metric perturbation
of the exact Kerr(–de Sitter) (as described in §4.3.1 and with M,Λ, a in a small neighbor-
hood of either (4.1.1) or (4.1.2)) and which is moreover stationary (that is, ∂t is Killing).
For perturbations of Kerr (Λ = 0) spacetime, we moreover assume that our perturbation
coincides with the exact metric for large r (this assumption can be relaxed; in fact, all
we need is for (4.3.44) and the analysis in Proposition 4.3.10 to apply, so we may take a
small perturbation in the class of scattering metrics). We also assume that the perturbation
continues smoothly across the event horizons in the coordinates (4.3.41). The initial value
problem (4.3.43) is then well-posed, as {µ = −δ1} is still spacelike. The results of [128] still
hold, as discussed in [128, §2.7].

It remains to verify that the assumptions of §4.2.2 still hold for the perturbed metric.
Assumptions (1)–(3) are obviously true. Assumption (4) holds with the same function µ,
at least for µ(γ(s)) ∈ (δ, δ0), where δ0 is fixed and δ > 0 is small depending on the size of
the perturbation; we take a small enough perturbation so that δ � δ1, where δ1 > 0 is the
constant used in Theorem 4.4 in §4.2.4 and in (4.2.13). Then the trapped set K̃ for the
perturbed metric is close to the original trapped set, which implies assumption (5). Finally,
the dynamical assumptions (6)–(8) still hold by the results of [64] and the semicontinuity of
νmin, νmax, µmax, as discussed in §3.5.2.
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[11] Matania Ben-Artzi and Allen Devinatz. “Resolvent estimates for a sum of tensor
products with applications to the spectral theory of differential operators”. In: J.
Analyse Math. 43 (1983/84), pp. 215–250.

[12] Jean-Pierre Berenger. “A perfectly matched layer for the absorption of electromag-
netic waves”. In: J. Comput. Phys. 114.2 (1994), pp. 185–200.

http://arxiv.org/abs/0908.2265


BIBLIOGRAPHY 234

[13] Emanuele Berti, Vitor Cardoso, and Andrei O Starinets. “Quasinormal modes of black
holes and black branes”. In: Classical and Quantum Gravity 26.16 (2009), p. 163001.

[14] Emanuele Berti, Vitor Cardoso, and Clifford M. Will. “Gravitational-wave spec-
troscopy of massive black holes with the space interferometer LISA”. In: Phys. Rev.
D 73 (6 Mar. 2006), p. 064030.

[15] Emanuele Berti and Kostas D. Kokkotas. “Quasinormal modes of Kerr-Newman black
holes: Coupling of electromagnetic and gravitational perturbations”. In: Phys. Rev.
D 71 (12 June 2005), p. 124008.

[16] Pieter Blue and Jacob Sterbenz. “Uniform decay of local energy and the semi-linear
wave equation on Schwarzschild space”. In: Comm. Math. Phys. 268.2 (2006), pp. 481–
504.

[17] Jean-François Bony and Dietrich Häfner. “Decay and non-decay of the local energy
for the wave equation on the de Sitter-Schwarzschild metric”. In: Comm. Math. Phys.
282.3 (2008), pp. 697–719.

[18] Jean-François Bony et al. “Spectral projection, residue of the scattering amplitude
and Schrödinger group expansion for Barrier-top resonances”. In: Ann. Inst. Fourier
(Grenoble) 61.4 (2011), 1351–1406 (2012).

[19] Nicolas Burq and Maciej Zworski. “Control for Schrödinger operators on tori”. In:
Math. Res. Lett. 19.2 (2012), pp. 309–324.

[20] Brandon Carter. “Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s
equations”. In: Comm. Math. Phys. 10 (1968), pp. 280–310.

[21] Subrahmanyan Chandrasekhar. The mathematical theory of black holes. Oxford Clas-
sic Texts in the Physical Sciences. Reprint of the 1992 edition. New York: The Claren-
don Press Oxford University Press, 1998, pp. xxii+646.

[22] Anne-Marie Charbonnel. “Spectre conjoint d’opérateurs pseudodifférentiels qui com-
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Ann. Henri Poincaré 3.4 (2002), pp. 739–756.

[86] Jeremy Marzuola et al. “Strichartz estimates on Schwarzschild black hole backgrounds”.
In: Comm. Math. Phys. 293.1 (2010), pp. 37–83.

http://arxiv.org/abs/1009.0671


BIBLIOGRAPHY 239

[87] Rafe R. Mazzeo and Richard B. Melrose. “Meromorphic extension of the resolvent
on complete spaces with asymptotically constant negative curvature”. In: J. Funct.
Anal. 75.2 (1987), pp. 260–310.

[88] Rafe Mazzeo and András Vasy. “Resolvents and Martin boundaries of product spaces”.
In: Geom. Funct. Anal. 12.5 (2002), pp. 1018–1079.

[89] Richard B. Melrose. “Spectral and scattering theory for the Laplacian on asymptot-
ically Euclidean spaces”. In: Spectral and scattering theory (Sanda, 1992). Vol. 161.
Lecture Notes in Pure and Appl. Math. New York: Dekker, 1994, pp. 85–130.
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[106] Johannes Sjöstrand. “A trace formula and review of some estimates for resonances”.
In: Microlocal analysis and spectral theory (Lucca, 1996). Vol. 490. NATO Adv. Sci.
Inst. Ser. C Math. Phys. Sci. Dordrecht: Kluwer Acad. Publ., 1997, pp. 377–437.
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mas et Synthèses [Panoramas and Syntheses]. Paris: Société Mathématique de France,
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