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Abstract. We consider a surface M with constant curvature cusp ends and its
Eisenstein functions Ej(λ; z), z ∈ M . These are the plane waves associated to the
jth cusp and the spectral parameter λ, (∆ − 1/4 − λ2)Ej = 0. We prove quantum
unique ergodicity (QUE) of Ej ’s for Reλ → ∞ and Imλ → ν > 0; the limiting
measure is naturally defined and decays exponentially along the geodesic flow. In
particular, taking a sequence of λ’s corresponding to scattering resonances, we obtain
QUE of resonant states with energies away from the real line. As an application, we
also show that the scattering matrix tends to 0 in strips separated from the real line.

1. Introduction

Concentration of eigenfunctions of the Laplacian in phase space dates back to the pa-

pers of Schnirelman [Sch], Colin de Verdière [CdV], and Zelditch [Ze1]. Their quantum

ergodicity (QE) result states that on a compact Riemannian manifold without bound-

ary whose geodesic flow is ergodic with respect to the Liouville measure, a density one

subsequence of eigenfunctions microlocally converges to this measure. In particular

this result applies to compact hyperbolic surfaces. The papers [Ja, Li, LuSa, So, Ze2]

studied the question for finite area hyperbolic surfaces, that is hyperbolic quotients

with cusps. In particular, [Ze2] established QE for any such surface, if embedded

eigenfunctions are augmented with Eisenstein functions on the unitarity axis; the

latter parametrize continuous spectrum of the Laplacian arising from the presence

of cusps. For the modular surface one has a stronger statement of quantum unique

ergodicity (QUE): any sequence of Hecke–Maass forms [Li, So] or Eisenstein series

on the unitarity axis [LuSa, Ja] converges to the Liouville measure. Guillarmou and

Naud [GuiNa] have recently studied equidistribution of Eisenstein functions for convex

co-compact hyperbolic manifolds; that is, in the presence of funnels, but not cusps.

See [No, Sa, Ze3] for recent reviews of various other results.

The present paper considers an arbitrary surface with cusps and phase space con-

centration of Eisenstein functions for energies in the upper half-plane, away from the

real line. Without utilising global properties of the geodesic flow, such as hyperbolicity

or ergodicity, we establish a form of QUE in that case — see Theorem 1.
1
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Our motivation comes from the natural question of quantum ergodicity of resonant

states. These replace eigenfunctions on non-compact manifolds, but there are no

rigorous results about their equidistribution in phase space. See however interesting

physics papers by Keating et al. [KeNoNoSi] and Nonnenmacher–Rubin [NoRu].

In the case of manifolds with cusps and ergodic geodesic flows, resonant states close

to the real axis are believed to satisfy QE; that is, most of them should converge to

the Liouville measure in the sense of Definition 1.1. As stated in Theorem 3, QUE for

Eisenstein series away from the real line yields a QUE result for resonant states with

complex energies at a fixed distance from the real line. Although this does not answer

the QE question for the more interesting case Imλ→ 0, it seems to be the first result

on quantum ergodicity for resonant states.

We proceed to a rigorous formulation of the results. Let (M, g) be a two-dimensional

complete Riemannian manifold with cusp ends; that is, M is the union of a compact

set and finitely many cusp regions C1, . . . , Cm, where each Cj posesses a system of

canonical coordinates

(r, θ) ∈ (Rj,∞)× S1, S1 = R/(2πZ),

with Rj some constant, such that the metric g on Cj has the form

g = dr2 + e−2rdθ2. (1.1)

(To avoid confusing canonical coordinate systems for different cusps, we will always

specify which cusp region we are considering.) A classical example of such M is a

finite area hyperbolic surface without conic points. In fact, the present paper applies

to surfaces with conic points as well, as one can get rid of these by passing to a finite

covering space. The metric (1.1) has constant curvature −1; we could consider cusps

of different constant curvatures, or even a slightly more general class of real analytic

metrics on the cusps; we restrict our attention to (1.1) for simplicity.

Let ∆ be the (nonnegative) Laplace–Beltrami operator corresponding to the metric

g; this operator is self-adjoint, its spectrum is contained in [0,∞), and the spectrum in

[0, 1/4) consists of finitely many eigenvalues [Mü, Section 1]. The Eisenstein functions

Ej(λ; z), j = 1, . . . ,m, z ∈M, Imλ > 0, λ 6∈ (0, i/2]

are unique solutions to the equation

(∆− 1/4− λ2)u = 0, u ∈ C∞(M), (1.2)

that satisfy

u ∈ L2(X \ Cj), u(r, θ)− e(1/2−iλ)r ∈ L2(Cj). (1.3)

(See Section 3 for details.) To define L2(M), we use the volume form Vol induced by

g. We study concentration of Ej(λ) in the phase space as Reλ → ∞ in the upper
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half-plane using semiclassical measures. The definition needs to be more complicated

than in the case of compact manifolds as Ej’s do not lie in L2(M):

Definition 1.1. Assume that the sequence λn satisfies1

Reλn → +∞, Imλn → ν > 0 as n→∞. (1.4)

Put

hn = (Reλn)−1, ωn = i Imλn, (1.5)

so that hnλn = 1+hnωn, hn → 0, ωn → iν as n→∞. We say that Ej(λn) converges to

a Radon measure µ on T ∗M , which is then called a semiclassical measure associated to

Cj and the constant ν, if for each χ ∈ C∞0 (M) and each semiclassical pseudodifferential

operator A(h) ∈ Ψ0(M) with principal symbol a ∈ C∞(T ∗M),

〈A(hn)χEj(λn), χEj(λn)〉L2(M) →
∫
T ∗M

aχ2dµ.

In particular, we can take as A(h) the multiplication operator by a(z) ∈ C∞0 (M),

in which case we get ∫
a(z)|Ej(λn)|2 dVol→

∫
T ∗M

a(z) dµ.

In other words, the measure |Ej(λn)|2 dVol converges weakly to the pullback of µ

under the projection π : T ∗M →M .

Basic properties of semiclassical measures can be proved using the calculus of semi-

classical pseudodifferential operators. By (1.2),

P (hn;ωn)Ej(λn) = 0, (1.6)

where P (h;ω) is the following second order semiclassical differential operator:

P (h;ω) = h2∆− h2/4− (1 + hω)2.

The principal symbol of P is given by

p(z, ζ) = g−1
z (ζ, ζ)− 1, z ∈M, ζ ∈ T ∗zM,

with g−1 the inner product on the fibers of the cotangent bundle induced by g. The

critical set

S∗M = {p = 0}
is the unit cotangent bundle. Furthermore, if

Gt : T ∗M → T ∗M, t ∈ R,

is the geodesic flow of g on T ∗M , then the Hamiltonian flow of p is given by G2t.

1Same methods apply with Reλn → −∞, with signs in certain formulas inverted and semiclassical
measures concentrated on the outgoing, rather than incoming, set A+

j .
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Proposition 1.1. 1. For every j, each sequence λn satisfying (1.4) has a subsequence

λnl
such that E(λnl

) converges to some Radon measure µ.

2. Each semiclassical measure µ is supported on the unit cotangent bundle:

µ(T ∗M \ S∗M) = 0.

3. Each semiclassical measure µ is decaying exponentially with rate 2ν along the

geodesic flow:

µ(GtA) = e−2νtµ(A), A ⊂ S∗M, t ∈ R. (1.7)

To study semiclassical measures in greater detail, we define the incoming set A−j and

the outgoing set A+
j for each cusp Cj as follows: if (r, θ) are the canonical coordinates

on Cj and (r, θ, pr, pθ) is the induced system of coordinates on T ∗Cj, then

A±j = {ρ ∈ S∗M | ∃t > 0 : G±tρ ∈ Â±j },

Â±j = {(r, θ, pr, pθ) ∈ T ∗Cj | pr = ±1, pθ = 0}.
(1.8)

In other words, A+
j is the union of all geodesics going directly into jth cusp and A−j

is the union of all geodesics emanating directly from it. Note that A±j need not be

closed; in fact, for hyperbolic surfaces each of them is dense in S∗M .

For each ν > 0, we construct the measure µjν on A−j as follows:

µjν(A) = lim
t→+∞

e−2νt

∫
bA−j ∩G−t(A)

e2νr drdθ, A ⊂ A−j . (1.9)

Since ν > 0, the limit exists (in fact, the function under the limit is increasing and it is

bounded when A is bounded) and yields a Radon measure satisfying parts 2 and 3 of

Proposition 1.1. We can now state the main result of the paper, which can be viewed

as quantum unique ergodicity for Eisenstein functions in the upper half-plane:

Theorem 1. For every sequence λn satisfying (1.4), the sequence Ej(λn) converges

to µjν.

As an application of Theorem 1, we derive a bound on the scattering matrix S(λ).

For each two cusps Cj, Cj′ , define Sjj′(λ) by

Ej|Cj′ (λ; r, θ) = δjj′e
(1/2−iλ)r + Sjj′(λ)e(1/2+iλ)r + · · · ,

where (r, θ) are canonical coordinates on Cj′ , δ is the Kronecker delta, and · · · denotes

the terms corresponding to terms with k 6= 0 in the Fourier series expansion (3.1) of

Ej|Cj′ in the θ variable.

Theorem 2. Consider two cusps Cj, Cj′ and assume that µjν(A+
j′) = ∅ (in particular,

this is true for hyperbolic surfaces, as A+
j′ ∩A

−
j consists of countably many geodesics).

Then for each sequence λn satisfying (1.4),

Sjj′(λn)→ 0 as n→∞.



QUANTUM ERGODICITY OF EISENSTEIN FUNCTIONS AT COMPLEX ENERGIES 5

In other words,

Sjj′(λ) = o(1), 0 < C−1 < Imλ < C, Reλ→∞.

This estimate is far from optimal: in the special case of the modular surface M =

PSL(2,Z)\H, the scattering coefficient S(λ) is related to the Riemann zeta function

by the formula [Ti, Section 2.18]

S(λ) =
√
π

ζ(−2iλ)Γ(−iλ)

ζ(1− 2iλ)Γ(1/2− iλ)
.

Given that both ζ(z) and ζ−1(z) are bounded in every half-plane {Re z > 1 + C−1}
(either by Dirichlet series or by Euler product representation), the basic bound on the

zeta function in the critical strip [Ti, (5.1.4)] gives

|S(λ)| = O(|λ|−min(Imλ,1/2)−), Imλ ≥ C−1. (1.10)

The bound (1.10) is optimal for Imλ > 1/2, and no optimal bounds are known

for 0 < Imλ < 1/2. It would be interesting to see if semiclassical methods can yield

an effective bound on the scattering coefficients, and compare such bound to (1.10).

Finally, assume that for some λ, the matrix S(λ) is not invertible; that is, there

exists α ∈ Cm \ {0} such that for each j′,∑
j

αjSjj′(λ) = 0. (1.11)

Then −λ is a resonance; i.e., a pole of the meromorphic continuation of the resolvent

(−∆ − 1/4 − λ2)−1 to the lower half-plane (see for example [Mü, Section 5]), and a

resonant state at −λ is given by
∑

j αjEj(λ). We arrive to

Theorem 3. Assume that λn is a sequence satisfying (1.4) such that each −λn is a

resonance, and let u(n) be a sequence of corresponding resonant states converging to

some measure µ. Then µ is a linear combination of the measures µ1ν , . . . , µmν defined

by (1.9).

The fact that semiclassical measures are exponentially decaying along the geodesic

flow is parallel to [NoZw, Theorem 4]. However, the concentration statement [NoZw,

(1.15)] is vacuous in our case, as the set Γ−E from [NoZw] (not Γ+
E, as Re(−λ) < 0) is

the whole cosphere bundle. In fact, [NoZw] heavily use the fact that resonant states

are outgoing, while Eisenstein series studied in the present paper need not satisfy the

outgoing condition (which in our case is (1.11)).

To prove Theorem 1, we first use exponential decay of semiclassical measures along

the geodesic flow together with the Borel–Cantelli lemma and the structure of the flow

in the cusp to show that each semiclassical measure µ has to be supported on
⋃
j′ A

−
j′ .

We then consider the Fourier series (3.1) in some cusp region Cj′ . The restriction of µ

to A−j′ is composed of:
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Figure 1. Semiclassical characteristic set for (3.3)

• the zero mode u0(r), which gives the measure δjj′µjν , and

• the modes uk(r), for 0 < |hk| � 1.

It then remains to show that the contribution of nonzero modes is negligible. For

that, we use the equation (3.3) satisfied by each uk. Its semiclassical characteristic set,

corresponding to the geodesics on {p = 0}∩{pθ = hk}, is a single curve bending at the

point r = − log |hk|. If we approximate uk using the WKB method, then the transport

equation tells us that the amplitude is going to decay exponentially as we go along

the flow (the precise rate of decay controlled by Imλ). Therefore, the mass of uk on

the incoming (bottom) part of the characteristic set in the region {Rj < r < Rj + 1}
is O(|hk|ν) and thus indeed negligible. Since the standard WKB approximation is

no longer valid as hk → 0, we use a version of the exact WKB method to justify

the above observation. One could also establish the needed properties by expressing

solutions to (3.3) via modified Bessel functions; however, we give an (arguably longer)

semiclassical proof because it provides a more direct explanation for the phenomena

encountered using the geometry of the problem.

The paper is organized as follows. In Section 2, we review some notation and facts

from semiclassical analysis. In Section 3, we use standard methods of semiclassical

analysis and spectral theory to show existence of Eisenstein functions and prove Propo-

sition 1.1. In Section 4, we consider the special case of finite area hyperbolic surfaces

and describe the canonical measures µjν from (1.9) via the action of the fundamental

group of M ; we also prove Theorem 1 in this case for Imλ > 1/2 using the classical

definition of Eisenstein functions as series. Section 5 studies solutions of a certain

auxiliary ordinary differential equation, which are related to the nonzero modes in the

Fourier series decomposition (3.1). Finally, in Section 6 we prove Theorems 1 and 2.
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2. Semiclassical preliminaries

In this section, we briefly review the portions of semiclassical analysis used below;

the reader is referred to [EvZw] for a detailed account on the subject.

We assume that h > 0 is a parameter, the smallness of which is implied in all

statements below. Consider the algebra Ψs(Rd) of pseudodifferential operators with

symbols in the class

Ss(Rd) = {a(x, ξ;h) ∈ C∞(Rd) | sup
K⊂Rd

|∂xα∂
ξ
βa(x, ξ;h)| ≤ CαβK〈ξ〉s−|β|};

here K runs through compact subsets of Rd. The only difference with the classes stud-

ied in [EvZw, Section 8.6] is that we do not require uniform bounds as x→∞. How-

ever, this does not matter in our situation, as we will mostly use compactly supported

operators; e.g. those operators whose Schwartz kernels are compactly supported in

Rd×Rd. As in [EvZw, Appendix E], we can define the algebra Ψs(M) for any manifold

M . The compactly supported elements of Ψs(M) act H t
~,loc(M) → H t−s

~,comp(M) with

norm O(1) as h→ 0, where H t
~,loc and H t−s

~,comp are semiclassical Sobolev spaces.

To avoid discussion of simultaneous behavior of symbols as ξ → ∞ and h → 0,

we further require that the symbols of elements of Ψs are classical, in the sense that

they posess an asymptotic expansion in powers of h, with the term next to hk lying

in Ss−k (see [Dya, Section 2.1] for details). Following [Va, Section 2], we introduce

the fiber-radial compactification T
∗
M of the cotangent bundle. Each A ∈ Ψs has an

invariantly defined (semiclassical) principal symbol σ(A) = a ∈ C∞(T ∗M), and 〈ξ〉−sa
extends to a smooth function on T

∗
M . We then define the characteristic set of A as

{〈ξ〉−sa 6= 0} ⊂ T
∗
M and say that A is elliptic on some U ⊂ T

∗
M , if U does not

intersect the characteristic set of A.

Finally, as in [Va] or [Dya], we define the semiclassical wavefront set WF~(A) ⊂
T
∗
M . The wavefront set of A is empty if and only if A lies in the algebra h∞Ψ−∞(M)

of smoothing operators such that each of C∞(M ×M) seminorms of their Schwartz

kernels decays faster than any power of h. For A,B ∈ Ψs(M), we say that A = B

microlocally on some open U ⊂ T
∗
M , if WF~(A − B) ∩ U = ∅. Also, we say that

A ∈ Ψs(M) is compactly microlocalized, if WF~(A) does not intersect the fiber infinity

∂(T
∗
M); in this case, A ∈ Ψs(M) for all s.

We recall the following fundamental estimates:

Proposition 2.1. Let P ∈ Ψs(M) have real-valued principal symbol p. Then:

1. (Elliptic estimate) Let A ∈ Ψ0(M) be compactly supported and assume that P is

elliptic on WF~(A). Then for each u ∈ L2(M),

‖Au‖HN
~ (M) ≤ O(1)‖Pu‖HN−s

~ (M) +O(h∞)‖u‖L2(M).
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2. (Propagation of singularities) Let A,B ∈ Ψ0(M) be compactly supported and

compactly microlocalized and assume that for each Hamiltonian flow line γ(t) of p

such that γ(0) ∈WF~(A)∩{p = 0}, there exists T ≥ 0 such that B is elliptic at γ(T ).

Then for each u ∈ L2(M),

‖Au‖L2(M) ≤ O(1)‖Bu‖L2(M) +O(h−1)‖Pu‖L2(M) +O(h∞)‖u‖L2(M).

Proof. The elliptic estimate is proved by constructing a parametrix; i.e. a compactly

supported operator Q ∈ Ψ−s(M) such that A = QP + h∞Ψ−∞; see [HöIII, Theo-

rem 18.1.24’] for the microlocal case and for example [Dya, Section 2.2] for the semi-

classical case. Propagation of singularities can be proved either by conjugation to

a model case by a Fourier integral operator or by the positive commutator method;

see [EvZw, Theorem 10.21] for the former and [DaVa, end of Section 4] for the lat-

ter. �

We now prove an elliptic estimate for a Schrödinger operator. It would not follow

from standard elliptic estimates on the real line because the potential we will use is

exponentially increasing and thus the operator does not lie in any reasonable symbolic

class.

Proposition 2.2. Consider the Schrödinger operator

P (h) = h2D2
x + V (x),

where the potential V (x) satisfies

ReV (x) ≥ ε for x ≤ ε;

|∂jV (x)| ≤ Cj for each j and − 1 ≤ x ≤ 1,

for some constants ε > 0 and Cj. Then

v(x) ∈ H1(−∞, ε), P (h)v = 0 =⇒ ‖v‖L2(−∞,0) = O(h∞)‖v‖L2(0,ε).

Proof. First of all, we integrate by parts:

0 = Re

∫ 0

−∞
(P (h)v(x))v(x) dx

= −h2 Re(v̄∂xv)|x=0 +

∫ 0

−∞
h2|∂xv(x)|2 + (ReV (x))|v(x)|2 dx.

Therefore,

‖v‖2
L2(−∞,0) = O(h2)|v(0)| · |∂xv(0)|.

Now, since P is elliptic on (−ε, ε), we have by Proposition 2.1(1) for each N ,

‖v‖HN
~ (−ε/2,ε/2) = O(h∞)‖v‖L2(−ε,ε);
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it follows by Sobolev embedding that

|v(0)|, |∂xv(0)| = O(h∞)‖v‖L2(−ε,ε). �

Finally, we will need the following very special case of the theory of (local) La-

grangian distributions (see [GuiSt, Chapter 6] or [VũNg, Section 2.3] for a detailed

account, and [HöIV, Section 25.1] or [GrSj, Chapter 11] for the microlocal case; how-

ever, the proposition below can be proved in a straightforward manner using the

definition of a pseudodifferential operator and the method of stationary phase):

Proposition 2.3. Assume that I ⊂ R is an interval, and let ϕ0(x) be a smooth

real-valued function on I. Define the set

Λ = {(x, ξ) | ξ = ∂xϕ0(x)} ⊂ T ∗I.

Let a(x;h) be a smooth function in x ∈ I and in h ≥ 0 (which is a classical symbol in

h, owing to the asymptotic Taylor expansion at h = 0) and define

u(x;h) = eiϕ0(x)/ha(x;h). (2.1)

We call u(x;h) a Lagrangian distribution associated to Λ. Let A ∈ Ψ0(I) be a com-

pactly supported operator. Then:

1. If WF~(A) ∩ Λ = ∅, then ‖Au‖L2 = O(h∞).

2. If A is elliptic at some (x0, ξ0) ∈ Λ and a(x0; 0) 6= 0, then ‖Au‖L2 ≥ C−1 for

some constant C independent of h.

3. If ã(x, ξ) is the principal symbol of A, then Au(x;h) = ã(x, ∂xϕ0(x))u(x;h) +

OL2(h).

3. Basic properties

In this section, we review the construction of Eisenstein functions and prove the

basic properties of semiclassical measures given in Proposition 1.1.

We start by studying the equation (1.2) in some cusp Cj. Consider the Fourier series

u|Cj (r, θ) =
∑
k∈Z

u
(j)
k (r)eikθ; (3.1)

when it is unambiguous which cusp we are considering, we simply write u
(j)
k = uk.

Note that since the volume form induced by g in Cj is e−r drdθ, we have

‖u‖2
L2(Cj∩{R′<r<R′′}) =

∑
k∈Z

‖e−r/2u(j)
k (r)‖2

L2(R′,R′′), Rj < R′ < R′′. (3.2)

By (1.1), (1.2) takes the form

[(Dr + i/2)2 + k2e2r − λ2]u
(j)
k (r) = 0, k ∈ Z. (3.3)
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For k = 0, (3.3) is a constant-coefficient ODE and we have

u
(j)
0 (r) = u

+(j)
0 e(1/2+iλ)r + u

−(j)
0 e(1/2−iλ)r, (3.4)

for some constants u
±(j)
0 .

Now, let χj(r) ∈ C∞((Rj,∞)) be supported in [Rj + 1,∞), but χj(r) = 1 for

r ≥ Rj + 2. Then

(∆− 1/4− λ2)(χj(r)e
(1/2−iλ)r) = [∆, χj]e

(1/2−iλ)r ∈ C∞0 (M).

Take λ ∈ C such that Imλ > 0, λ 6∈ (0, i/2]; then the resolvent

(∆− 1/4− λ2)−1 : L2(M)→ L2(M)

is well-defined and the only solution to (1.2) satisfying (1.3) is given by [Mü, Section 3]

Ej(λ; z) = χj(r)e
(1/2−iλ)r − (∆− 1/4− λ2)−1[∆, χj]e

(1/2−iλ)r. (3.5)

The second term in the right-hand side of (3.5) lies in C∞(M) ∩H1(M). Therefore,

if we put u = Ej(λ; z) and consider Fourier series (3.1) and the decompositions (3.4),

then for each cusp Cj′ ,

u
−(j′)
0 = δjj′ ; (3.6)

u
(j′)
k ∈ H1((Rj′ ,∞)), k 6= 0. (3.7)

Moreover, by the standard resolvent estimate for ∆ away from the spectrum we get

that for each compact set K ⊂ M and each constant ν > 0, there exists a constant

C(K, ν) such that

|Reλ| ≥ 1, ν/2 ≤ Imλ ≤ 2ν =⇒ ‖Ej(λ; z)‖L2(K) ≤ C(K, ν). (3.8)

Indeed, the first term on the right-hand side of (3.5) clearly satisfies (3.8); the norm of

the second term in L2(M) is estimated by the product of ‖(∆− 1/4− λ2)−1‖L2→L2 =

O(|λ|−1) and ‖[∆, χj]e(1/2−iλ)r‖L2 = O(|λ|).

Proof of Proposition 1.1. We denote u(n) = Ej(λn); we also note that we can get rid

of the cutoff χ in Definition 1.1 by restricting our attention to compactly supported

pseudodifferential operators.

1. We follow the argument of [EvZw, Theorem 5.2]. Let

{Al(h) ∈ Ψ0(M)}l∈N

be a countable set of compactly supported and compactly microlocalized operators

such that, if al is the principal symbol of Al, then for each a ∈ C∞0 (T ∗M) there exists

a subsequence alm converging to a in the sup-norm and such that the Schwartz kernels

of the operators Alm are supported inside some compact set independent of m.
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By (3.8), for each l the sequence 〈Al(hn)u(n), u(n)〉L2(M) is bounded as n→∞. Using

a diagonal argument, we can replace u(n) by a subsequence of it such that for each l,

the limit

lim
n→∞
〈Al(hn)u(n), u(n)〉L2(M) = F(al)

exists. We now use [EvZw, Theorem 5.1]: for each compact K ⊂ M , there exists

a constant C(K) such that for each A ∈ Ψ0(M) with Schwartz kernel supported in

K ×K and principal symbol a,

‖A(hn)u(n)‖L2 ≤ C(K) sup
T ∗M
|a|+O(h1/2

n ),

where the constant in O(·) depends on some fixed seminorm of the full symbol of A.

By a standard 3ε argument using the density of {al}, we see that for each compactly

supported and compactly microlocalized A ∈ Ψ0(M) with principal symbol a, there

exists the limit

lim
n→∞
〈A(hn)u(n), u(n)〉L2(M) = F(a). (3.9)

The map F : C∞0 (T ∗M)→ C is a linear functional such that for each compact K ⊂M ,

there exists a constant C(K) such that for each a ∈ C∞0 (T ∗M) with the projection of

supp a onto M contained in K, we have

|F(a)| ≤ C(K) sup
T ∗M
|a|.

Also, by sharp G̊arding inequality (see [EvZw, Theorem 5.3]), F(a) ≥ 0 whenever

a ≥ 0. It follows from Riesz Representation Theorem that there exists a Radon

measure µ on T ∗M such that for each a ∈ C∞0 (M),

F(a) =

∫
T ∗M

a dµ.

Finally, as follows from the proof of part 2 of this proposition, (3.9) is valid for any

compactly supported A ∈ Ψ0(M) (with no compact microlocalization requirement),

and in fact F(a) = 0 whenever supp a ∩ S∗M = ∅.
2. It suffices to note that by (1.6) and Proposition 2.1(1), for each compactly

supported A ∈ Ψ0(M) with WF~(A) ∩ S∗M = ∅, we have

lim
n→∞

‖A(hn)u(n)‖L2 = 0.

3. It suffices to show that for each a ∈ C∞0 (M) and each t,∫
S∗M

a ◦Gt dµ = e2νt

∫
S∗M

a dµ.

Differentiating this equality in t, we see that it is enough to prove∫
S∗M

{p, a} dµ = 4ν

∫
S∗M

a dµ. (3.10)
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Let A(h) ∈ Ψ0(M) be compactly supported and compactly microlocalized with prin-

cipal symbol a; then by (1.6),

0 = h−1
n 〈A(hn)P (hn)u(n), u(n)〉

= h−1
n 〈[A(hn), P (hn)]u(n), u(n)〉+ h−1

n 〈A(hn)u(n), P (hn)∗u(n)〉
= h−1

n 〈[A(hn), P (hn)]u(n), u(n)〉 − 4i(1 + hn Reωn) Imωn〈A(hn)u(n), u(n)〉.

However, h−1[A(h), P (h)] lies in Ψ0 and has principal symbol i{p, a}; taking the limit

as n→∞, we obtain (3.10). �

4. Hyperbolic surfaces

In this section, we consider the special case M = Γ\H, where Γ ⊂ PSL(2,R) is a

Fuchsian group of the first kind, so that M is a finite area hyperbolic surface. We

denote by πΓ : H → M the projection map and we use both the half-plane and the

ball models H and B; they are mapped to each other by the transformation

γ0 : H→ B, γ0(z) =
z − i
z + i

;

note in particular that γ0(i) = 0, γ0(∞) = 1, and |γ′0(z)| = 2/|z + i|2.

We first find an interpretation of (1.7) in terms of the group action; this is parallel

to the representation of measures invariant under the Hamiltonian flow in Patterson–

Sullivan theory (see for example [Bo, Section 14.2]). Consider the Poincaré ball model

B and parametrize the unit cotangent bundle S∗B by the diffeomorphism

T : (∂B× ∂B)∆ × R→ S∗B,

where (∂B × ∂B)∆ is the Cartesian square of the circle ∂B minus the diagonal. The

map T is defined as follows: take (w1, w2) ∈ (∂B×∂B)∆ and let γw1w2(t) be the unique

unit length geodesic going from w1 to w2, parametrized so that γ(0) is the point of γ

closest to 0 ∈ B. We put

T (w1, w2, t) = (γw1w2(t), gγ̇w1w2(t)).

Now, consider a Radon measure µ on S∗M satisfying (1.7). We can lift it to a measure

µ′ on S∗B; then

T ∗µ′ = µ̃× e−2νt dt, (4.1)

where µ̃ is some Radon measure on (∂B× ∂B)∆.

For each γ ∈ PSL(2,R), we can calculate

γ(T (w1, w2, t)) = T
(
γ(w1), γ(w2), t+

1

2
log

∣∣∣∣γ′(w1)

γ′(w2)

∣∣∣∣),
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where γ′(w) is the derivative of γ considered as a transformation on B. We see then

that the measure µ′ defined by (4.1) is invariant under the action of Γ on S∗B if and

only if

γ ∈ Γ =⇒ γ∗µ̃ = |γ′(w1)|ν |γ′(w2)|−νµ̃, (4.2)

where

(γ∗µ̃)(A) = µ̃((γ × γ)(A)), A ⊂ (∂B× ∂B)∆.

In particular, if µ̂ is a Radon measure on ∂B such that

γ ∈ Γ =⇒ γ∗µ̂ = |γ′(w)|2ν+1µ̂, (4.3)

then a measure µ̃ satisfying (4.2) is given by

µ̃ = |w1 − w2|−2(ν+1)µ̂× |dw2|. (4.4)

Now, fix a cusp region Cj on M and assume for simplicity that 1 ∈ ∂B is a preimage

of the corresponding cusp. Denote

γ(z) =
az + b

cz + d
,

(
a b

c d

)
∈ SL(2,R);

then

q ∈ ∂H =⇒ |(γ0γγ
−1
0 )′(γ0(q))| = q2 + 1

(aq + b)2 + (cq + d)2
.

Let Γ∞ be the group of all elements of Γ fixing ∞; without loss of generality, we may

assume that it is generated by the shift z → z+ 1. Then all the preimages of the cusp

of Cj are given by

{γ(∞) | γΓ∞ ∈ Γ/Γ∞};
i.e., they are indexed by right cosets of Γ∞ in Γ. Note that

γ(∞) = a/c, |(γ0γγ
−1
0 )′(γ0(∞))| = 1

a2 + c2
. (4.5)

A canonical system of coordinates on Cj is given by

(r, θ) ∈ (Rj,∞)× S1 → πΓ

(
θ + ier

2π

)
. (4.6)

Proposition 4.1. The lift of the measure µjν defined in (1.9) corresponds under (4.1)

to (4π)2ν+1µ̃, with µ̃ given by (4.4), and

γ∗0 µ̂ =
∑

γΓ∞∈Γ/Γ∞

δa/c
(a2 + c2)2ν+1

; (4.7)

here δ denotes a delta measure. (Note that the values a/c are distinct for different

cosets, as Γ∞ is the stabilizer of ∞.)
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Proof. The measure µ̂ is well-defined, as the series∑
γΓ∞∈Γ/Γ∞

1

(a2 + c2)2ν+1
=

∑
γΓ∞∈Γ/Γ∞

(Im γ−1(i))2ν+1 (4.8)

converges, by convergence of Eisenstein series (4.9). By (4.5), the measure µ̂ satis-

fies (4.3); therefore, it produces a measure µ satisfying parts 2 and 3 of Proposition 1.1.

Moreover, since µ̂ is supported on the set of the preimages of the cusp of Cj, µ is sup-

ported on A−j . It then suffices to study the restriction of µ to Â−j . To this end, take

A ⊂ (Rj,∞)× S1 and consider

Ã = {(r, θ;−1, 0) ∈ T ∗Cj | (r, θ) ∈ A} ⊂ Â−j .

Since

T (1, γ0(q), t) = γ0

(
q + i|i+ q|e−t,−i et

|i+ q|

)
,

we get

Ã = πΓT ({(1, γ0(q), t) | (q, t) ∈ Ǎ}),

Ǎ = {(θ/(2π),−r + ln(2π) + ln |i+ θ/(2π)|) | (r, θ) ∈ A}.
Then

µ(Ã) =

∫
(q,t)∈Ǎ

|γ0(q)− 1|−2(ν+1)e−2νt |dγ0(q)|dt

= 2−2ν−1

∫
(q,t)∈Ǎ

|i+ q|2νe−2νt dqdt = (4π)−2ν−1

∫
A

e2νr drdθ

and the proof is finished by the definition of µjν . �

In particular, for the modular surface the measure µ̂ is given by

γ∗0 µ̂ =
∑

m,n∈Z
n≥0, m⊥n

δm/n
(m2 + n2)2ν+1

.

We now sketch a proof of Theorem 1 for hyperbolic surfaces in the case Imλ > 1/2.

For that we use the series representation for the Eisenstein function

Ẽ(λ; z) = (2π)1/2−iλ
∑

Γ∞γ∈Γ∞\Γ

(Im γ(z))1/2−iλ, z ∈ H. (4.9)

This series converges absolutely [Ku, Theorem 2.1.1]; since it is invariant under Γ and

each of its terms solves (1.2) on H, it gives rise to a solution Ê(λ, z) of (1.2). It can

also be seen that (4.9) converges on L2 of a fundamental domain of Γ, if we take out

the term with γ = 1; therefore, Ê(λ, z) satisfies (1.3) and we have

Ẽ(λ; z) = Ej(λ; π(z)).
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To prove Theorem 1 in the considered case, it now suffices to show that for each

compactly supported A(h) ∈ Ψ0(H) with principal symbol a and a sequence λn satis-

fying (1.4), we have as n→∞

〈A(hn)Ẽ(λn; z), Ẽ(λn; z)〉L2 → (4π)2ν+1

∫
S∗H

a dµ′,

where µ′ is defined by (4.1) and µ̃ is defined by (4.4), with µ̂ given by (4.7). Since the

series (4.9) in particular converges in L2
loc, it is enough to prove (bearing in mind that

the parts of µ′ corresponding to different terms in (4.7) are mapped to each other by

elements of Γ) ∑
Γ∞γ,Γ∞γ1∈Z

〈A(hn)(Im γ(z))1/2−iλn , (Im γ1(z))1/2−iλn〉L2

→ 22ν+1
∑

Γ∞γ∈Z

∫
∂B×R

(a ◦ γ−1)(T (1, w, t))|1− w|−2(ν+1)e−2νt |dw|dt
(4.10)

for any finite subset Z of Γ∞\Γ. However, each (Im γ(z))1/2−iλn is microlocalized

on T ({γ−1(∞)} × ∂B × R); since these sets do not intersect for different γ−1(∞),

the cross terms in (4.10) are all O(h∞n ). Recalling how the principal symbol of a

pseudodifferential operator behaves under diffeomorphisms (in our case given by the

action of Γ on H), we see that it remains to prove

〈A(hn)(Im z)1/2−iλn , (Im z)1/2−iλn〉L2

→ 22ν+1

∫
∂B×R

a(T (1, w, t))|1− w|−2(ν+1)e−2νt |dw|dt

=

∫
R2

a(q + ie−t,−iet)e−2νt dqdt;

the latter is verified directly, as (by an application of the method of stationary phase)

A(hn)(Im z)1/2−iλn = a(z,−i/ Im z)(Im z)1/2−iλn +O(hn).

5. Auxiliary ODE analysis

In this section, we study the semiclassical Schrödinger operator

Q(h) = (hDx)
2 + V (x;h), V (x;h) = e−2x − (1 + hω)2, x ∈ R.

Here ω ∈ C is bounded by some fixed constant.

Note that Q(h) is a semiclassical differential operator, with real-valued principal

symbol

q(x, ξ) = ξ2 + e−2x − 1, (x, ξ) ∈ T ∗R.



16 SEMYON DYATLOV

We will first use the exact WKB method, in the form similar to [Dya, Section 4.2],

to construct two solutions v±(x;h), x ≥ R, to the equation

Q(h)v = 0. (5.1)

Here R > 0 is a large constant independent of h, chosen below. As noted in the

introduction, we use the exact WKB method to obtain asymptotics on v± in powers

of h that is uniform as x→ +∞; this will be the key to proving Theorem 1. We start

by constructing the phase function:

Proposition 5.1. There exists a complex-valued function ϕ(x;h), x ≥ 1, solving the

eikonal equation

(∂xϕ(x;h))2 + V (x;h) = 0 (5.2)

and such that

ϕ(x;h) = (1 + hω)x+ ψ(e−2x;h), (5.3)

with ψ(z;h) holomorphic in {|z| ≤ e−2}, smooth in h ≥ 0, and satisfying ψ(0;h) = 0.

Moreover,

∂xϕ(x;h) =
√

1− e−2x +O(h), (5.4)

Imϕ(x;h) = hx Imω +O(h), (5.5)

uniformly in x ≥ 1.

Proof. We look for ϕ of the form (5.3) solving

∂xϕ(x;h) =
√

(1 + hω)2 − e−2x, x ≥ 1. (5.6)

Here the square root is defined on C minus the negative real half-line so that the

square root of a positive real number is positive. Then ψ has to satisfy

∂zψ(z;h) =
1 + hω −

√
(1 + hω)2 − z
2z

.

This equation has unique solution such that ψ(0;h) = 1, since its right-hand side is

holomorphic in {|z| ≤ e−2}.
Next, (5.4) follows immediately from (5.6). To show (5.5), we derive from (5.6) that

∂xϕ(x;h) = hω +
√

1− e−2x +O(he−2x);

therefore,

Imϕ(x;h) = Imϕ(1;h) +

∫ x

1

h Imω +O(he−2x′) dx′ = hx Imω +O(h). �

Now, we construct the solutions v± themselves:
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Proposition 5.2. There exists a constant R independent of h and unique functions

a±(z;h) holomorphic in {|z| ≤ e−2R} and smooth in h ≥ 0 such that for

v±(x;h) = e±iϕ(x)/ha±(e−2x;h), x ≥ R, (5.7)

we have

Q(h)v±(x;h) = 0, (5.8)

a±(0;h) = 1. (5.9)

Proof. We consider the Taylor series of a± in z:

a±(z;h) =
∑
m≥0

a±m(h)zm. (5.10)

We first treat (5.10) as a formal series and solve (5.8) to find the coefficients a±m(h).

By (5.6), we have

∂xϕ(x;h) = f(e−2x), f(z) =
√

(1 + hω)2 − z.

Then
Q(h)(e±iϕ(x;h)/he−2mx) = ±2ihe±iϕ(x;h)/he−2mx

·[2mf(e−2x;h)± 2ihm2 + e−2x(∂zf)(e−2x;h)].
(5.11)

Consider the Taylor series

f(z;h) = 1 + hω +
∑
l≥1

fl(h)zl;

combining (5.7), (5.10), and (5.11), we see that the coefficients a±m(h) have to satisfy

the recursive relations

a±m(h) =
1

2m(1 + hω ± imh)

∑
0<l≤m

(l − 2m)fl(h)a±m−l(h), m > 0. (5.12)

The equations (5.12) have a unique solution a±m(h) if we impose the condition (5.9),

which takes the form

a±0 (h) = 1. (5.13)

It remains to estimate a±m(h) uniformly in m and in h. Since f(z;h) is holomorphic

in {|z| ≤ e−2}, we have

|fl(h)| ≤ Ce2l,

for some constant C independent of l and h. Then, since |1 + hω± imh| ≥ 1/2 for all

m and h small enough, (5.12) implies

|a±m(h)| ≤ 2C
∑

0<l≤m

e2l|a±m−l(h)|. (5.14)
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Take R large enough so that e2R−4 > 2C + 1; then

1 > 2C
∑
l>0

e(4−2R)l,

By (5.9) and (5.14), this implies that

|a±m(h)| ≤ e2(R−1)m.

Similar reasoning applied to the result of differentiating (5.12) in h gives that for each

j, there exists a constant Cj such that for all m and h small enough,

|∂jha
±
m(h)| ≤ Cje

2(R−1)m. (5.15)

It follows that the series (5.10) converges uniformly in {|z| ≤ e−2R} to a function

holomorphic in w and smooth in h ≥ 0; by (5.12), the functions v± defined by (5.7)

solve (5.8). �

Note that v±(x;h) are Lagrangian distributions on (R,∞), in the sense of Proposi-

tion 2.3, associated to

Γ± = {ξ = ±
√

1− e−2x, x ≥ R},

the top and bottom branch, respectively, of the characteristic set {q = 0} ∩ {x ≥ R}.
Indeed, we can write by (5.4)

ϕ(x;h) = ϕ0(x) + hϕ1(x;h),

where ϕ0 is real-valued, ∂xϕ0(x) =
√

1− e−2x, and ϕ1 is smooth in both x and h ≥ 0

(but ϕ1 is not bounded as x→∞). Then by (5.7),

v±(x;h) = eiϕ0(x)/h[eiϕ1(x;h)a(x;h)];

the expression in square brackets is a symbol, which brings v± in the form (2.1). As

x→ +∞, v± is still a Lagrangian distribution modulo a certain exponentially growing

or decaying factor:

Proposition 5.3. Take X ≥ R. Then the function

ṽ±(x) = e±X Imωv±(x+X), 0 < x < 1,

is a Lagrangian distribution associated to

{(x, ξ) | 0 < x < 1, (x+X, ξ) ∈ Γ±},

uniformly in X.

Proof. We can write by (5.7)

ṽ±(x) = e±iϕ̃(x;h)/hã±(x;h),

where

ϕ̃(x;h) = ϕ(x+X;h)− ihX Imω
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Figure 2. The characteristic set of Q(h); compare with Figure 1

satisfies ∂xϕ̃ =
√

1− e−2(x+X) + O(h) and Im ϕ̃ = O(h) by (5.5), and ã±(x;h) =

a±(e−2Xe−2x;h) is smooth in x and h ≥ 0 uniformly in X. �

Now, let v be a nonzero solution to

Q(h)v = 0, v ∈ H1(−∞, 0). (5.16)

It follows from (5.7) that the Wronskian of v+ and v− is nonzero for h small enough;

therefore, v is a linear combination of these two solutions:

v(x) = c+v
+(x;h) + c−v

−(x;h), x ≥ R. (5.17)

Here c± are constants depending on h and the choice of v. We can now use the facts

from semiclassical analysis gathered in Section 2 to prove

Proposition 5.4. There exists a constant C such that for h small enough, any solution

v to (5.16) and c± defined by (5.17), |c±/c∓| ≤ C.

Proof. Take two compactly supported and compactly microlocalized operators A± ∈
Ψ0((R,R+1)) such that WF~(A±)∩Γ∓ = ∅, and A± is elliptic at Γ±∩{x = R+1/2}.
Then for some constant C (whose value will change with every new line),

‖A±v‖L2 ≤ C|c±|+O(h∞)|c∓|; (5.18)

|c±| ≤ C‖A±v‖L2 +O(h∞)|c∓|. (5.19)

Indeed, (5.18) follows from Proposition 2.3(1), while (5.19) follows from part 2 of the

same proposition. Also, by (5.7) and (5.17),

‖v‖L2(R,R+2) ≤ C(|c+|+ |c−|). (5.20)
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Now, each forward Hamiltonian flow line of ±q starting at {q = 0}∩ {x ≤ R} reaches

the elliptic set of A±, while staying inside {0 ≤ x ≤ R + 1}; therefore, by Proposi-

tion 2.1,

‖v‖L2(−2,R) ≤ ‖A±v‖L2 +O(h∞)‖v‖L2(−3,R+2). (5.21)

Similarly

‖A±v‖L2 ≤ C‖A∓v‖L2 +O(h∞)‖v‖L2(−3,R+2);

using (5.18) and (5.19), we get

|c±| ≤ C|c∓|+O(h∞)‖v‖L2(−3,R+2). (5.22)

Finally, by Proposition 2.2,

‖v‖L2(−∞,−1) = O(h∞)‖v‖L2(−2,0). (5.23)

Adding up (5.20), (5.21), (5.23), and using (5.18), we get

‖v‖L2(−∞,R+2) ≤ C(|c+|+ |c−|); (5.24)

it remains to substitute this into (5.22). �

6. Proofs of Theorems 1 and 2

First of all, we show that semiclassical measures are supported on the incoming set.

The proof is based on the following property of the geodesic flow on manifolds with

cusps: as t→ −∞, each geodesic γ(t) either goes straight into some cusp or it passes

through a fixed compact set at arbitrarily large negative times.

Proposition 6.1. Let A−j′ be the sets defined in (1.8) and denote

A− =
⋃
j′

A−j′ .

Then for any Radon measure µ satisfying parts 2 and 3 of Proposition 1.1, µ(S∗M \
A−) = 0.

Proof. Take the compact set

K = M \
⋃
j′

C ′j′ , C ′j′ = {(r, θ) ∈ Cj′ | r > Rj′ + 1}. (6.1)

Consider the sets

Al = Gl({(x, ξ) ∈ S∗M | x ∈ K}), l ∈ N.
Then by (1.7), ∑

l∈N

µ(Al) =
∑
l∈N

e−2νlµ(K) <∞.

We are then done by Borel–Cantelli lemma, if we prove that

ρ 6∈ A−, l0 ∈ N =⇒ ∃l ≥ l0 : ρ ∈ Al. (6.2)
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To show (6.2), we first replace ρ by Gl0(ρ); we can then assume that l0 = 0. If ρ ∈ K,

then ρ ∈ A0; therefore, we may assume that ρ ∈ C ′j′ for some j′. Let (r0, θ0, pr0, pθ0) be

the canonical coordinates of ρ in Cj′ ; since ρ 6∈ A−j′ , we have pr0 6= −1; also, r0 > Rj′+1.

The equations of the backward geodesic (r(t), θ(t), pr(t), pθ(t)) = G−t(ρ) are

ṙ = −pr, ṗr = e2rp2
θ, θ̇ = −e2rpθ, ṗθ = 0.

Consider a portion of the geodesic lying entirely in Cj′ . For pθ0 6= 0, r̈(t) = −e2r(t)p2
θ0 ≤

−e2Rj′p2
θ0 and thus r(t) is a strictly concave function. For pθ0 = 0, since pr0 6= −1 and

p(r0, θ0, pr0, pθ0) = 0, we have ṙ = −pr0 = −1. In either case, there exists t > 0 such

that r(t) = Rj′ + 1.

Choose minimal t0 > 0 such that r(t0) = Rj′ + 1. Then ṙ(t0) = −pr(t0) ≤ 0;

since ṗr ≥ 0, we have pr(t) ≥ 0 for t ≥ t0 as long as we stay in Cj′ . However, as

p(r, θ, pr, pθ) = 0, we have |pr(t)| ≤ 1. It follows that G−tρ ∈ Cj′ \ C ′j′ ⊂ K for

t ∈ [t0, t0 + 1]; we have proved (6.2) since the interval [t0, t0 + 1] contains an integer

point. �

We now use the analysis of Section 5 to obtain more detailed information on the

behavior of the functions u(n) in the cusps:

Proposition 6.2. Fix a cusp Cj′ and define C ′j′ by (6.1). Assume that A ∈ Ψ0((Rj′ , Rj′+

1)) is a compactly supported operator such that WF~(A) ⊂ {pr < 0}, with principal

symbol ã(r, pr). Let χ ∈ C∞0 (−1, 1) be nonnegative and satisfy χ(0) = 1. For each

δ > 0, define the operator

Aδ = χ(hDθ/δ)A ∈ Ψ0(Cj′ \ C ′j′).

Let λ ∈ C satisfy

ν/2 < Imλ < ν, Reλ > 1;

define h, ω by (1.5) and put u(z) = Ej(λ; z) for some j. Then

Aδu(r, θ) = δjj′ ã(r,−1)e−ir/he(1/2−iω)r +OL2(δν + h).

Proof. Consider the Fourier series (3.1) in the cusp Cj′ ; then

Aδu(r, θ) =
∑

k, |hk|≤δ

χ(hk/δ)Auk(r)e
ikθ.

Using (3.6), we write (3.4) as

u0(r) = u+
0 e

ir/he(1/2+iω)r + δjj′e
−ir/he(1/2−iω)r.
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Since ω is bounded, we can treat e(1/2±iω)r as the amplitude; then u0(r) is a linear

combination of two Lagrangian distributions associated to {pr = ±1}. By Proposi-

tion 2.3,

Ae−ir/he(1/2−iω)r = ã(r,−1)e−ir/he(1/2−iω)r +OL2(h),

Aeir/he(1/2+iω)r = OL2(h∞);

therefore, as u+
0 = O(1) by (3.2) and (3.8), we have

Au0(r) = δjj′ ã(r,−1)e−ir/he(1/2−iω)r +OL2(h).

It remains to prove that for δ small enough,

k 6= 0, |hk| ≤ δ =⇒ ‖Auk(r)‖L2 = O(δν + h∞)‖uk(r)‖L2(Rj′ ,Rj′+1). (6.3)

For that, put

vk(x) = |hk|1/2ex/2uk(− log |hk| − x), k 6= 0. (6.4)

It follows from (3.3) and (3.7) that vk solves (5.16) on (−∞,− log |hk| −Rj′).

Let v±(x;h) be the solutions to (5.1) defined in Proposition 5.2 and let R be the

constant from this proposition. Assume that δ is small enough so that log δ + Rj′ +

1 +R < 0. By (5.17)

vk(x) = c+
k v

+(x;h) + c−k v
−(x;h), − log |hk| −Rj′ − 1 < r < − log |hk| −Rj′ ,

for some constants c±k . Then by Proposition 5.3 (with X = − log |hk| − Rj′ − 1), we

have

uk(r) = c̃+
k ũ

+
k (r;h) + c̃−k ũ

−
k (r;h), c̃±k = |hk|∓ Imωc±k ,

where

ũ±k (r;h) = er/2e∓(Rj′+1) Imωṽ∓(Rj′ + 1− r;h), Rj′ < r < Rj′ + 1,

are Lagrangian distributions microlocalized in particular inside {±pr > 0}. The sign

reversal here happens because of the change of variables in r. By Proposition 2.3(1),

we now have

Aũ+
k (r;h) = OL2(h∞), Aũ−k (r;h) = OL2(1).

However, by Proposition 5.4, |c̃−k | = O(δν)|c̃+
k |; since

C−1 ≤ ‖ũ±k ‖L2(Rj′ ,Rj′+1) ≤ C,

we have |c̃+
k | ≤ C‖uk‖L2(Rj′ ,Rj′+1) and (6.3) follows. �

We are now ready to prove Theorems 1 and 2:

Proof of Theorem 1. By Proposition 1.1(1), it suffices to take a semiclassical measure

µ associated to Cj and ν and show that µ = µjν . Fix a cusp Cj′ and consider Aδ as in

Proposition 6.2; also, take b ∈ C∞(S1). By Proposition 6.2,

AδEj(λn) = wn +OL2(δν + h), wn = δjj′ ã(r,−1)e−ir/he(1/2−iωn)r;
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therefore,

〈A∗δb(θ)AδEj(λn), Ej(λn)〉L2

= 〈b(θ)AδEj(λn), AδEj(λn)〉L2 = 〈b(θ)wn, wn〉L2 +O(δν + h)

= δjj′

∫
S1

b(θ) dθ ·
∫ Rj+1

Rj

|ã(r,−1)|2e2r Imλn dr +O(δν + h).

The principal symbol of A∗δb(θ)Aδ is b(θ)|ã(r, pr)|2χ(pθ/δ)
2; passing to the limit n →

∞, we get∫
S∗Cj′

b(θ)|ã(r, pr)|2χ(pθ/δ)
2 dµ = δjj′

∫
S∗M∩ bA−

j′

b(θ)|ã(r, pr)|2e2νr drdθ +O(δν).

We now let δ → 0. The left-hand side converges to the integral of b(θ)|ã(r, pr)|2 over

the restriction of µ to Â−j′ ; since ã and b were chosen arbitrarily, we get

µ| bA−
j′∩T

∗(Cj′\C′j′ )
= δjj′e

2νr drdθ.

Using (1.7), we have

µ|A−
j′

= δjj′µjν ;

we are now done by Proposition 6.1. �

Proof of Theorem 2. Fix a cusp Cj′ and take compactly supported and compactly mi-

crolocalized A ∈ Ψ0((Rj′ , Rj′ + 1)) such that WF~(A) ⊂ {pr > 0}, and the principal

symbol a(r, pr) of A satisfies a(Rj′ + 1/2, 1) 6= 0. Let χ ∈ C∞0 (R) have χ(0) = 1.

Denote u(n) = Ej(λn) and recall that Sjj′(λn) = u
+(j′)
(n)0 is defined by (3.4). We then

have for each δ > 0,

|u+(j′)
(n)0 | = O(1)‖Au(j′)

(n)0‖L2 +O(h∞n ) = O(1)‖Aδu(n)‖L2(M) +O(h∞n ), (6.5)

uniformly in δ, where Aδ = χ(hDθ/δ)A. However, by Theorem 1 we have as n→∞

‖Aδu(n)‖2
L2(M) = 〈A∗δAδu(n), u(n)〉L2(M) →

∫
S∗Cj′
|χ(hpθ/δ)a(r, pr)|2 dµjν .

By our assumption, µjν(Â+
j′) = 0; therefore,

lim
δ→0

lim
n→∞

‖Aδu(n)‖L2(M) = 0

and we are done by (6.5). �
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[HöIV] L. Hörmander, The Analysis of Linear Partial Differential Operators IV. Fourier Integral

Operators, Springer, 1985.
[Ja] D. Jakobson, Quantum unique ergodicity for Eisenstein series on PSL2(Z)\PSL2(R), Ann. Inst.

Fourier 44(1994), 1477–1504.
[KeNoNoSi] J.P. Keating, S. Nonnenmacher, M. Novaes, M. Sieber, On the resonance eigenstates of

an open quantum baker map, Nonlinearity 21 (2008), 2591–2624.
[Ku] T. Kubota, Elementary theory of Eisenstein series, J. Wiley, 1973.
[Li] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math.

163(2006), 165–219.
[LuSa] W. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on PSL2(Z)\H2, Pub. Math.

de l’IHES 81(1995), 207–237.
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