
PSEUDODIFFERENTIAL OPERATORS AND ELLIPTIC REGULARITY

SEMYON DYATLOV

In this talk, we will use the algebra of pseudodifferential operators in one of its basic
applications, namely to prove the following elliptic regularity result:

Theorem 1. Let M be a compact manifold, E and F be two (smooth) vector bundles over
M , and P : C∞(M ;E) → C∞(M ;F ) be a differential operator (with smooth coefficients)
of order n. Assume that P is elliptic, in the sense defined in the next section. Then:

1. The operator P (or rather its relevant extension) is Fredholm W n
2 (M ;E)→ L2(M ;F ).

Here W n
2 is a Sobolev space (introduced below). (The question of the index of P is extremely

interesting, but falls outside of this talk.)

2. The kernel of P consists of smooth sections.

3. For any f ∈ L2(M ;F ), there exists u ∈ W n
2 (M ;E) such that Pu− f is smooth.

An example of an elliptic operator would be the Laplace-Beltrami operator on a Rie-
mannian manifold (see the end of the next section).

This theorem follows immediately from the following fact:

Theorem 2. Under the conditions of the above theorem, there exists a (non-differential)
operator Q on M , called the parametrix, with the following properties:

1. Q is bounded L2(M ;F )→ W n
2 (M ;E).

2. The restriction of Q to C∞(M ;F ) is continuous C∞(M ;F ) → C∞(M ;E) (in the
naturally defined topologies, not in the restriction topologies).

3. We have PQ = 1 − K1 and QP = 1 − K2, where Kj are smoothing operators; i.e.,
they are continuous L2(M ;F )→ C∞(M ;F ) and W n

2 (M ;E)→ C∞(M ;E), respectively.

Indeed, smoothing operators are compact (for example, by Arzelà-Ascoli theorem; note,
however, that not every compact operator is smoothing); therefore, P : W n

2 (M ;E) →
L2(M ;F ) has an almost inverse and thus is Fredholm. Now, assume that Pu = 0; then,
u = K2u ∈ C∞. Finally, if f ∈ L2(M ;F ) and u = Qf , then K1f = f − Pu is smooth.
(Note that P is a parametrix for Q; therefore, an analogue of Theorem 1 holds for Q. Also,
the above is still true if we replace P : W n

2 → L2 by P : W s
2 → W s−n

2 for any real s.)

The operator Q lies in the class of pseudodifferential operators. Before we can define
these, however, let us review differential operators.
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1. Differential operators

Let M be a manifold, E and F be vector bundles over M , and denote by Diffn(M ;E,F )
the space of differential operators of order at most n acting C∞(M ;E) → C∞(M ;F ).
Denote by Diff(M) the category whose objects are vector bundles over M and whose
morphisms are differential operators (possibly of infinite order) between sections of corre-
sponding bundles; then this category is filtered by the order of the operator (which can
be given by Grothendieck’s definition). We will mostly concentrate on operators of finite
order. Let us recall some properties of this category:

(Local) If u ∈ C∞(M ;E) and P ∈ Diffn(M ;E,F ), then supp(Pu) ⊂ suppu;
(Symb) Let SnP (M ;E,F ) be the space of all smooth sections of the pullback of Hom(E,F )

under the projection map T ∗M → M that are polynomials of degree ≤ n on each
fiber. These spaces together form a filtered category SymbP , whose objects are again
vector bundles over M . Then there exists a (canonically defined) linear isomorphism

σn : Diffn(M ;E,F )/Diffn−1(M ;E,F )→ SnP (M ;E,F )/Sn−1
P (M ;E,F ).

(Note that the quotient in the right-hand side is just the space of homogeneous
polynomials of degree n.) The map σn is called the symbol map of order n. It
is functorial in the sense that, if A ∈ Diffn(M ;E,F ) and B ∈ Diffm(M ;F,G), then
σn+m(BA) = σm(B)σn(A). (In other words, the associated graded categories of Diff
and SymbP are canonically equivalent.

There are some naturally arising modules over differential operators. Namely, let LCVec
be the category of locally convex Hausdorff topological vector spaces. Then one can define
the functors C∞ and C∞0 from the category Diff(M) to LCVec in the following way. For
a vector bundle E over M , let C∞(M ;E) be the space of all smooth sections of E and let
C∞0 (M ;E) be the space of smooth sections of E with compact support. Each differential
operator is mapped to the corresponding linear operator acting on the space C∞ or C∞0 .

Assume that M = Rn and E is the trivial one-dimensional bundle. Then any operator
A ∈ Diffn(M ;E) can be written as

A =
∑
|α|≤n

aα(x)Dα
x ,

where D = 1
i
∂. The principal symbol is then given by

σ(A)(x, ξ) =
∑
|α|=n

aα(x)ξα.

We use the principal symbol instead of the complete symbol

a(x, ξ) =
∑
α

aα(x)ξα
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because the former is invariant under changes of variables as a function on the cotangent
bundle, while the latter is not. The use of the cotangent bundle can be explained if we
let E and F be trivial and assume that X is a vector field on M ; then X ∈ Diff1 and, if
(p, v) ∈ T ∗M with p ∈M and v ∈ T ∗pM , then σ(X)(p, v) = 〈v,Xp〉.

The use of D instead of ∂ is due to the following expression of differential operators using
the Fourier transform. Recall that for u in the class S of Schwartz functions on Rn (i.e.,
functions all of whose derivatives decay faster than any power of x), the Fourier transform

û(ξ) =

∫
e−i(x,ξ)u(x) dx

also lies in S(Rn) and we have the Fourier inversion formula

u(x) = (2π)−n
∫
ei(x,ξ)û(ξ) dξ.

Also, one can differentiate under the integral sign to get

Dαu(x) = (2π)−n
∫
ei(x,ξ)ξαû(ξ) dξ.

for any multiindex α. Then, if A is a differential operator and a is its complete symbol, we
have

Au(x) = (2π)−n
∫
ei(x,ξ)a(x, ξ)û(ξ) dξ, u ∈ S(Rn). (1.1)

(Another advantages of using D instead of ∂ include the principal symbol of the adjoint
operator with respect to the Hermitian inner product being equal to the symbol of the
original operator and positive differential operators having positive symbols.)

The notion of the symbol makes it possible to talk about elliptic operators. Namely,
if σ(A) is the principal symbol of the operator A, then A is elliptic if and only if for every
nonzero p in the total space of T ∗M , the homomorphism σ(p) (of the fibers of E and F at
the corresponding point of M) is invertible.

The basic example of an elliptic operator is the Laplace’s operator

∆ =
n∑
i=1

∂2
xi

on Rn (with the trivial line bundles); its symbol is σ(x, ξ) = −|ξ|2. A more general example
is the Laplace-Beltrami operator (on functions) on a Riemannian manifold T ∗M ; its princi-
pal symbol maps each cotangent vector to negative the square of its length. However, if our
manifold is, say, Lorentzian (the metric has signature (n − 1, 1)), then the corresponding
d’Alembert-Beltrami operator will not be elliptic. This can be seen on the wave operator

� = −∂2
x1

+
n∑
i=2

∂2
xi
.
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2. Distributions and Schwartz kernels

In this section, we define distributions, or generalized functions, and state some of
their properties. For detailed information on distributions, the reader is referred to [Hö I]
or [F-J].

The spaces C∞(M ;E) and C∞0 (M ;E) introduced in the previous sections are modules
over differential operators. However, the natural topology of these spaces is extremely
strong and the structure of their space is quite complicated (they only form a Fréchet
spaces, not Banach or Hilbert ones). This is one of the reasons why it is often desirable to
apply differentiation to more general classes of sections. The space of distributions is in a
sense the largest space we would like to consider when studying linear differential equations;
it contains most of other functional spaces as well as objects that are not sections, such as
the delta density.

Let Dens be the line bundle of densities over M . For any u ∈ C∞0 (M ; Dens), we can
define the integral ∫

M

u ∈ C.

Now, let E be a vector bundle over M and E∗ be the dual bundle. If u ∈ C∞(M ;E) and
φ ∈ C∞0 (M ; Dens⊗E∗), then we can define φu ∈ C∞0 (M ; Dens) and

〈u, φ〉 =

∫
M

φu.

So, if we define the space of distributions D′(M ;E) as the space dual to C∞0 (M ; Dens⊗E∗)
(where the latter is equipped with certain non-metrizable topology), then the formula above
gives a canonical embedding of C∞(M ;E) into D′(M ;E). (On D′, we will always consider
the weak topology.) More generally, one can take u to be any locally integrable section.
(In this talk, by ‘locally integrable sections’ we actually mean equivalence classes of locally
integrable section by the relation of coinciding almost everywhere; otherwise, we would not
have an embedding.) Note that the dual to C∞0 (M) will be D′(M ; Dens).

However, the space D′ has elements that are not given by sections. An example is the
following delta density. Fix p ∈M and define δ ∈ D′(M ; Dens) by

〈δ, φ〉 = φ(p), φ ∈ C∞0 (M).

Indeed, if δ was given by some section u on M , then, since 〈δ, φ〉 = 0 for φ ∈ C∞0 (M \ p),
we would have u = 0 almost everywhere on M \ p, which would yield u ≡ 0. However,
with all the variety of distributions possible, the space C∞ is still dense in D′ (with weak
topology on the latter).

Let us mention several important operations on distributions. Most of them are defined
by duality. First of all, if U ⊂ M is open, then the natural embedding C∞0 (U)→ C∞0 (M)
induces the projection operator D′(M)→ D′(U). Using a partition of unity, one can show
that distributions form a sheaf.
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Next, let P ∈ Diff(M ;E,F ) be a differential operator. Then there exists the adjoint
differential operator P t ∈ Diff(M ; Dens⊗F ∗,Dens⊗E∗) such that for u ∈ C∞(M ;E) and
v ∈ C∞0 (M ; Dens⊗F ∗), we have

〈v, Pu〉 = 〈P tv, u〉.

For example, if P is the multiplication operator by a smooth function, then P t is the
multiplication by the same function. On the other hand, if, for example, M = Rn, the
bundle Dens is trivialized using the standard volume form, and P = ∂/∂xi, then one can
use integration by parts to show that P t = −∂/∂xi. Now, we use the adjoint operator to
extend P to an operator D′(M ;E)→ D′(M ;F ) by the rule

〈Pu, φ〉 = 〈u, P tφ〉, u ∈ D′(M ;E), φ ∈ C∞0 (M ; Dens⊗F ∗).

This definition makes the space of distributions into a module over the algebra of differential
operators (in contrast with, say, sections with a fixed number of derivatives, which can only
be differentiated finitely many times).

One can define the support of a distribution u ∈ D′(M ;E) as the minimal closed set
suppu ⊂ M such that u|M\suppu = 0. The space E ′(M ;E) of distributions with compact
support is dual to C∞(M ; Dens⊗E∗). Also, one can define the singular support as the
minimal closed set sing suppu ⊂M such that u|M\sing suppu ∈ C∞.

The construction above can be reformulated as follows. Consider the contravariant func-
tor Adj on Diff(M) mapping each vector bundle E to the bundle Dens⊗E∗ and every
differential operator to the adjoint operator. Also, let Dual be the contravariant functor on
LCVec mapping every space to its dual (with weak topology). Then we can define functors
D′(M) and E ′(M) from Diff(M) to LCVec as follows:

D′(M) = Dual ◦ C∞0 ◦ Adj,

E ′(M) = Dual ◦ C∞ ◦ Adj.

Next, we wish to study operators on manifolds. Let E and F be two vector bundles
over M and consider a continuous operator A : C∞0 (M ;E) → D′(M ;F ). This is as little
regularity as we can require from an operator. The Schwartz kernel theorem states that
each such operator has a unique Schwartz kernel K ∈ D′(M ×M ;F × (Dens⊗E∗)) such
that

〈Au, v〉 = 〈K, v ⊗ u〉, u ∈ C∞0 (M ;E), v ∈ C∞0 (M ; Dens⊗F ∗).
Also, it is easy to see that every K as above defines an operator A. If M = Rn, E = F = R,
and K is a function, then A is just an integral operator:

Au(x) =

∫
K(x, y)u(y).

The adjoint operator At has the kernel Kt(x, y) = K(y, x) under the identification

Hom(Dens⊗F ∗,Dens⊗E∗) ' Hom(E,F ).
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If At is continuous C∞0 → C∞ (meaning that the image of At lies in C∞ and At is continuous
with the C∞ topology on the target, which is stronger than the restriction of theD′ topology
to C∞), then one can use duality to extend A to an operator E ′ → D′. If A acts both
C∞0 → C∞ and E ′ → D′, then it is called regular. Also, let us say that an operator A
is properly supported if the support suppK of its Schwartz kernel has the following
property: both projections π1, π2 : M ×M →M are proper when restricted to suppK. A
properly supported operator acts C∞0 → E ′ and can be extended to act C∞ → D′. We will
see below that all differential operators are both regular and properly supported.

One reason why regular properly supported operators are important is because we can
multiply them. More specifically, one can extend Diff(M) to the category RegPS(M) whose
objects are vector bundles and morphisms are regular properly supported operators, and
the functors C∞, C∞0 , D′, and E ′ can be extended to act from this new category. Also, the
functor Adj can be extended from Diff(M) to RegPS(M). This category has an ideal of
smoothing operators; i.e., operators that can be extended to act continuously E ′ → C∞

(or rather, of properly supported smoothing operators); It can be proved that an operator
A is smoothing if and only if its Schwartz kernel K is smooth.

If A is the identity operator on C∞(M ;E), then its kernel is given by the distribution
δ(x− y) ∈ D′(M ×M ;E × (Dens⊗E)):

〈δ(x− y), φ(x, y)〉 =

∫
tr(φ(x, x)), φ ∈ C∞(M ×M ; (Dens⊗E∗)× E).

Here tr : E∗ ⊗ E → C is the trace morphism. If A is a differential operator, then one can
obtain its kernel by applying A in the x variable to δ(x− y). It is important to note that
for a differential operator A, the support of its kernel K lies on the diagonal ∆M ⊂M×M .
In fact, the following three facts are equivalent: (a) suppK ⊂ ∆M (b) suppAu ⊂ suppu
for any u (c) A is a differential operator, possibly of infinite order.

Finally, let us introduce Sobolev spaces. Let L2
loc be the space of (equivalency classes

of) sections that are locally in L2. This space is embedded into D′. If s ≥ 0 is an integer,
then we can define the Sobolev space W s

2,loc as the space of all (equivalency classes of)

sections u ∈ L2
loc such that for any differential operator A of order no more than s, we have

Au ∈ L2
loc. Similarly, one can define the spaces L2

comp and W s
2,comp containing sections with

compact support. If M is compact, then W s
2,loc = W s

2,comp = W s
2 is a Hilbert space. One

can actually define the spaces above when s is any real number, and we have

⋂
s

W s
loc = C∞,⋃

s

W s
loc = D′.
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3. Pseudodifferential calculus

In this section, we list certain properties of pseudodifferential operators (see, for exam-
ple, [Hö III] or [G-S] for the proofs). Before we do that, however, we need to define the
appropriate generalization of the symbol space SnP introduced for differential operators.

For λ > 0 let, τλ be the multiplication map by λ on the vector bundle T ∗M . We say
that a differential operator A ∈ Diffn(T ∗M \ 0) is positively homogeneous if Aτ ∗λ = τ ∗λA
for any λ > 0. Then we define the symbol space Ss(M) as consisting of functions that
have order of growth at most |ξ|s as ξ →∞ over compact subsets of M after applying any
positively homogeneous differential operator. (Clearly, this definition applies to sections of
the pull-back of any vector bundle under the projection map T ∗M →M .) It is easy to see
that if a is a smooth section that is positively homogeneous of degree s (i.e., τ ∗λa = λsa for
any λ > 0), then a ∈ Ss.

For M = Rn, a positively homogeneous operator has the form
∑
bαβ(x, ξ)∂αx∂

β
ξ , where

bαβ is homogeneous of degree |β| in ξ. Therefore, we have

Ss(M ; R) = {a(x, ξ) ∈ C∞(T ∗M) | ∀α, β,K ∃CαβK : |∂αx∂
β
ξ a(x, ξ)| ≤ CαβK(1+|ξ|)s−|β|, x ∈ K}.

Here α and β are multiindices and K ⊂M is compact. The optimal constants CαβK form
a family of seminorms on Ss(M) which make it into a Fréchet space. We see from the
definition that Ss(M) consists of functions that grow like 〈ξ〉s, and their order of growth
stays the same when differentiating in x and decreases by 1 when differentiating in ξ. In
particular, if s is a nonnegative integer, then SnP (M) embeds into Ss(M) (which has already
been proven above, since a polynomial is a sum of positively homogeneous functions).

Note that Ss(M ;E,F ) form a commutative filtered algebra if E = F = R. One can also
consider the space S−∞(M) =

⋂
s S

s(M) consisting of symbols decaying rapidly in ξ with
all their derivatives.

We are now ready to introduce pseudodifferential operators. First, let M = Rn and
E = R. In analogy with (1.1), for a(x, ξ) ∈ Ss(M) define the operator a(x,D) by the
formula

a(x,D)u(x) = (2π)−n
∫
ei(x,ξ)a(x, ξ)û(ξ) dξ, u ∈ C∞0 (Rn).

This operator is not properly supported, but one can show that the singular support of
its Schwartz kernel lies on the diagonal and therefore it can be represented as the sum
of a smoothing and a properly supported operator. A detailed study of the construction
above, including how it behaves under changes of variables, yields the following abstract
construction:

Let E and F be vector bundles over M . For every s ∈ R, there is a class Ψs(M ;E,F )
of regular properly supported operators E → F , called pseudodifferential operators of
order s, with the following properties:
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(Alg) The product of an element of Ψs and an element of Ψt lies in Ψs+t. In other words,
there is a subcategory Ψ of the category RegPS consisting of pseudodifferential
operators. (Equivalently, the category RegPS is filtered by s; it should be noted,
however, that there are significantly more operators in RegPS than those covered
by the filtration.)

(Adj) The adjoints of operators in Ψs(M ;E,F ) lie in Ψs(M ;F ∗ ⊗ Dens, E∗ ⊗ Dens); so,
one can define the contravariant function Adj of Ψ(M). (Equivalently, Adj respects
the filtration of RegPS introduced above.)

(Smooth) The intersection Ψ−∞(M ;E,F ) =
⋂
s Ψs(M ;E,F ) is exactly the ideal of (properly

supported) smoothing operators.
(Supp) The singular support of the Schwartz kernel of every A ∈ Ψs(M ;E,F ) lies on the

diagonal ∆M ⊂ M × M . Equivalently, if u ∈ D′(M ;E), then sing supp(Au) ⊂
sing suppu.

(Sob) If W t
2,loc(M ;E) is the space of distributions locally in the Sobolev class t (which

can in fact be defined for any real t), then any A ∈ Ψs(M ;E,F ) is bounded
W t

2,loc(M ;E)→ W t−s
2,loc(M ;F ).

(Asymp) Assume that Aj ∈ Ψsj (M ;E,F ), j ≥ 0, where the sequence sj is monotonely
decreasing and converges to −∞. Then there exists an operator A ∈ Ψs0(M ;E,F )
that is an asymptotic sum of the family of Aj in the following sense:

∀k, A−
∑
j<k

Aj ∈ Ψsk(M ;E,F ).

We denote A ∼
∑

j Aj. Such an operator A is unique modulo Ψ−∞.

(Symb) For every s ∈ R, there exists a canonical principal symbol map

σs : Ψs(M ;E,F )/Ψs−1(M ;E,F )→ Ss(M ;E,F )/Ss−1(M ;E,F )

This map is a linear isomorphism for every s and it is functorial in the sense that
for A ∈ Ψs(M ;E,F ) and B ∈ Ψt(M ;F,G), we have σt+s(BA) = σt(B)σs(A). Also,
σ(At) equals σ(A)◦(−1) under the identification Hom(E,F ) ' Hom(Dens⊗F ∗,Dens⊗E∗),
where (−1) is the antipodal map on T ∗M (given by the vector bundle structure).

(Diff) If s is a nonnegative integer, then Diffs(M ;E,F ) embeds into Ψs(M ;E,F ) and the
symbol maps agree.

Armed with these facts, we can perform the parametrix construction. Assume that
P ∈ Diffn(M ;E,F ) is elliptic and let p ∈ Sn(M ;E,F ) be a representative of σn(P ). Then
one can find a symbol q0 ∈ S−n(M ;F,E) such that pq0 − 1, q0p − 1 ∈ S−∞. In fact, one
can put q0 = p−1 outside of a compact neighborhood of the zero section and use a cutoff
function to continue it to the whole T ∗M . (The fact that q0 is a symbol can be verified by
a straightforward calculation.) In fact, a symbol p is elliptic if and only if it is invertible
modulo S−∞ (or even S−ε for ε > 0); however, the definition of ellipticity given in the
beginning of the talk only works for polynomial symbols.
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Now, take Q0 ∈ Ψ−n(M ;F,E) with principal symbol q0. Then

R = 1− PQ0

has zero principal symbol and thus belongs to Ψ−1(M ;F, F ). Now, we can take the asymp-
totic sum

T ∼
∑
j≥0

Rj;

it can be seen immediately that

(1−R)T = 1 mod Ψ−∞.

Therefore, Q = Q0T is a right inverse to T modulo Ψ−∞. Similarly, we get a left inverse.
Then Q is a parametrix.
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[Hö III] Lars Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-Differential

Operators


