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DRAFT
Overview

Practical information

Office hours: Tuesday 2–3 PM and by appointment, in 805 Evans
Grading: I will assign several homework sets. Any math graduate
student who submits solutions to enough homeworks will get an A
Book: Maciej Zworski, Semiclassical Analysis, AMS, 2012
Website: http://math.berkeley.edu/~dyatlov/279/

Today’s lecture is about motivation and pictures/movies. The formal
definitions and a lot more explanations will come in later lectures. So
don’t be scared if you don’t follow all the math – this is what the rest
of the course is for!

Semyon Dyatlov Semiclassical Analysis August 23, 2018 2 / 14

http://math.berkeley.edu/~dyatlov/279/


DRAFT
Overview

Overview of today’s lecture

One of the main concepts of semiclassical analysis is microlocalization,
localization of functions in both position and frequency:

Pseudodifferential operators, a generalization of multiplication
operators: instead of a(x)u(x) take b(x , hi ∂x)u(x). This class
includes differential operators and Fourier multipliers
Wavefront set, a generalization of support: for u = u(x ; h) ∈ L2(Rn),
we have WFh(u) ⊂ Rn

x × Rn
ξ

Here h > 0 is the semiclassical parameter, which is the wavelength
(1/frequency) at which we study the function. We will work in the
high frequency limit h→ 0, with remainders of the form O(hN)

Today I will show you 3 applications illustrated by numerics:
Schrödinger evolution
Quantum harmonic oscillator
Quantum Ergodicity
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DRAFT
Schrödinger evolution

Example 1: Schrödinger evolution

Schrödinger equation on S1 = R/2πZ:

ih∂tu(t, x) + h2∂2
xu(t, x) = 0, u|t=0 = u0

Interpretation: u = wavefunction of a quantum particle

Case 1: u0(x) = χ(x/h), χ ∈ C∞c ((−1, 1))
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Schrödinger evolution

Example 1: Schrödinger evolution

Schrödinger equation on S1 = R/2πZ:

ih∂tu(t, x) + h2∂2
xu(t, x) = 0, u|t=0 = u0

Interpretation: u = wavefunction of a quantum particle

Case 2: u0(x) = e ikx , k ∈ Z, k ∼ h−1
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DRAFT
Schrödinger evolution

Example 1: Schrödinger evolution

Schrödinger equation on S1 = R/2πZ:

ih∂tu(t, x) + h2∂2
xu(t, x) = 0, u|t=0 = u0

Interpretation: u = wavefunction of a quantum particle

Case 3: u0(x) = e iϕ(x)/ha(x), ϕ, a ∈ C∞(S1)
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DRAFT
Schrödinger evolution

Wavefront set

The picture becomes much clearer if we study concentration of u both in
position and in frequency/Fourier space. We use the following

Definition [TO BE EXPLAINED IN THE COURSE]

Let u = u(x ; h) ∈ L2(R) depend on h > 0. Define the wavefront set
WFh(u) ⊂ R2

x ,ξ as follows: (x0, ξ0) /∈WFh(u) iff there exist χ ∈ C∞c (R),
χ(x0) 6= 0 and U ⊂ R open, ξ0 ∈ U such that

χ̂u(ξ/h) = O(h∞), ξ ∈ U

where O(h∞) means O(hN) for all N

One way to numerically see the wavefront set is via the FBI transform:

Thu(x , ξ) =

∫
R
e−

i
h
〈y ,ξ〉e−

|x−y|2
2h u(y) dy

(x0, ξ0) /∈WFh(u) ⇐⇒ Thu(x , ξ) = O(h∞) for (x , ξ) near (x0, ξ0)
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DRAFT
Schrödinger evolution

Wavefront set under Schrödinger evolution

ih∂tu + h2∂2
xu = 0, u|t=0 = u0 =⇒ u(t, •) = e−itP/hu0

P = −h2∂2
x = Oph(p), p(x , ξ) = ξ2, Oph(p) = p(x , hi ∂x)

Hamiltonian flow etHp : R2 → R2 generated by the vector field

Hp = (∂ξp)∂x − (∂xp)∂ξ

For p = ξ2, get Hp = 2ξ∂x , giving the ODE

ẋ = 2ξ, ξ̇ = 0 =⇒ etHp(x , ξ) = (x + 2tξ, ξ)

Propagation of singularities: WFh(u(t, •)) = etHp(WFh(u0))

x

ξ

Ut = 0
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ẋ = 2ξ, ξ̇ = 0 =⇒ etHp(x , ξ) = (x + 2tξ, ξ)

Propagation of singularities: WFh(u(t, •)) = etHp(WFh(u0))

x

ξ

Ut = 2

Semyon Dyatlov Semiclassical Analysis August 23, 2018 6 / 14



DRAFT
Schrödinger evolution

Wavefront set under Schrödinger evolution

ih∂tu + h2∂2
xu = 0, u|t=0 = u0 =⇒ u(t, •) = e−itP/hu0

P = −h2∂2
x = Oph(p), p(x , ξ) = ξ2, Oph(p) = p(x , hi ∂x)

Hamiltonian flow etHp : R2 → R2 generated by the vector field

Hp = (∂ξp)∂x − (∂xp)∂ξ

For p = ξ2, get Hp = 2ξ∂x , giving the ODE
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Schrödinger evolution

Wavefront set under Schrödinger evolution

Case 1: u0(x) = χ(x/h), χ ∈ C∞c ((−1, 1))

WFh(u0) ⊂ {x = 0, ξ ∈ R}

horizontal axis = x , vertical axis = ξ
Semyon Dyatlov Semiclassical Analysis August 23, 2018 7 / 14



DRAFT
Schrödinger evolution

Wavefront set under Schrödinger evolution

Case 1: u0(x) = χ(x/h), χ ∈ C∞c ((−1, 1))

WFh(u0) ⊂ {x = 0, ξ ∈ R}

horizontal axis = x , vertical axis = ξ
Semyon Dyatlov Semiclassical Analysis August 23, 2018 7 / 14


peak_FBI.mp4
Media File (video/mp4)



DRAFT
Schrödinger evolution

Wavefront set under Schrödinger evolution

Case 2: u0(x) = e ikx , k ∈ Z, kh = ξ0

WFh(u0) ⊂ {x ∈ S1, ξ = ξ0}

horizontal axis = x , vertical axis = ξ
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DRAFT
Schrödinger evolution

Wavefront set under Schrödinger evolution

Case 3: u0(x) = e iϕ(x)/ha(x), ϕ, a ∈ C∞(S1)

WFh(u0) ⊂ {x ∈ supp a, ξ = ∂xϕ(x)}

horizontal axis = x , vertical axis = ξ
Semyon Dyatlov Semiclassical Analysis August 23, 2018 7 / 14



DRAFT
Schrödinger evolution

Wavefront set under Schrödinger evolution

Case 3: u0(x) = e iϕ(x)/ha(x), ϕ, a ∈ C∞(S1)

WFh(u0) ⊂ {x ∈ supp a, ξ = ∂xϕ(x)}

horizontal axis = x , vertical axis = ξ
Semyon Dyatlov Semiclassical Analysis August 23, 2018 7 / 14


comp_FBI.mp4
Media File (video/mp4)



DRAFT
Quantum harmonic oscillator

Example 2: quantum harmonic oscillator

Classical harmonic oscillator: particle in potential field V (x) = x2

p(x , ξ) = ξ2 + x2, (x , ξ) ∈ R2

Quantum harmonic oscillator:

P(h) = Oph(p) = p(x , hi ∂x) = −h2∂2
x + x2

Essentially self-adjoint on L2(R) with complete set of eigenfunctions

P(h)uk = (2k + 1)huk , uk(x) = Qk(x/
√
h)e−

x2
2h , k ≥ 0

where Qk(x) is the k-th Hermite polynomial:

u0(x) = e−
x2
2h , u1(x) = x√

h
e−

x2
2h , u2(x) = ( x

2

h − 1)e−
x2
2h , . . .
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Quantum harmonic oscillator

Excited states of the quantum harmonic oscillator

P(h)uk = (2k + 1)huk .

Let (2k + 1)h ≈ 1 e.g. h = 1
2k � 1

h = 1
256 , k = 0, uk(x) = e−

x2
2h

Semyon Dyatlov Semiclassical Analysis August 23, 2018 9 / 14



DRAFT
Quantum harmonic oscillator

Excited states of the quantum harmonic oscillator

P(h)uk = (2k + 1)huk .

Let (2k + 1)h ≈ 1 e.g. h = 1
2k � 1

h = 1
256 , k = 1, uk(x) = x√

h
e−

x2
2h

Semyon Dyatlov Semiclassical Analysis August 23, 2018 9 / 14



DRAFT
Quantum harmonic oscillator

Excited states of the quantum harmonic oscillator

P(h)uk = (2k + 1)huk .

Let (2k + 1)h ≈ 1 e.g. h = 1
2k � 1

h = 1
256 , k = 2, uk(x) = ( x

2

h − 1)e−
x2
2h

Semyon Dyatlov Semiclassical Analysis August 23, 2018 9 / 14



DRAFT
Quantum harmonic oscillator

Excited states of the quantum harmonic oscillator

P(h)uk = (2k + 1)huk . Let (2k + 1)h ≈ 1 e.g. h = 1
2k � 1

h = 1
256 , k = 128, uk(x) = P128( x√

h
)e−

x2
2h
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Quantum harmonic oscillator

Excited states of the quantum harmonic oscillator

P(h)uk = (2k + 1)huk . Let (2k + 1)h ≈ 1 e.g. h = 1
2k � 1

WFh(uk) ⊂ {p = 1} = {x2 + ξ2 = 1}
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DRAFT
Quantum ergodicity

Example 3: Quantum Ergodicity

M ⊂ Rn bounded domain
−∆ ≥ 0 Dirichlet Laplacian on M

A sequence of eigenfunctions:

(−∆− λ2
j )uj = 0, λj −−−→

j→∞
∞, ‖uj‖L2(M) = 1

Question: Do |uj |2 equidistribute, i.e.∫
M
a(x)|uj(x)|2 dx → 1

vol(M)

∫
M a(x) dx for all a ∈ C∞(M)?

Generalizations
(M, g) Riemannian manifold (possibly with boundary)
Microlocal equidistribution: replace

∫
M a(x)|uj(x)|2 dx = 〈au, u〉L2(M)

with 〈Oph(b)u, u〉L2(M)

Semyon Dyatlov Semiclassical Analysis August 23, 2018 10 / 14



DRAFT
Quantum ergodicity

Example 3: Quantum Ergodicity

M ⊂ Rn bounded domain
−∆ ≥ 0 Dirichlet Laplacian on M

A sequence of eigenfunctions:

(−∆− λ2
j )uj = 0, λj −−−→

j→∞
∞, ‖uj‖L2(M) = 1

Question: Do |uj |2 equidistribute, i.e.∫
M
a(x)|uj(x)|2 dx → 1

vol(M)

∫
M a(x) dx for all a ∈ C∞(M)?

Generalizations
(M, g) Riemannian manifold (possibly with boundary)
Microlocal equidistribution: replace

∫
M a(x)|uj(x)|2 dx = 〈au, u〉L2(M)

with 〈Oph(b)u, u〉L2(M)

Semyon Dyatlov Semiclassical Analysis August 23, 2018 10 / 14



DRAFT
Quantum ergodicity

An example: two planar domains

Eigenfunction concentration
(picture on the left by Alex Barnett)

Equidistribution No equidistribution
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DRAFT
Quantum ergodicity

An example: two planar domains

Billiard ball dynamics

Chaotic Completely integrable
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DRAFT
Quantum ergodicity

(−∆− λ2
j )uj = 0, λj −−−→

j→∞
∞, ‖uj‖L2(M) = 1

Semiclassical reformulation: (−h2
j ∆− 1)uj = 0, hj := λ−1

j

Quantum Ergodicity [Shnirelman ’74, Zelditch ’87, Colin de Verdière ’85
. . . Zelditch–Zworski ’96]

Assume that the billiard ball flow on M is ergodic, i.e. all flow-invariant
sets have zero Lebesgue measure or full measure. Then there exists a
density 1 sequence of eigenfunctions {λjk} such that ujk equidistribute.

Generalizations
(M, g) Riemannian manifold: use the geodesic flow
Microlocal equidistribution w.r.t. the Liouville measure µL:
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Quantum Ergodicity gives a density 1 sequence of eigenfunctions which
equidistribute. What about the rest? An active topic of study in quantum
chaos with many results but the ultimate question (Quantum Unique
Ergodicity conjecture of Rudnick–Sarnak) is still widely open. . .
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