Math 1B worksheet

Sep 28-30, 2009

0 . Are the following statements true or false?
(a) If the sequence a_{n} converges to zero, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(b) If the sequence a_{n} converges to 1 , then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
(c) If the sequence a_{n} converges to 7 , then the series $\sum_{n=1}^{\infty} a_{n+1}-a_{n}$ diverges.
(d) If the sequence a_{n} converges to 7 , then the series $\sum_{n=1}^{\infty} a_{n+1}-a_{n}$ converges and its sum is 7 .

1-6. Determine if the following series converge or diverge. For the convergent ones, compute their sum.

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{e^{n}-e^{2 n}}{e^{3 n}}, \tag{1}\\
\sum_{n=1}^{\infty} \ln n \tag{2}\\
\sum_{n=1}^{\infty}(-1)^{n} n \tag{3}\\
\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right) \tag{4}\\
\sum_{n=1}^{\infty} \frac{1}{n^{2}+3 n+2} \tag{5}\\
\sum_{n=3}^{\infty} \arctan (n+2)-\arctan n . \tag{6}
\end{gather*}
$$

7-8. Determine whether the following series converge or diverge using the integral test. Do not forget to verify the conditions of the theorem! Do not compute the sum.

$$
\begin{gather*}
\sum_{n=3}^{\infty} \frac{n^{2}}{e^{n}} \tag{7}\\
\sum_{n=2}^{\infty} \frac{1}{n^{2}-1} \tag{8}
\end{gather*}
$$

9. Consider the series $\sum_{n=1}^{\infty} a_{n}$, where $a_{n}=\frac{1}{n^{2}+n}$.
(a) Prove that the series converge and calculate its sum s.
(b) Let s_{n} be the sum of the first n terms of the series and put $r_{n}=$ $s-s_{n}$. Estimate r_{n} from above and from below using remainder estimate for the integral test.
(c) Find a formula for r_{n} and verify explicitly that the estimates obtained in (b) hold.
10. Show that the series $\sum_{n=1}^{\infty} \sin ^{2}(\pi n)$ converges, but the integral $\int_{1}^{\infty} \sin ^{2}(\pi x) d x$ diverges. Does this contradict the integral test?

100* Find a formula for the sequence

$$
s_{m}=\sum_{n=1}^{m} \sin n
$$

Does the series $\sum_{n=1}^{\infty} \sin n$ converge?

Hints and answers

0. (a) False; consider $a_{n}=\frac{1}{n}$ for a counterexample
(b) True by Divergence Test
(c, d) Both are false. We have $S_{m}=\sum_{n=1}^{m}\left(a_{n+1}-a_{n}\right)=a_{m+1}-a_{1}$ (telescoping series); then $\lim _{m \rightarrow \infty} S_{m}=7-a_{1}$.
1. We have

$$
\sum_{n=1}^{\infty} \frac{e^{n}-e^{2 n}}{e^{3 n}}=\left(\sum_{n=1}^{\infty} e^{-2 n}-\sum_{n=1}^{\infty} e^{-n}\right)
$$

Both series in RHS are geometric series, but they start from $n=1$ instead of $n=0$. They both converge because $|p|<1$; to compute the sum of the first series, we subtract and add the $0^{\text {th }}$ term:

$$
\begin{gathered}
\sum_{n=1}^{\infty} e^{-2 n}=\sum_{n=1}^{\infty}\left(\frac{1}{e^{2}}\right)^{n} \\
=-1+\sum_{n=0}^{\infty}\left(\frac{1}{e^{2}}\right)^{n}=-1+\frac{1}{1-e^{-2}}=\frac{e^{-2}}{1-e^{-2}} .
\end{gathered}
$$

The second series is calculated similarly.
Answer: $\frac{e^{-2}}{1-e^{-2}}-\frac{e^{-1}}{1-e^{-1}}$.
2. Apply the Divergence Test: $\lim _{n \rightarrow \infty} \ln \mathfrak{n}=+\infty$.

Answer: Diverges.
3. Apply the Divergence Test: $\lim _{n \rightarrow \infty}(-1)^{n} n$ does not exist.

Answer: Diverges.
4. Use that $\ln \left(1+\frac{1}{n}\right)=\ln (n+1)-\ln n$. Then $\sum_{n=1}^{m} \ln \left(1+\frac{1}{n}\right)=\ln (m+1)$.

Answer: Diverges.
5. Use that $\frac{1}{n^{2}+3 n+2}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$.

Answer: $\frac{1}{2}$.
6. We may compute

$$
\begin{gathered}
\sum_{n=3}^{m} \arctan (n+2)-\arctan n \\
=-\arctan 3-\arctan 4+\arctan (m+1)+\arctan (m+2)
\end{gathered}
$$

and then take the limit as $m \rightarrow \infty$.
Answer: $-\arctan 3-\arctan 4+\pi$.
7. Use $f(x)=x^{2} e^{-x}$; it is decreasing because $f^{\prime}(x) \leqslant 0$ for $x \geqslant 3$ and $f(x)$ is nonnegative. The integral $\int_{3}^{\infty} f(x) d x$ converges, say, by explicit antiderivative computation.

Answer: Converges.
8. Use $f(x)=\frac{1}{x^{2}-1}$; it is nonnegative, decreasing because $f^{\prime}(x) \leqslant 0$ for $x \geqslant 2$ and has an antiderivative $F(x)=\frac{1}{2} \log \left(\frac{x-1}{x+1}\right)$. This antiderivative has a finite limit (zero) as $x \rightarrow \infty$; therefore, the integral converges;

Answer: Converges.
9. Using that $a_{n}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, we get

$$
s_{n}=1-\frac{1}{n+1}, s=\lim _{n \rightarrow \infty} s_{n}=1, r_{n}=\frac{1}{n+1} .
$$

Now, put $f(x)=\frac{1}{x^{2}+x}$; it is nonnegative and decreasing (since $f^{\prime}(x) \leqslant 0$ for $x \geqslant 1$) and has an antiderivative $F(x)=\ln \left(\frac{x}{x+1}\right)$. We then have the remainder esimates

$$
\int_{n+1}^{\infty} f(x) d x \leqslant r_{n} \leqslant \int_{n}^{\infty} f(x) d x
$$

which turn into

$$
\ln \left(\frac{n+2}{n+1}\right) \leqslant \frac{1}{n+1} \leqslant \ln \left(\frac{n+1}{n}\right) .
$$

The first of these two inequalities, when exponentiated, becomes

$$
e^{\frac{1}{n+1}} \geqslant 1+\frac{1}{n+1}
$$

which is a special case of the inequality

$$
e^{x} \geqslant 1+x
$$

true for all real x. The second inequality can be rewritten is

$$
e^{-\frac{1}{n+1}} \geqslant 1-\frac{1}{n+1},
$$

which is again a special case of $e^{x} \geqslant 1+x$.
10. The series consists of all zeroes, so it converges to zero. The integral diverges because the limit of the antiderivative as $x \rightarrow+\infty$ is infinite. (To prove that, use Squeeze Theorem.) However, this does not contradict the integral test because the function $\sin ^{2}(\pi x)$ is not decreasing.
100. Multiply by $\sin \frac{1}{2}$ and use that $\sin n \sin \frac{1}{2}=\frac{1}{2}\left(\cos \left(n-\frac{1}{2}\right)-\cos \left(n+\frac{1}{2}\right)\right)$.

Answer: $s_{m}=\frac{1}{2 \sin (1 / 2)}(\cos (1 / 2)-\cos (m+1 / 2))$; diverges.

