Math 1B practice midterm *

Sep 27, 2009

1. (10%) Compute the integral $\int_{0}^{1} \arccos x d x$.
2. (15%) If a is a positive constant, compute the integral $\int x^{3} \sqrt{a^{2}+x^{2}} d x$.
3. (15%) Compute the integral $\int \frac{4 \mathrm{~d} x}{4+e^{2 x}}$.
$4-5$. (10%) Write each of the following functions as the sum of a polynomial and partial fractions, but do not try to determine the numerical values of the coefficients in the latter:

$$
\begin{gathered}
\frac{2 x^{5}-x-1}{x^{4}+6 x^{2}+9} \\
\frac{65 x^{3}+28 x+47}{\left(x^{2}-5\right)\left(x^{2}-4 x+12\right)}
\end{gathered}
$$

6. (15%) Let f be a function defined on an interval $[a, b]$ and let the fourth derivative $f^{(4)}$ of f satisfy $\left|f^{(4)}(x)\right| \leqslant K$ for $a \leqslant x \leqslant b$. If E_{s} is the error involved in using Simpson's rule with n subdivisions (n being even), then it is known that

$$
\left|E_{s}\right| \leqslant \frac{K(b-a)^{5}}{180 n^{4}}
$$

(a) Suppose that f is a function defined on $[0,4]$ so that $\left|f^{(4)}(x)\right| \leqslant 1$ for all x in $[0,4]$, and so that $f(0)=2, f(1)=1, f(2)=-1.3, f(3)=-3.6$, and $f(4)=-3.3$. Use the given data and Simpson's rule to approximate $\int_{0}^{4} f(x) d x$ to one decimal place.
(b) Estimate the error of this approximation to two decimal places.
(c) What is the range of possible values of $\int_{0}^{4} f(x)$ according to (a) and (b) above?
7. (10%) Does the series $\sum_{n=1}^{\infty} \frac{7 \mathfrak{n}^{2}}{7+\mathrm{n}^{2}}$ converge?
8. (15%) Let $a_{n}=\frac{n!}{2^{n}}$. Find the limit $\lim _{n \rightarrow \infty} \frac{a_{n+2}}{a_{n}}(1-\cos (1 / n))$.
9. (10%) Find the centroid of the region bounded by the curves

$$
y=x^{3}, x+y=2, y=0
$$

[^0]
Hints and answers

1. Integrate by parts with $u=\arccos x, d v=d x$. Then make the change of variables $t=\chi^{2}$.

Answer: $x \arccos x-\sqrt{1-x^{2}}+C$.
2. Make the change of variables $u=a^{2}+x^{2}$.

Answer: $\left(\frac{x^{2}}{5}-\frac{2 a^{2}}{15}\right)\left(a^{2}+x^{2}\right)^{3 / 2}+C$.
3. Make the change of variables $u=e^{2 x}$, then integrate by partial fractions.

Answer: $x-\frac{1}{2} \ln \left(4+e^{2 x}\right)+C$.
4. Answer: $2 x+\frac{A x+B}{x^{2}+3}+\frac{C x+D}{\left(x^{2}+3\right)^{2}}$.
5. Answer: $\frac{A}{x-\sqrt{5}}+\frac{B}{x+\sqrt{5}}+\frac{C x+D}{x^{2}-4 x+12}$.
6. (a) Answer: -14.3.
(b) Answer: $\left|E_{s}\right| \leqslant 0.03$. Note that we had to round up $\frac{1}{45}$ here!
(c) Answer: $-14.33 \leqslant \int \leqslant-14.27$.
7. Dividing the numerator and the denominator by n^{2}, we get $\lim _{n \rightarrow \infty} \frac{7 n^{2}}{7+n^{2}}=$ 7. Since this is nonzero, the series diverges.
8. We have $\frac{a_{n+2}}{a_{n}}(1-\cos (1 / n))=(n+2)(n+1)(1-\cos (1 / n)) / 4=f(1 / n)$, where $f(x)=\frac{(2 x+1)(x+1)(1-\cos x)}{4 x^{2}}$. We then use that $\lim _{x \rightarrow 0}(2 x+1)(x+1)=1$ and compute $\lim _{x \rightarrow 0} \frac{4-\cos x}{x^{2}}$ by applying L'Hôpital's Rule twice.

Answer: $\frac{1}{8}$.
9. See the solution to problem 3 in quiz 4 on the webpage http://math.berkeley.edu/~claudiu/math1b.html
Answer: $\left(\frac{52}{45}, \frac{20}{63}\right)$.

[^0]: *Problems 1-6 are taken from Math 1B first midterm in Fall 2002 semester by Prof. HungHsi Wu. Problem 9 is taken from a recent quiz by Claudiu Raicu.

