Math 1B quiz 4

Sep 23, 2009

Section 105

1. (3 pt) Find the length of the curve given by the equation $y=\frac{1}{3} \sqrt{x}(x-3)$, $1 \leqslant x \leqslant 9$.
2. (3 pt) Set up the integrals representing the following values, but do not compute them:
(a) (1 pt) area of the surface obtained by rotating the curve $x^{2}=y^{3}$, $0 \leqslant x \leqslant 8$, around the x axis;
(b) (1 pt) area of the surface obtained by rotating the same curve as in (a), but around the y axis;
(c) (1 pt) hydrostatic force against one side of a vertical plate in shape of a half-disc of radius 1 submerged in a liquid of density ρ so that it touches the surface of the liquid:

The functions you integrate should be written as explicit expressions depending only on the variable of integration (not on other variables, or, say, on $f(x))$!
3. (4 pt) Compute the x coordinate of the centroid of a sector of disc of radius 1 and angle $\pi / 6$:

Section 106

1. (3 pt) Find the length of the curve given by the equation $y=\frac{1}{3} \sqrt{x}(x-3)$, $1 \leqslant x \leqslant 9$.
2. (3 pt) Set up the integrals representing the following values, but do not compute them:
(a) (1 pt) area of the surface obtained by rotating the curve $x^{3}=y^{2}$, $0 \leqslant x \leqslant 4, y>0$, around the x axis;
(b) (1 pt) area of the surface obtained by rotating the same curve as in (a), but around the y axis;
(c) (1 pt) hydrostatic force against one side of a vertical plate in shape of a half-disc of radius 1 submerged in a liquid of density ρ so that it touches the surface of the liquid:

The functions you integrate should be written as explicit expressions depending only on the variable of integration (not on other variables, or, say, on $f(x))$!
3. (4 pt) Compute the y coordinate of the centroid of a sector of disc of radius 1 and angle $\pi / 6$:

Solutions for section 105

1. We have $f(x)=\frac{1}{3} \sqrt{x}(x-3)=\frac{1}{3} x^{3 / 2}-x^{1 / 2}$; therefore, $f^{\prime}(x)=\frac{1}{2}\left(x^{1 / 2}-\right.$ $x^{-1 / 2}$) and

$$
\begin{aligned}
& 1+\left(f^{\prime}(x)\right)^{2}=\frac{4+\left(x^{1 / 2}-x^{-1 / 2}\right)^{2}}{4} \\
& =\frac{x+x^{-1}+2}{4}=\frac{\left(x^{1 / 2}+x^{-1 / 2}\right)^{2}}{4} .
\end{aligned}
$$

Therefore, the length of the curve is

$$
\begin{gathered}
\int_{1}^{9} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x=\frac{1}{2} \int_{1}^{9} x^{1 / 2}+x^{-1 / 2} \mathrm{~d} x \\
=\left.\left(\frac{x^{3 / 2}}{3}+x^{1 / 2}\right)\right|_{x=1} ^{9}=\frac{32}{3}
\end{gathered}
$$

2. (a) We have $y=x^{2 / 3}=f(x), 0 \leqslant x \leqslant 8$, and $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}$, so the answer is

$$
2 \pi \int_{0}^{8} f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x=2 \pi \int_{0}^{8} x^{2 / 3} \sqrt{1+\frac{4}{9} x^{-2 / 3}} d x
$$

(b) We have $x=y^{3 / 2}=g(y), 0 \leqslant y \leqslant 4$, and $g^{\prime}(y)=\frac{3}{2} y^{1 / 2}$, so the answer is

$$
2 \pi \int_{0}^{4} g(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y=2 \pi \int_{0}^{4} y^{3 / 2} \sqrt{1+\frac{9}{4} y} d y
$$

(c) At depth $y, 0 \leqslant y \leqslant 1$, the pressure is $\rho g y$, the element of the area of our plate is $2 \sqrt{1-y^{2}} d y$, so the answer is

$$
2 \rho g \int_{0}^{1} y \sqrt{1-y^{2}} d y
$$

3. Cut our shape into two regions, A and B :

The region A is the shape under the graph of $y=f(x)=x / \sqrt{3}$ for $0 \leqslant x \leqslant$ $\sqrt{3} / 2$, so the moments of A are

$$
\begin{gathered}
M_{y}(A)=\int_{0}^{\sqrt{3} / 2} x f(x) d x=\frac{1}{\sqrt{3}} \int_{0}^{\sqrt{3} / 2} x^{2} d x=\frac{1}{8} \\
M_{x}(A)=\frac{1}{2} \int_{0}^{\sqrt{3} / 2} f(x)^{2} d x=\frac{1}{6} \int_{0}^{\sqrt{3} / 2} x^{2} d x=\frac{1}{16 \sqrt{3}}
\end{gathered}
$$

(Note that M_{y} corresponds to x-coordinate of the centroid, while M_{x} corresponds to its y-coordinate.)

The region B is the shape under the graph of $y=g(x)=\sqrt{1-x^{2}}$ for $\frac{\sqrt{3}}{2} \leqslant x \leqslant 1$, so the moments of B are

$$
\begin{gathered}
M_{y}(B)=\int_{\sqrt{3} / 2}^{1} x f(x) d x=\int_{\sqrt{3} / 2}^{1} x \sqrt{1-x^{2}} d x=\frac{1}{2} \int_{0}^{1 / 4} \sqrt{z} d z=\frac{1}{24} \\
M_{x}(B)=\frac{1}{2} \int_{\sqrt{3} / 2}^{1} f(x)^{2} d x=\frac{1}{2} \int_{\sqrt{3} / 2}^{1} 1-x^{2} d x=\frac{1}{3}-\frac{3 \sqrt{3}}{16}
\end{gathered}
$$

(We used the substitution $z=1-x^{2}$ in the first integral above.) The area of the whole shape is $S=\frac{\pi}{12}$, so the coordinates of the centroid are

$$
\begin{gathered}
x_{c}=\frac{M_{y}(A)+M_{y}(B)}{S}=\frac{2}{\pi} \\
y_{c}=\frac{M_{x}(A)+M_{x}(B)}{S}=\frac{1}{\pi}(4-2 \sqrt{3}) .
\end{gathered}
$$

Solutions for section 106

1. See the solution for problem 1 of section 105.
2. (a) We have $y=x^{3 / 2}=f(x), 0 \leqslant x \leqslant 4$, and $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$, so the answer is

$$
2 \pi \int_{0}^{4} f(x) \sqrt{1+\left(g^{\prime}(x)\right)^{2}} d x=2 \pi \int_{0}^{4} x^{3 / 2} \sqrt{1+\frac{9}{4}} x d x
$$

(b) We have $x=y^{2 / 3}=g(y), 0 \leqslant y \leqslant 8$, and $g^{\prime}(y)=\frac{2}{3} y^{-1 / 3}$, so the answer is

$$
2 \pi \int_{0}^{8} f(y) \sqrt{1+\left(g^{\prime}(y)\right)^{2}} d y=2 \pi \int_{0}^{8} y^{2 / 3} \sqrt{1+\frac{4}{9} y^{-2 / 3}} d y .
$$

(c) See the solution for problem 2 (c) of section 105.
3. See the solution for problem 3 of section 105.

