Math 1B worksheet

Sep 23, 2009

Please split into groups of 2-4 people and solve the problems on the board. Please write the solutions as clearly as possible. You may pick the order in which to do the problems.
$1-9$. Compute the following limits (finite or infinite) or prove that they do not exist:

$$
\begin{gather*}
\lim _{n \rightarrow \infty} \arctan n, \tag{1}\\
\lim _{n \rightarrow \infty} \sqrt{\frac{n+1}{9 n+1}}, \tag{2}\\
\lim _{n \rightarrow \infty} n \sin \left(\frac{1}{n}\right), \tag{3}\\
\lim _{n \rightarrow \infty} \frac{1}{n!}, \tag{4}\\
\lim _{n \rightarrow \infty} \frac{\sin n}{n}, \tag{5}\\
\lim _{n \rightarrow \infty} \cos \pi n \tag{6}\\
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \tag{7}\\
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}-n, \tag{8}\\
\lim _{n \rightarrow \infty} \frac{(-3)^{n}}{n!} . \tag{9}
\end{gather*}
$$

10. Consider the recursive sequence given by the formulas

$$
x_{1}=2, x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) .
$$

(a) Prove that x_{n} is a decreasing sequence and that $x_{n} \geqslant \sqrt{2}$ for all n.
(b) Assuming that the limit $X=\lim _{n \rightarrow \infty} x_{n}$ exists and that $X>0$, find X.

Hints and answers

1. We know that $\lim _{x \rightarrow \infty} \arctan x=\frac{\pi}{2}$; therefore, $\lim _{n \rightarrow \infty} \arctan n=\frac{\pi}{2}$.
2. Divide both the numerator and the denominator by n.

Answer: $\frac{1}{3}$.
3. We have to find the $\operatorname{limit}_{\lim _{n \rightarrow \infty}} f\left(\frac{1}{n}\right)$, where $f(x)=\frac{\sin x}{x}$. But $\lim _{n \rightarrow \infty} \frac{1}{n}=$ 0 , so this is the same as $\lim _{x \rightarrow 0} f(x)=1$ by L'Hôpital's Rule.
4. Since $n!=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n$, we have $n!\geqslant n$. We also know that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$; since $0 \leqslant \frac{1}{n!} \leqslant \frac{1}{n}$, we may apply the Squeeze Theorem.

Answer: 0.
5. We know that $\frac{-1}{n} \leqslant \frac{\sin n}{n} \leqslant \frac{1}{n}$; apply the Squeeze Theorem.

Answer: 0.
6. We use that $\cos (\pi n)=(-1)^{n}$.

Answer: Does not exist.
7. We have $\left(1+\frac{1}{n}\right)^{n}=f\left(\frac{1}{n}\right)$, where $f(x)=(1+x)^{1 / x}=e^{g(x)}$. Here $g(x)=\frac{\ln (1+x)}{x}$ has limit 1 as $x \rightarrow 0$ by L'Hôpital's Rule.

Answer: e.
8. We have $\sqrt{n^{2}+n}-n=f\left(\frac{1}{n}\right)$, where $f(x)=\frac{\sqrt{1+x}-1}{x}$ and $\lim _{x \rightarrow 0} f(x)$ can be found, say, by L'Hôpital's Rule.

Answer: $\frac{1}{2}$.
9. We have $n!=1 \cdot 2 \cdot 3 \cdots n$; replacing all the terms but the first two and the last one by 3 , we get $n!\geqslant 2 \cdot 3^{n-3} \cdot n$ and thus $\left|\frac{(-3)^{n}}{n!}\right| \leqslant \frac{27}{n}$. Now, use the Squeeze Theorem.

Answer: 0.
10. (a) First of all, $x_{n}>0$ for all n (using mathematical induction). Next, $x_{n}+\frac{2}{x_{n}}=\left(\sqrt{x_{n}}-\sqrt{\frac{2}{x_{n}}}\right)^{2}+2 \sqrt{2}$; therefore, $x_{n+1} \geqslant \sqrt{2}$ for all n. Using this inequality, we can see that x_{n} is decreasing.
(b) Passing to the limit on both sides of the identity $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right)$ and using that $\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} x_{n}=X$, we get $X=\frac{1}{2}\left(X+\frac{2}{X}\right)$. Solving this, we get $X=\sqrt{2}$.

