Math 1B quiz 5

Oct 7, 2009

If you use a comparison test for series, please write:

which comparison test you are using and the series you are comparing to;
why the test can be applied (prove all the inequalities and limits as ex-

plicitly as possible; do not use the symbol \sim in the final limit computation);

• why the series we are comparing to converges or diverges.

Section 105

1. (4 pt) Does the series
$$\sum_{n=1}^{\infty} \frac{2 + (-1)^n}{n\sqrt{n}}$$
 converge?

2. (6 pt) Find all real k for which the series $\sum_{n=1}^{\infty} (2+n^{3k}) \sin^2\left(\frac{1}{n}\right)$ converges. (Note: k does not need to be integer or positive!)

Section 106

1. (4 pt) Does the series $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{n\sqrt{n}}$ converge?

2. (6 pt) Find all real k for which the series $\sum_{n=1}^{\infty} (2+n^{2k}) \sin^4\left(\frac{1}{n}\right)$ converges. (Note: k does not need to be integer or positive!)

Solutions for section 105

1. We have $0 \leq 2 + (-1)^n \leq 3$; therefore,

$$0 \leqslant \frac{2 + (-1)^n}{n\sqrt{n}} \leqslant \frac{3}{n\sqrt{n}}$$

Since the series $\sum_{n=1}^{\infty} \frac{3}{n\sqrt{n}}$ converges by the p-series test, our series converges by Comparison Test.

2. Put

$$a_n = (2 + n^{3k}) \sin^2\left(\frac{1}{n}\right).$$

This is positive for $n \ge 1$. We know that

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

by L'Hôpital's Rule. Putting x = 1/n, we get

$$\lim_{n\to\infty}\frac{\sin(1/n)}{1/n}=1$$

Taking the square of this, we get

$$\lim_{n \to \infty} \frac{\sin^2(1/n)}{1/n^2} = 1.$$
 (1)

Let us now study the sequence $2 + n^{3k}$. For k < 0, $n^{3k} \rightarrow 0$ as $n \rightarrow \infty$; therefore, $2 + n^{3k} \rightarrow 2$. It now follows from (1) that

$$\text{ if } k < 0, \text{ then } \lim_{n \to \infty} \frac{a_n}{1/n^2} = 2. \\$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by the p-series test, the series $\sum_{n=1}^{\infty} a_n$ converges by the Limit Comparison Test.

For k = 0, $n^{3k} = 1$ for all n; therefore, $2 + n^{3k} = 3$. It follows that

$$\text{ if } k=0, \text{ then } \lim_{n\to\infty}\frac{a_n}{1/n^2}=3.$$

Similarly to the previous case, our series converges.

Finally, assume that k>0. In this case $n^{3k}\to\infty$ as $n\to\infty$ and thus

$$\lim_{n \to \infty} \frac{2 + n^{3k}}{n^{3k}} = \lim_{n \to \infty} \frac{2}{n^{3k}} + 1 = 1.$$

Multiplying this by (1), we get:

if
$$k > 0$$
, then $\lim_{n \to \infty} \frac{a_n}{n^{3k-2}} = 1$.

Now, the series $\sum_{n=1}^{\infty} n^{3k-2}$ converges if and only if 3k-2 < -1 by the p-series test; therefore, by Limit Comparison test the series $\sum_{n=1}^{\infty} a_n$ converges for 0 < k < 1/3 and diverges for $k \ge 1/3$.

Answer: The series converges if and only if k < 1/3.

Solutions for section 106

- 1. See solution of problem 1 in section 105.
- 2. Put

$$a_n = (2 + n^{2k}) \sin^4\left(\frac{1}{n}\right).$$

This is positive for $n \ge 1$. We know that

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$$

by L'Hôpital's Rule. Putting x = 1/n, we get

$$\lim_{n\to\infty}\frac{\sin(1/n)}{1/n}=1$$

Taking the fourth power of this, we get

$$\lim_{n \to \infty} \frac{\sin^4(1/n)}{1/n^4} = 1.$$
 (2)

Let us now study the sequence $2 + n^{2k}$. For k < 0, $n^{2k} \to 0$ as $n \to \infty$; therefore, $2 + n^{2k} \to 2$. It now follows from (2) that

$$\text{ if } k<0, \text{ then } \lim_{n\to\infty}\frac{a_n}{1/n^4}=2.$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$ converges by the p-series test, the series $\sum_{n=1}^{\infty} a_n$ converges by the Limit Comparison Test.

For k = 0, $n^{2k} = 1$ for all n; therefore, $2 + n^{2k} = 3$. It follows that

$$\text{ if } k=0, \text{ then } \lim_{n\to\infty}\frac{a_n}{1/n^4}=3.$$

Similarly to the previous case, our series converges.

Finally, assume that k>0. In this case $n^{2k}\to\infty$ as $n\to\infty$ and thus

$$\lim_{n \to \infty} \frac{2 + n^{2k}}{n^{2k}} = \lim_{n \to \infty} \frac{2}{n^{2k}} + 1 = 1$$

Multiplying this by (2), we get:

if
$$k > 0$$
, then $\lim_{n \to \infty} \frac{a_n}{n^{2k-4}} = 1$.

Now, the series $\sum_{n=1}^{\infty} n^{2k-4}$ converges if and only if 2k-4 < -1 by the p-series test; therefore, by Limit Comparison test the series $\sum_{n=1}^{\infty} a_n$ converges for 0 < k < 3/2 and diverges for $k \ge 3/2$.

Answer: The series converges if and only if k < 3/2.