Math 1B quiz 5

Oct 7, 2009

If you use a comparison test for series, please write:

- which comparison test you are using and the series you are comparing to;
- why the test can be applied (prove all the inequalities and limits as explicitly as possible; do not use the symbol \sim in the final limit computation);
- why the series we are comparing to converges or diverges.

Section 105

1. (4 pt) Does the series $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n \sqrt{n}}$ converge?
2. (6 pt) Find all real k for which the series $\sum_{n=1}^{\infty}\left(2+n^{3 k}\right) \sin ^{2}\left(\frac{1}{n}\right)$ converges. (Note: k does not need to be integer or positive!)

Section 106

1. (4 pt) Does the series $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n \sqrt{n}}$ converge?
2. (6 pt) Find all real k for which the series $\sum_{n=1}^{\infty}\left(2+n^{2 k}\right) \sin ^{4}\left(\frac{1}{n}\right)$ converges. (Note: k does not need to be integer or positive!)

Solutions for section 105

1. We have $0 \leqslant 2+(-1)^{n} \leqslant 3$; therefore,

$$
0 \leqslant \frac{2+(-1)^{n}}{n \sqrt{n}} \leqslant \frac{3}{n \sqrt{n}}
$$

Since the series $\sum_{n=1}^{\infty} \frac{3}{n \sqrt{n}}$ converges by the p-series test, our series converges by Comparison Test.
2. Put

$$
a_{n}=\left(2+n^{3 k}\right) \sin ^{2}\left(\frac{1}{n}\right)
$$

This is positive for $n \geqslant 1$. We know that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=1
$$

by L'Hôpital's Rule. Putting $x=1 / n$, we get

$$
\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1
$$

Taking the square of this, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sin ^{2}(1 / n)}{1 / n^{2}}=1 \tag{1}
\end{equation*}
$$

Let us now study the sequence $2+n^{3 k}$. For $k<0, n^{3 k} \rightarrow 0$ as $n \rightarrow \infty$; therefore, $2+n^{3 k} \rightarrow 2$. It now follows from (1) that

$$
\text { if } k<0 \text {, then } \lim _{n \rightarrow \infty} \frac{a_{n}}{1 / n^{2}}=2
$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges by the p-series test, the series $\sum_{n=1}^{\infty} a_{n}$ converges by the Limit Comparison Test.

For $k=0, n^{3 k}=1$ for all n; therefore, $2+n^{3 k}=3$. It follows that

$$
\text { if } k=0 \text {, then } \lim _{n \rightarrow \infty} \frac{a_{n}}{1 / n^{2}}=3
$$

Similarly to the previous case, our series converges.
Finally, assume that $k>0$. In this case $n^{3 k} \rightarrow \infty$ as $n \rightarrow \infty$ and thus

$$
\lim _{n \rightarrow \infty} \frac{2+n^{3 k}}{n^{3 k}}=\lim _{n \rightarrow \infty} \frac{2}{n^{3 k}}+1=1
$$

Multiplying this by (1), we get:

$$
\text { if } k>0 \text {, then } \lim _{n \rightarrow \infty} \frac{a_{n}}{n^{3 k-2}}=1
$$

Now, the series $\sum_{n=1}^{\infty} n^{3 k-2}$ converges if and only if $3 k-2<-1$ by the p series test; therefore, by Limit Comparison test the series $\sum_{n=1}^{\infty} a_{n}$ converges for $0<k<1 / 3$ and diverges for $k \geqslant 1 / 3$.

Answer: The series converges if and only if $k<1 / 3$.

Solutions for section 106

1. See solution of problem 1 in section 105.
2. Put

$$
a_{n}=\left(2+n^{2 k}\right) \sin ^{4}\left(\frac{1}{n}\right) .
$$

This is positive for $n \geqslant 1$. We know that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=\lim _{x \rightarrow 0} \frac{\cos x}{1}=1
$$

by L'Hôpital's Rule. Putting $x=1 / n$, we get

$$
\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1
$$

Taking the fourth power of this, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sin ^{4}(1 / n)}{1 / n^{4}}=1 \tag{2}
\end{equation*}
$$

Let us now study the sequence $2+n^{2 k}$. For $k<0, n^{2 k} \rightarrow 0$ as $n \rightarrow \infty$; therefore, $2+n^{2 k} \rightarrow 2$. It now follows from (2) that

$$
\text { if } k<0, \text { then } \lim _{n \rightarrow \infty} \frac{a_{n}}{1 / n^{4}}=2
$$

Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ converges by the p-series test, the series $\sum_{n=1}^{\infty} a_{n}$ converges by the Limit Comparison Test.

For $k=0, n^{2 k}=1$ for all n; therefore, $2+n^{2 k}=3$. It follows that

$$
\text { if } k=0, \text { then } \lim _{n \rightarrow \infty} \frac{a_{n}}{1 / n^{4}}=3
$$

Similarly to the previous case, our series converges.
Finally, assume that $k>0$. In this case $n^{2 k} \rightarrow \infty$ as $n \rightarrow \infty$ and thus

$$
\lim _{n \rightarrow \infty} \frac{2+n^{2 k}}{n^{2 k}}=\lim _{n \rightarrow \infty} \frac{2}{n^{2 k}}+1=1
$$

Multiplying this by (2), we get:

$$
\text { if } k>0, \text { then } \lim _{n \rightarrow \infty} \frac{a_{n}}{n^{2 k-4}}=1
$$

Now, the series $\sum_{n=1}^{\infty} n^{2 k-4}$ converges if and only if $2 k-4<-1$ by the p series test; therefore, by Limit Comparison test the series $\sum_{n=1}^{\infty} a_{n}$ converges for $0<k<3 / 2$ and diverges for $k \geqslant 3 / 2$.

Answer: The series converges if and only if $k<3 / 2$.

