Math 1B worksheet

Oct 7, 2009

1-2. Determine whether we may apply the Alternating Series Test to conclude that the following series converge. If so, estimate the error $\left|s-s_{n}\right|$, where s in the sum of the series and s_{n} is the sum of the first n terms:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{3 / 4}} \tag{1}\\
\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{n}{10^{n}} \tag{2}
\end{gather*}
$$

3-4. Use the Ratio Test to find whether the following series are convergent, divergent, or the test is inconclusive:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}} \tag{3}\\
\sum_{n=1}^{\infty}(-1)^{n+1} \cdot \frac{n^{2} 2^{n}}{n!} . \tag{4}
\end{gather*}
$$

5-6. Use the Root Test to find whether the following series are convergent, divergent, or the test is inconclusive:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{n}} \tag{5}\\
& \sum_{n=1}^{\infty} \frac{e^{n^{2}}}{n^{n}} \tag{6}
\end{align*}
$$

$7-12$. Determine whether the following series converges absolutely, converges conditionally, or diverges: (For problem 7, find, how many terms of the series we have to take to compute the sum with error no more than 0.01. In problem 9 , find for which real values of k the series converges absolutely, for which values it converges conditionally, and for which k it diverges)

$$
\begin{gather*}
\sum_{n=1}^{\infty}\left(\frac{\sin n}{n}\right)^{3} \tag{7}\\
\sum_{n=1}^{\infty} \frac{1+(-1)^{n} \cdot n}{n^{2}} \tag{8}\\
\sum_{n=1}^{\infty} \frac{(-1)^{n} e^{1 / n}}{n^{k}} \tag{9}\\
\sum_{n=1}^{\infty} \frac{10^{n}(n!)^{2}}{(2 n)!} \tag{10}\\
\sum_{n=2}^{\infty} \frac{n}{(\ln n)^{n}} \tag{11}\\
\sum_{n=1}^{\infty} \frac{n!}{n^{n}} \tag{12}
\end{gather*}
$$

Hints and answers

1. We have $\frac{\cos (n \pi)}{n^{3 / 4}}=(-1)^{n} b_{n}$, where $b_{n}=\frac{1}{n^{3 / 4}}$ is monotonely decreasing and goes to zero as $n \rightarrow \infty$.

Answer: Yes; $\left|s-s_{n}\right| \leqslant \frac{1}{(n+1)^{3 / 4}}$.
2. Put $b_{n}=\frac{n}{10^{n}}$. Then $b_{n} \rightarrow 0$ as $n \rightarrow \infty$. It remains to verify that b_{n} is decreasing; for that, it is enough to prove that $\frac{b_{n+1}}{b_{n}} \leqslant 1$. However, the latter is $\frac{1}{10}\left(1+\frac{1}{n}\right) \leqslant 1$ for $n \geqslant 1$.

Answer: Yes; $\left|s-s_{n}\right| \leqslant \frac{n+1}{10^{n+1}}$.
3. Put $a_{n}=\frac{n^{2}}{2^{n}}$ and compute $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{1}{2}\left(1+\frac{1}{n}\right)^{2}$. The limit of this is $\frac{1}{2}$. Answer: Converges.
4. Put $a_{n}=(-1)^{n+1} \frac{n^{2} 2^{n}}{n!}$ and compute $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{n+1}\left(1+\frac{1}{n}\right)^{2}$. The limit of this is 0 .

Answer: Converges.
5. Put $a_{n}=\frac{(-2)^{n}}{n^{n}}$ and compute $\sqrt[n]{\left|a_{n}\right|}=\frac{2}{n}$. The limit of this is 0 .

Answer: Converges.
6. Put $a_{n}=\frac{e^{n^{2}}}{n^{n}}$ and compute $\sqrt[n]{\left|a_{n}\right|}=\frac{e^{n}}{n}$. The limit of this is ∞.

Answer: Diverges.
7. Put $a_{n}=\left(\frac{\sin n}{n}\right)^{3}$; then $\left|a_{n}\right| \leqslant \frac{1}{n^{3}}$. By Comparison Test, the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges; therefore, our series converges absolutely. The error $\mid s-$ $s_{n} \mid$ can be estimated by $\sum_{m=n+1}^{\infty} \frac{1}{m^{3}}$; by error estimates for the integral test, $\left|s-s_{n}\right| \leqslant \int_{n}^{\infty} \frac{d x}{x^{3}}=\frac{1}{2 n^{2}}$. We then need to choose n for which $\frac{1}{2 n^{2}} \leqslant 0.01$.

Answer: Converges absolutely; $n=8$ would be enough.
8. Write the series as the sum of the absolutely convergent series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ and the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$; the latter converges conditionally by p-series test and alternating series test.

Answer: Converges conditionally.
9. Put $a_{n}=(-1)^{n} \frac{e^{1 / n}}{n^{k}}$; then $\left|a_{n}\right|=\frac{e^{1 / n}}{n^{k}}$. If $k<0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=\infty$ and $\lim _{n \rightarrow \infty} a_{n}$ does not exist; the series diverges by Test for Divergence. If $k=0$, then $\frac{1}{n^{k}}=1$ and $\lim _{n \rightarrow \infty} e^{1 / n}=1$, so $\lim _{n \rightarrow \infty} a_{n}$ does not exist and the series diverges. Now, let $k>0$. For absolute convergence, note that $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{1 / n^{k}}=1$; therefore, by Limit Comparison Test $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges for $k>1$. Finally, for $0<k \leqslant 1$ the series converges conditionally by Alternating Series Test.

Answer: Converges absolutely for $k>1$, converges conditionally for $0<k \leqslant$ 1 , and diverges for $k \leqslant 0$.
10. Let $a_{n}=\frac{(10)^{n}(n!)^{2}}{(2 n)!}$ and apply the Ratio Test: $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{10(n+1)^{2}}{(2 n+1)(2 n+2)} \rightarrow$ 2.5 as $n \rightarrow \infty$.

Answer: Diverges.
11. Let $a_{n}=\frac{n}{(\ln n)^{n}}$ and apply the Root Test: $\sqrt[n]{\left|a_{n}\right|}=\frac{\sqrt[n]{n}}{\ln n} \rightarrow 0$ as $n \rightarrow \infty$ because $\ln n \rightarrow \infty$ and $\sqrt[n]{n}=e^{\frac{\ln n}{n}} \rightarrow 1$.

Answer: Converges absolutely.
12. Let $a_{n}=\frac{n!}{n^{n}}$ and apply the Ratio Test: $\left|\frac{a_{n+1}}{a_{n}}\right|=\left(1+\frac{1}{n}\right)^{-n}$ converges to e^{-1}.

Answer: Converges.

