Math 1B worksheet

Oct 5, 2009

1-9. Determine whether the following series converge or diverge. (In problem 3, determine, for which integer values of k the series converges.)

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{n^{2}+1}, \tag{1}\\
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n^{2}+1}, \tag{2}\\
\sum_{n=1}^{\infty} \frac{2+3 \cdot n^{k}}{3+2 \cdot n^{2 k}}, \tag{3}\\
\sum_{n=1}^{\infty} \sin \left(1 / n^{2}\right), \tag{4}\\
\sum_{n=1}^{\infty} \frac{n+4^{n}}{n+6^{n}}, \tag{5}\\
\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}, \tag{6}\\
\sum_{n=1}^{\infty} \sqrt{1-\cos (1 / n)}, \tag{7}\\
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} e^{-n}, \tag{8}\\
\sum_{n=1}^{\infty} \frac{1}{n!} . \tag{9}
\end{gather*}
$$

Hints and answers

We write $a_{n} \sim b_{n}$ if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists and lies strictly between 0 and ∞ (in other words, if we may apply the limit comparison test).

1. We have $\frac{\sin ^{2} n}{n^{2}+1} \leq \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges.

Answer: Converges.
2. We have $\frac{\sqrt{n+1}}{n^{2}+1} \sim \frac{1}{n \sqrt{n}}$.

Answer: Converges.
3. Let $a_{n}=\frac{2+3 \cdot n^{k}}{3+2 \cdot n^{2 k}}$. For $k<0$, we have $\lim _{n \rightarrow \infty} a_{n}=\frac{2}{3}$, so the series diverges by Test for Divergence. For $k=0$, we have $a_{n}=1$, so the series also diverges. For $k>0$, we have $a_{n} \sim \frac{1}{n^{k}}$.

Answer: Converges for $k>1$, diverges for all other k.
4. We have $\sin \left(1 / n^{2}\right) \sim \frac{1}{n^{2}}$ since $\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$ and $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Answer: Converges.
5. We write $n+4^{n}=4^{n}\left(1+\frac{n}{4^{n}}\right)$ and $\lim _{n \rightarrow \infty} \frac{n}{4^{n}}=0$; therefore, $n+4^{n} \sim 4^{n}$. Similarly, $n+6^{n} \sim 6^{n}$, so our series is equivalent to $\sum_{n=1}^{\infty} \frac{4^{n}}{6^{n}}$, a geometric series. Answer: Converges.
6. Divide and multiply by $\sqrt{n+1}-\sqrt{n}$ to get that our series is equivalent to $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$.

Answer: Converges.
7. We have $1-\cos (1 / n)=2 \sin ^{2}(1 /(2 n))$ by double angle formula, so $\sqrt{1-\cos (1 / n)} \sim \sin (1 /(2 n)) \sim 1 / n$.

Answer: Diverges.
8. We have $\lim _{n \rightarrow \infty}(1+1 / n)^{2}=1$, so our series is equivalent to the geometric series $\sum_{n=1}^{\infty} e^{-n}$.

Answer: Converges.
9. We write $n!=1 \cdot 2 \cdots n$ and replace all the terms except the first one by 2 , to get $n!\geq 2^{n-1}$. So, $\frac{1}{n!} \leq \frac{1}{2^{n-1}}$; the latter is a geometric series. (Many more ways to compare exist; for example, $\frac{1}{n!} \leq \frac{1}{n(n-1)}$ for $n \geq 2$.)

Answer: Converges.

