Math 1B worksheet

Oct 21, 2009

1-4. Find the Taylor series for the following functions centered at the given point a. (Assume that f has a power series expansion.) Do not use the formulas on page 743 for problems 1-3. For problem 4, use the binomial series.

$$
\begin{gather*}
f(x)=(x+1)^{2}, a=1 \tag{1}\\
f(x)=\sin (\pi x), a=0 \tag{2}\\
f(x)=\frac{1}{x}, a=3 \tag{3}\\
f(x)=x \sqrt{1+x^{2}}, \quad a=0 \tag{4}
\end{gather*}
$$

5-6. Calculate the following limits using power series. What does this imply for absolute convergence of the series $\sum_{n=1}^{\infty} f\left(\frac{1}{n}\right)$?

$$
\begin{align*}
f(x) & =e^{x}-1-\sin x, \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}} \tag{5}\\
f(x) & =\ln (1+2 x), \lim _{x \rightarrow 0} \frac{f(x)}{x} \tag{6}
\end{align*}
$$

7-9. Use formulas on page 743 and/or multiplication/division of power series to find the first three nonzero terms in the Maclaurin series for the function:

$$
\begin{gather*}
f(x)=\cos ^{2} x \tag{7}\\
f(x)=e^{x^{2}} \arctan x \tag{8}\\
f(x)=\frac{e^{x}}{1-x} \tag{9}
\end{gather*}
$$

10-11. Approximate the following functions near $x=0$ by their Taylor polynomials (with the given number of terms). Estimate the error (depending on x) using Taylor's inequality or alternating series remainder estimate. Find how small x has to be so that the error is less than 0.01 :

$$
\begin{gather*}
f(x)=\cos x, T_{2} \tag{10}\\
f(x)=e^{x}, T_{3} . \tag{11}
\end{gather*}
$$

Hints and answers

1. $f(x)=4+4(x-1)+(x-1)^{2}$.
2. $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n+1} x^{2 n+1}}{(2 n+1)!}$.
3. $f(x)=\sum_{n=0}^{\infty}(-1)^{n} 3^{-n-1} x^{n}$.
4. $f(x)=\sum_{n=0}^{\infty}\binom{1 / 2}{n} x^{2 n+1}$.
5. We find $f(x)=\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots$.

Answer: $1 / 2$; converges absolutely.
6. We find $f(x)=2 x-2 x^{2}+\cdots$.

Answer: 2; does not converge absolutely.
7. $f(x)=1-x^{2}+\frac{1}{3} x^{4}+\cdots$.
8. $f(x)=x+\frac{2}{3} x^{3}+\frac{11}{30} x^{5}+\cdots$.
9. $f(x)=1+2 x+\frac{5}{2} x^{2}+\cdots$.
10. $T_{2}(x)=1-\frac{1}{2} x^{2}=T_{3}(x) ;\left|f(x)-T_{2}(x)\right| \leqslant \frac{x^{4}}{24}$.
11. $T_{3}(x)=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6} ;\left|f(x)-T_{3}(x)\right| \leqslant \max \left(1, e^{x}\right) \frac{x^{4}}{24}$.

