Math 1B quiz 6

Oct 7, 2009

Section 105

1. (5 pt) Does the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\mathrm{n}}{\mathrm{n}^{2}+1}$ converge absolutely, converge conditionally, or diverge? If it converges, estimate the error $\left|s-s_{n}\right|$, where s is the sum of the series and s_{n} is the sum of the first n terms.
2. (5 pt) Consider the series $\sum_{\mathrm{n}=1}^{\infty} \frac{(2 n)!\mathrm{c}^{n}}{(\mathrm{n}!)^{2}}$, where $\mathrm{c}>0$ is a constant parameter. For which values of c does the Ratio Test guarantee convergence of the series? For which values does it imply divergence? For which c is the test inconclusive?

Section 106

1. (5 pt) Does the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n}{n^{2}+1}$ converge absolutely, converge conditionally, or diverge? If it converges, estimate the error $\left|s-s_{n}\right|$, where s is the sum of the series and s_{n} is the sum of the first n terms.
2. (5 pt) Consider the series $\sum_{n=1}^{\infty} \frac{(n!)^{2} b^{n}}{(2 n)!}$, where $b>0$ is a constant parameter. For which values of b does the Ratio Test guarantee convergence of the series? For which values does it imply divergence? For which b is the test inconclusive?

Solutions for section 105

1. Put $a_{n}=(-1)^{n+1} \frac{n}{n^{2}+1}$. First, we study the series of absolute values $\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$. We have

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n^{2}}}=1
$$

since the p-series $\sin _{n=1}^{\infty} \frac{1}{n}$ diverges, by the Limit Comparison Test the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges. Therefore, the series $\sum_{n=1}^{\infty} a_{n}$ is not absolutely convergent.

Now, we study the convergence of the series $\sum_{n=1}^{\infty} a_{n}$ itself. We have $a_{n}=$ $(-1)^{n+1} b_{n}$, where $b_{n}=\frac{n}{n^{2}+1}$ is positive; we may apply the Alternating Series Test to conclude that $\sum_{n=1}^{\infty} a_{n}$ converges. Indeed,

$$
\lim _{n \rightarrow \infty} \frac{n}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1}{n+\frac{1}{n}}=0
$$

It remains to verify that the sequence b_{n} is decreasing. For that, it is enough to prove that the function $f(x)=\frac{x}{x^{2}+1}$ is decreasing for $x \geqslant 1$. This in turn follows from the inequality

$$
f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}} \leqslant 0 \text { for } x \geqslant 1
$$

Since the series $\sum_{n=1}^{\infty} a_{n}$ converges, but the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ diverges, the series $\sum_{n=1}^{\infty} a_{n}$ is conditionally convergent.

Finally, the we use the error estimate for alternating series to get

$$
\left|s-s_{n}\right| \leqslant b_{n+1}=\frac{n+1}{(n+1)^{2}+1}
$$

2. We put $a_{n}=\frac{(2 n)!c^{n}}{(n!)^{2}}$ and compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1) c}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{\left(2+\frac{2}{n}\right)\left(2+\frac{1}{n}\right) c}{\left(1+\frac{1}{n}\right)^{2}}=4 c
$$

Therefore, the series is convergent for $0<\mathrm{c}<\frac{1}{4}$, divergent for $\mathrm{c}>\frac{1}{4}$; the test is inconclusive for $\mathrm{c}=\frac{1}{4}$.

Solutions for section 106

1. See the solution for problem 1 in section 105 .
2. We put $a_{n}=\frac{(n!)^{2} b^{n}}{(2 n)!}$ and compute

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2} b}{(2 n+2)(2 n+1)}=\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{2} b}{\left(2+\frac{2}{n}\right)\left(2+\frac{1}{n}\right)}=\frac{b}{4}
$$

Therefore, the series is convergent for $0<b<4$, divergent for $b>4$; the test is inconclusive for $b=4$.

