Math 1B worksheet

Oct 14, 2009
$1-3$. Find the radius of convergence of the following series:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n^{3}} \tag{1}\\
\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n} n!}{n^{n}} \tag{2}\\
\sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}} \tag{3}
\end{gather*}
$$

$4-5$. Find the power series representation of the following functions and find the intervals of convergence of the resulting series:

$$
\begin{align*}
& f(x)=\frac{1}{1+4 x} \tag{4}\\
& f(x)=\frac{x+1}{x^{2}+4} \tag{5}
\end{align*}
$$

$6-7$. Find the interval of convergence of the following series. Differentiate the series, then integrate them. Find a formula for the sum of the series:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n} \tag{6}\\
& \sum_{n=1}^{\infty} n \cdot x^{3 n-1} \tag{7}
\end{align*}
$$

8. Find the power series representation for the function

$$
\begin{equation*}
f(x)=\arctan \left(x^{2}\right) \tag{8}
\end{equation*}
$$

by differentiating it. What is the radius of convergence of the resulting series?
9. Assume that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, where a_{n} are some coefficients (independent of x). What condition on a_{n} will guarantee that f is even? What about fodd?

Hints and answers

1. $R=1$, by Ratio Test. Interval of convergence: $[-1,1]$ (alternating series test and p-series test).
2. $R=\sqrt{e}$, by Ratio Test.
3. $R=\infty$, by Root Test.
4. $f(x)=\sum_{n=0}^{\infty}(-4 x)^{n}=\sum_{n=0}^{\infty}(-4)^{n} x^{n}$.
5. $f(x)=\frac{x+1}{4} \sum_{n=0}^{\infty}\left(-\frac{x^{2}}{4}\right)^{n}=\frac{1}{4} \sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} x^{2 n+1}+\frac{1}{4} \sum_{n=0}^{\infty}\left(-\frac{1}{4}\right)^{n} x^{2 n}$.
6. Interval of convergence: $(-1,1]$. If $f(x)$ is the sum of the series, then $f^{\prime}(x)=-\sum_{n=1}^{\infty}(-x)^{n-1}=-\frac{1}{1+x}$. Integrating that and substituting $x=0$ to find the constant, we get $f(x)=-\ln (1+x)$. Also, $\int f(x) d x=C-\sum_{n=1}^{\infty} \frac{(-x)^{n+1}}{n(n+1)}$.
7. Interval of convergence: $(-1,1)$. If $f(x)$ is the sum of the series, then $\int f(x) d x=C+\frac{1}{3} \sum_{n=1}^{\infty} x^{3 n}=\tilde{C}+\frac{1}{3\left(1-x^{3}\right)}$. Differentiating, we get $f(x)=$ $\frac{3 x^{2}}{\left(1-x^{3}\right)^{2}}$. Also, $f^{\prime}(x)=\sum_{n=1}^{\infty} n(3 n-1) x^{3 n-2}$.
8. We find $f^{\prime}(x)=\frac{2 x}{1+x^{4}}=\sum_{n=0}^{\infty} 2(-1)^{n} x^{4 n+1}$. Integrating and substituting $x=0$, we get $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{2 n+1}$.
9. $f(x)$ is odd if $a_{2 n}=0$ for all $n ; f(x)$ is even if $a_{2 n+1}=0$ for all n.
