Math 1B worksheet

Nov 9, 2009

1. Consider the following logistic equation with harvesting:

$$
\begin{equation*}
y^{\prime}=y(4-y)-3 \tag{1}
\end{equation*}
$$

(a) Find the general solution of the equation.
(b) Find the solution with $y(0)=2$.
(c) For the solution in part (b), find when it is increasing and when it is decreasing. Compute the limit of $y(x)$ as $x \rightarrow+\infty$.
(d) Find all equilibrium points of the equation (the solutions that are constant in time).
$2-5$. Solve the following differential equations:

$$
\begin{gather*}
y^{\prime}=x+y \tag{2}\\
x y^{\prime}-2 y=x^{2} \tag{3}\\
y^{\prime}-y=\sin x \tag{4}\\
y^{\prime}+y=e^{2 x} \tag{5}
\end{gather*}
$$

Hints and answers

1. By separation of variables, we have

$$
x=\int \frac{d y}{y(4-y)-3}=-\int \frac{d y}{(y-1)(y-3)}=\frac{1}{2} \ln \left|\frac{y-1}{y-3}\right|+C .
$$

Therefore,

$$
y=\frac{1-3 \tilde{C} e^{2 x}}{1-\tilde{C} e^{2 x}}
$$

where \tilde{C} can be any constant (positive, negative, or zero). There is also the equilibrium solution $y=3$. (The other equilibrium solution is $y=1$ and it is given by $\tilde{C}=0$.)

If we put $y(0)=2$, then $\tilde{C}=-1$ and

$$
y=\frac{1+3 e^{2 x}}{1+e^{2 x}}
$$

We see now that the limit of $y(x)$ as $x \rightarrow+\infty$ is 3 . The function $y(x)$ is (strictly) increasing iff $y^{\prime}>0$, which means $(y-1)(3-y)>0$, which is always true for our solution.
2. Answer: $-x-1+C e^{x}$.
3. Answer: $x^{2} \ln x+C x^{2}$.
4. Answer: $-\frac{1}{2}(\sin x+\cos x)+C e^{x}$.
5. Answer: $\frac{1}{3} e^{2 x}+C e^{-x}$.

