Math 1B worksheet

Nov 30, 2009

1. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}-y^{\prime}=f(x) . \tag{1}
\end{equation*}
$$

(a) Find the general solution of the homogeneous equation.
(b) Find the general solution of the inhomogeneous equation if $f(x)=\sin x$.
(c) Write the trial solutions for the method of undetermined coefficients for the following functions, but do not determine the coefficients:

$$
\begin{gathered}
f(x)=e^{x} \cos (2 x), \\
f(x)=\left(x^{2}+x+1\right) \sin (4 x), \\
f(x)=5 x .
\end{gathered}
$$

2. Consider the equation

$$
\begin{equation*}
x^{\prime \prime}(t)+c x^{\prime}(t)+4 x(t)=0 . \tag{2}
\end{equation*}
$$

(a) Solve the equation for $\mathrm{c}=0$. Find the solution satisfying $\mathrm{x}(0)=0$ and $x^{\prime}(0)=1$.
(b) Find two linearly independent solutions for the equation, depending on $c \geqslant 0$. Explain when we have overdamping, critical damping, and underdamping.
$3-5$. Write the solutions of the following initial value problems using power series. Find the radii of convergence.

$$
\begin{align*}
y^{\prime \prime}-y & =1, y(0)=0, y^{\prime}(0)=0 \tag{3}\\
y^{\prime \prime}+x y & =0, y(0)=0, y^{\prime}(0)=1 \tag{4}\\
y^{\prime \prime}+\frac{2 y^{\prime}}{x} & =0, y(1)=1, y^{\prime}(1)=-1 \tag{5}
\end{align*}
$$

Hints and answers

1. (a) $y=c_{1}+c_{2} e^{x}$.
(b) $y=\frac{1}{2}(\cos x-\sin x)+c_{1}+c_{2} e^{x}$.
(c) $y=A e^{x} \cos (2 x)+B e^{x} \sin (2 x) ; y=\left(A x^{2}+B x+C\right) \sin (4 x)+\left(D x^{2}+E x+\right.$ F) $\cos (4 x) ; y=(A x+B) x$.
2. (a) The general solution is $x=c_{1} \cos (2 t)+c_{2} \sin (2 t)$; the solution to the initial value problem is $x=\frac{1}{2} \sin (2 t)$.
(b) For $0 \leqslant c<4$, we have underdamping: $x_{1}(t)=e^{-c / 2} \cos (\beta t), x_{2}(t)=$ $e^{-c / 2} \sin (\beta t)$, where $\beta=\frac{1}{2} \sqrt{16-c^{2}}$.

For $c=4$, we have critical damping: $x_{1}(t)=e^{-2 t}, x_{2}(t)=t e^{-2 t}$.
For $c>4$, we have overdamping: $x_{1}(t)=e^{r_{1} t}, x_{2}(t)=e^{r_{2} t}$, where r_{1} and r_{2} are the two real roots to the equation $r^{2}+c r+4=0$; both r_{1} and r_{2} are negative.

