Math 1B worksheet

Nov 2-4, 2009

In this worksheet:
DE means 'differential equation',
IVP means 'initial value problem'.
1-4. Find general formulas for the solutions to the following DE and solve the following IVP:

$$
\begin{gather*}
\left\{\begin{array}{l}
y^{\prime}=2 x y^{2}, \\
y(0)=1 / 2 ;
\end{array}\right. \tag{1}\\
\left\{\begin{array}{l}
y^{\prime}=2 y, \\
y(1)=7 ;
\end{array}\right. \tag{2}\\
\left\{\begin{array}{l}
(1+\cos x) y^{\prime}=\left(1+e^{-y}\right) \sin x, \\
y(0)=0 ;
\end{array}\right. \tag{3}\\
\left\{\begin{array}{l}
y^{\prime}=3 x^{2} e^{y}, \\
y(0)=1 .
\end{array}\right. \tag{4}
\end{gather*}
$$

5-6. Find the curve passing through the given point and orthogonal to all curves in the given family:

$$
\begin{align*}
& y=e^{k x},(1,2) ; \tag{5}\\
& y=k e^{x},(1,1) . \tag{6}
\end{align*}
$$

7-8. Prove that the following power series solves the given DE :

$$
\begin{gather*}
y(x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{1 \cdot 3 \cdot 5 \cdots(2 n+1)}, y^{\prime}=1+x y \tag{7}\\
y(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n} n!}, y^{\prime}=-x y \tag{8}
\end{gather*}
$$

9. Sketch the direction fields for the following ODE and sketch the graph $y=y(x)$, where y solves the given IVP:

$$
\begin{equation*}
y^{\prime}=1-x y, y(0)=0 \tag{9}
\end{equation*}
$$

10. If y solves the IVP from problem 1, find $y(1)$ approximately using Euler's method with step $1 / 2$.
11. A tank contains 10 L of pure water. Brine that contains 0.05 kg of salt per liter of water enters the tank at a rate of $5 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same time. How much salt is in the tank after one hour?
