1. **Fix usual pairing**

| Note: since $\langle \cdot \rangle$ |
| - Since $\langle \cdot \rangle$ |

18.155, FALL 2021, PROBLEM SET 8

Review / helpful information:

- $\langle \xi \rangle := \sqrt{1 + |\xi|^2}$. Note that $C^{-1}(1 + |\xi|) \leq \langle \xi \rangle \leq C(1 + |\xi|)$ for some global constant $C > 0$ and $\langle \xi \rangle$ is smooth in ξ.

- Plancherel Theorem: for all $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$ we have $\langle \hat{\varphi}, \hat{\psi} \rangle_{L^2(\mathbb{R}^n)} = (2\pi)^n \langle \varphi, \psi \rangle_{L^2(\mathbb{R}^n)}$.

- Sobolev space $H^s(\mathbb{R}^n)$: $u \in \mathcal{S}'(\mathbb{R}^n)$ lies in $H^s(\mathbb{R}^n)$ if and only if $\langle \xi \rangle^s \hat{u}(\xi) \in L^2(\mathbb{R}^n)$. Define $\|u\|_{H^s} := (2\pi)^{-n/2} \langle \xi \rangle^s \hat{u}(\xi)_{L^2(\mathbb{R}^n)}$.

- Note that $H^0 = L^2$ and $H^t \subset H^s$ when $t \geq s$.

- If $s \in \mathbb{N}_0$ is a nonnegative integer, then $u \in \mathcal{S}'(\mathbb{R}^n)$ lies in $H^s(\mathbb{R}^n)$ if and only if each distributional derivative $\partial^\alpha u$, $|\alpha| \leq s$, lies in $L^2(\mathbb{R}^n)$.

- If $0 < s < 1$, then for each $u \in L^2(\mathbb{R}^n)$

$$u \in H^s(\mathbb{R}^n) \iff \int_{\mathbb{R}^{2n}} \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} \, dx \, dy < \infty. \quad (1)$$

- Local Sobolev spaces: if $U \subset \mathbb{R}^n$ is open, then $H^s_{\text{loc}}(U) \subset \mathcal{D}'(U)$ is defined as follows: $u \in \mathcal{D}'(U)$ lies in $H^s_{\text{loc}}(U)$ if and only if $\psi u \in H^s(\mathbb{R}^n)$ for each $\psi \in C^\infty_c(U)$. (Here ψu is in $\mathcal{E}'(U)$ which naturally embeds into $\mathcal{E}'(\mathbb{R}^n) \subset \mathcal{S}'(\mathbb{R}^n)$.)

- Sobolev spaces with compact support: if $U \subset \mathbb{R}^n$ is open, then $H^s_c(U) \subset \mathcal{E}'(U)$ consists of elements of $H^s(\mathbb{R}^n)$ whose support is contained in U.

- Hölder space $C^\gamma(\mathbb{R}^n)$, $0 < \gamma < 1$: a function $u \in C^0(\mathbb{R}^n)$ lies in $C^\gamma(\mathbb{R}^n)$ if for each compact set $K \subset \mathbb{R}^n$ there exists a constant C such that for all $x, y \in K$ we have $|u(x) - u(y)| \leq C|x - y|\gamma$. The space $C^\gamma_c(\mathbb{R}^n)$ consists of compactly supported functions in $C^\gamma(\mathbb{R}^n)$.

- Constant coefficient differential operators of order $m \in \mathbb{N}_0$ have the form $P = \sum_{|\alpha| \leq m} c_\alpha D^\alpha$ where $c_\alpha \in \mathbb{C}$ and $D := -i \partial$. The principal symbol is $p_0(\xi) = \sum_{|\alpha| = m} c_\alpha \xi^\alpha$. We say P is elliptic if the equation $p_0(\xi) = 0$ has no solutions $\xi \in \mathbb{R}^n \setminus \{0\}$.

1. **Fix $s \in \mathbb{R}$. This exercise shows that $H^{-s}(\mathbb{R}^n)$ is dual to $H^s(\mathbb{R}^n)$ with respect to the usual pairing**

$$\langle f, g \rangle := \int_{\mathbb{R}^n} f(x) g(x) \, dx. \quad (2)$$

(Note: since H^s is a Hilbert space, Riesz representation theorem shows that H^s is dual to itself, but this duality features the inner product $\langle \cdot, \cdot \rangle_{H^s}$ rather than (2).)

(a) **Show that there exists a unique bilinear map**

$$u \in H^s(\mathbb{R}^n), v \in H^{-s}(\mathbb{R}^n) \mapsto (u, v) \in \mathbb{C}$$
such that (i) for all $u, v \in \mathcal{S}(\mathbb{R}^n)$, (u, v) is given by (2) and (ii) there exists a constant C such that for all u, v we have the bound $|\langle u, v \rangle| \leq C \|u\|_{H^s} \|v\|_{H^{-s}}$. A consequence of this is that each $v \in H^{-s}(\mathbb{R}^n)$ defines a bounded linear functional on $H^s(\mathbb{R}^n)$ by the rule $u \mapsto (u, v)$.

(b) Assume that $F : H^s(\mathbb{R}^n) \to \mathbb{C}$ is a bounded linear functional. Show that there exists $v \in H^{-s}(\mathbb{R}^n)$ such that $F(u) = (u, v)$ for all $u \in H^s(\mathbb{R}^n)$.

2. This exercise studies the relation between the spaces $C^k(\mathbb{R}^n)$ of k times continuously differentiable functions and the Sobolev spaces $H^s(\mathbb{R}^n)$.

(a) Show that for each $k \in \mathbb{N}_0$, the space $C^k_c(\mathbb{R}^n)$ (where ‘c’ stands for ‘compactly supported’) embeds into $H^k(\mathbb{R}^n)$: that is, $C^k_c(\mathbb{R}^n) \subset H^k(\mathbb{R}^n)$ and for each sequence $u_j \in C^k_c(\mathbb{R}^n)$ converging to 0 (in a way similar to convergence in C^∞_c but with only k derivatives), we have $\|u_j\|_{H^k(\mathbb{R}^n)} \to 0$ as well.

(b) Show the following version of Sobolev embedding: if $k \in \mathbb{N}_0$ and $s > k + \frac{n}{2}$ then $H^s(\mathbb{R}^n)$ embeds into the space $\tilde{C}^k(\mathbb{R}^n)$ of functions in $C^k(\mathbb{R}^n)$ with bounded derivatives up to order k. (Hint: for $u \in \mathcal{S}(\mathbb{R}^n)$, use Fourier inversion formula and the Cauchy–Schwarz inequality to bound the \tilde{C}^k norm of u by $\|\langle \xi \rangle^k \hat{u}(\xi)\|_{L^1}$, which is bounded in terms of $\|u\|_{H^s}$. Now, each $u \in H^s(\mathbb{R}^n)$ can be approximated by Schwartz functions, and this approximating sequence will be a Cauchy sequence in \tilde{C}^k, which is a Banach space – this step is similar to the proof of the Continuous Linear Extension theorem.)

3. (Optional) This exercise extends the previous one by comparing Sobolev spaces with Hölder spaces. Assume that $0 < \gamma < 1$.

(a) Show that $C^\gamma(\mathbb{R}^n) \subset H^s(\mathbb{R}^n)$ for each $s < \gamma$. (Hint: use (1). Note that the integral there is bounded for any $u \in L^2(\mathbb{R}^n)$ if we restrict to the region $|x - y| \geq 1$.)

(b) Show that $H^s(\mathbb{R}^n) \subset C^\gamma(\mathbb{R}^n)$ for each $s > \gamma + \frac{n}{2}$. (Hint: write each $u \in H^s(\mathbb{R}^n)$ in terms of \hat{u} using the Fourier inversion formula, and use the inequality $|e^{ix\xi} - e^{iy\xi}| = |e^{i(x-y)\xi} - 1| \leq C_\gamma |x - y|^{\gamma} |\xi|^\gamma$.)

4. Let $U \subset \mathbb{R}^n$ be an open set. Assume that P is an elliptic constant coefficient differential operator of order m. Following Step 2 of the proof of Elliptic Regularity II in §12.2 of the lecture notes, show that for each $u \in \mathcal{D}'(U)$ such that $Pu \in H^{s-m}_{\text{loc}}(U)$, we have $u \in H^s_{\text{loc}}(U)$. (You do not need to reprove the existence of elliptic parametrix.)

5. For the distributions below, find out for which s they lie in $H^s(\mathbb{R}^n)$:

(a) δ_0;

(b) the indicator function of the some interval $[a, b] \subset \mathbb{R}$ (here $n = 1$).

6. (Optional) This exercise forms the basis for the theorem about restricting elements of Sobolev spaces to hypersurfaces, which is important for the study of boundary
value problems. We write elements of \mathbb{R}^n as (x_1, x') where $x' \in \mathbb{R}^{n-1}$, and consider the restriction operator to $\{x_1 = 0\}$,

$$T : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathcal{S}(\mathbb{R}^{n-1}), \quad T\varphi(x') = \varphi(0, x').$$

Show that when $s > \frac{1}{2}$, there exists a constant C such that we have the bound

$$\|T\varphi\|_{H^{s - \frac{1}{2}}(\mathbb{R}^{n-1})} \leq C\|\varphi\|_{H^s(\mathbb{R}^n)}$$

for all $\varphi \in \mathcal{S}(\mathbb{R}^n)$.

Thus by Continuous Linear Extension T extends to a bounded operator $H^s(\mathbb{R}^n) \rightarrow H^{s - \frac{1}{2}}(\mathbb{R}^{n-1})$. (Hint: use Fourier Inversion Formula to write the Fourier transform of $T\varphi$ in terms of the integral of $\hat{\varphi}$ in the ξ_1 variable. Next, if $v \in L^2(\mathbb{R}^n)$, then we can use Cauchy–Schwartz to estimate $\int_{\mathbb{R}} \langle \xi \rangle^{-s} v(\xi_1, \xi') d\xi_1$ in terms of the L^2 norms of the functions $\xi_1 \mapsto (1 + |\xi_1|^2 + |\xi'|^2)^{-s/2}$ and $\xi_1 \mapsto v(\xi_1, \xi')$. It remains to show that the first of these norms is bounded by $C\langle \xi' \rangle^{\frac{1}{2} - s}$.)

7. This exercise establishes coordinate invariance of Sobolev spaces, which is key for defining Sobolev spaces on manifolds. Assume that $U, V \subset \mathbb{R}^n$ are open sets and $\Phi : U \rightarrow V$ is a C^∞ diffeomorphism. Recall the pullback operator $\Phi^* : \mathcal{E}'(V) \rightarrow \mathcal{E}'(U)$.

We will show that $v \in H^s_c(V) \Rightarrow \Phi^* v \in H^s_c(U)$ (3) and for each compact $K \subset V$ there exists a constant C such that $\|\Phi^* v\|_{H^s} \leq C\|v\|_{H^s}$ for all $v \in H^s_c(V)$ such that supp $v \subset K$. (A similar argument shows that Φ^* maps $H^s_{\text{loc}}(V)$ to $H^s_{\text{loc}}(U)$ as well.)

(a) Show (3) when s is a nonnegative integer. (Hint: use the Chain Rule.)

(b) Show (3) when $0 < s < 1$. You may use the following stronger version of (1): if $A(u)$ is the square root of the right-hand side of (1) then for all $u \in L^2(\mathbb{R}^n)$

$$\|u\|_{H^s} \leq C(\|u\|_{L^2} + A(u)), \quad A(u) \leq C\|u\|_{H^s}.$$

(c) (Optional) Show (3) for all $s \in \mathbb{R}$. (Hint: show that for $s \geq 0$, a function $u \in H^s(\mathbb{R}^n)$ lies in $H^{s+1}(\mathbb{R}^n)$ if and only if $\partial_j u \in H^s(\mathbb{R}^n)$ for all j, and reduce to parts (a)–(b). For $s < 0$ and $v \in H^s_c(V)$, show that the functional $\varphi \in \mathcal{S}(\mathbb{R}^n) \mapsto (\Phi^* v, \varphi)$ is bounded in terms of the H^{-s} norm of φ and thus extends to a bounded functional on $H^{-s}(\mathbb{R}^n)$, and use Exercise 1.)