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Review / helpful information:

• Riemannian metric on an open subset U ⊂ Rn: g =
∑n

j,k=1 gjk(x) dxjdxk where

gjk ∈ C∞(U) and the matrix G(x) = (gjk(x))nj,k=1 is symmetric and positive

definite for all x. This gives an x-dependent inner product g(x) on Rn = TxU

by the formula

〈v, w〉g(x) =
n∑

j,k=1

gjk(x)vjwk for all v, w ∈ Rn.

• For such a Riemannian metric, the volume measure is

d volg(x) :=
√

detG(x) dx, (1)

i.e. for each measurable f : U → C we have∫
U

f(x) d volg(x) =

∫
U

f(x)
√

detG(x) dx.

• Riemannian metric g on a manifold M : an inner product 〈•, •〉g(x) on each

tangent space TxM , x ∈ M , which is smooth in x. The latter means that for

each coordinate system κ : U0 → V0, where U0 ⊂ M , V0 ⊂ Rn are open, there

exists a smooth Riemannian metric κ−∗g on V0 (called the pullback of g by the

parametrization κ−1) such that

〈v, w〉g(x) = 〈dκ(x)v, dκ(x)w〉κ−∗g(κ(x)) for all x ∈M, v, w ∈ TxM,

where we recall that dκ(x)v, dκ(x)w ∈ Rn. The volume measure d volg on M

is defined as follows: for each measurable f : M → C supported inside the

domain U0 of some coordinate system κ : U0 → V0, we have∫
M

f(x) d volg(x) =

∫
V0

f(κ−1(y)) d volκ−∗g(y) (2)

where d volκ−∗g is the volume measure of the metric κ−∗g on V0, defined by (1).

Exercise 1(a) below implies that this does not depend on the choice of coordi-

nates.

• A diffeomorphism Φ : M → M̃ of manifolds M, M̃ with some given Riemannian

metrics g, g̃ is called an isometry if

〈dΦ(x)v, dΦ(x)w〉g̃(Φ(x)) = 〈v, w〉g(x) for all x ∈M, v, w ∈ TxM,

where we recall that dΦ(x)v, dΦ(x)w ∈ TΦ(x)M̃ .
1
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• Distributions on a manifold M with a fixed Riemannian metric: D′(M) is the

space of continuous linear functionals on C∞c (M). Embed L1
loc(M) into D′(M)

by the pairing

(f, ϕ) =

∫
M

f(x)ϕ(x) d volg(x), f ∈ L1
loc(M), ϕ ∈ C∞c (M).

• Basic properties of the pullback operators defined in Exercise 1(c) below:

– if Φ : M1 →M2 and Φ′ : M2 →M3 are diffeomorphisms, then (Φ′ ◦ Φ)∗ =

Φ∗(Φ′)∗;

– if Φ : M → M̃ is a diffeomorphism and a ∈ C∞(M̃), u ∈ D′(M̃), then

Φ∗(au) = (Φ∗a)(Φ∗u);

– supp(Φ∗u) = Φ−1(suppu).

• If U ⊂ Rn is an open set and P ∈ Diffm(U) is a differential operator, then for

each ϕ ∈ C∞(U ;R) and a ∈ C∞(U ;C) we have

P (eiλϕ(x)a(x)) = eiλϕ(x)
(
σm(P )(x, dϕ(x))a(x)λm +O(λm−1)C∞(U)

)
as λ→∞ (3)

where σm(P ) ∈ C∞(U × Rn;R) is the principal symbol of P .

1. (a) Assume that U, Ũ ⊂ Rn are open sets, Φ : U → Ũ is a diffeomorphism, and

g, g̃ are some Riemannian metrics on U, Ũ , with the corresponding volume measures

(defined in (1)) denoted d volg, d volg̃. Show that for each f̃ ∈ L1
c(Ũ) we have the

change of variables formula∫
Ũ

f̃(y) d volg̃(y) =

∫
U

f̃(Φ(x))JΦ,g,g̃(x) d volg(x)

for a certain positive function JΦ,g,g̃ ∈ C∞(U) (independent of f̃). Show furthermore

than if Φ : (U, g)→ (Ũ , g̃) is an isometry, then JΦ,g,g̃ = 1.

(b) (Optional) Let Φ : M → M̃ be a diffeomorphism where M, M̃ are manifolds, and

fix Riemannian metrics g, g̃ on M, M̃ . Show that for each f̃ ∈ L1
c(M̃) we have the

change of variables formula∫
M̃

f̃(y) d volg̃(y) =

∫
M

f(Φ(x))JΦ,g,g̃(x) d volg(x) (4)

for a certain positive function JΦ,g,g̃ ∈ C∞(M) (independent of f̃).

(c) Using part (b), show that the pullback operator Φ∗ : L1
loc(M̃)→ L1

loc(M), Φ∗f :=

f ◦ Φ, extends to a sequentially continuous operator Φ∗ : D′(M̃)→ D′(M).

2. This exercise discusses Sobolev spaces on a compact manifold M . We define a cutoff

atlas to be a finite collection of coordinate systems κj : Uj → Vj on M , j = 1, . . . , N ,

such that M =
⋃N
j=1 Uj, together with a partition of unity χj ∈ C∞c (Uj),

∑N
j=1 χj = 1

on M . Let s ∈ R and fix a Riemannian metric g on M .
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Fix a cutoff atlas and define the space Hs(M) ⊂ D′(M) as follows: a distribution u

lies in Hs(M) if and only if for each j the distribution κ−∗j (χju) lies in Hs(Rn). Here

κ−∗j (χju) ∈ E ′(Vj) is the pullback of χju ∈ E ′(Uj) by the diffeomorphism κ−1
j : Vj →

Uj, extended by 0 to an element of E ′(Rn). For u ∈ Hs(M), define its norm ‖u‖Hs(M)

by

‖u‖2
Hs(M) :=

N∑
j=1

‖κ−∗j (χju)‖2
Hs(Rn).

(a) (Optional) Show that Hs(M) is a Hilbert space. (Hint: to show completeness,

assume u(k) is a Cauchy sequence in Hs(M). First use completeness of Hs(Rn) to

show that for each j, the sequence κ−∗j (χju
(k)) converges to some vj in Hs(Rn). Next,

show that vj satisfy the compatibility conditions (κ` ◦ κ−1
j )∗((κ−∗` χj)v`) = (κ−∗j χ`)vj

for all j, `. Now, motivated by the identity

w =
N∑
`=1

κ∗` (κ−∗` (χ`w)) for all w ∈ D′(M) (5)

define u :=
∑N

`=1 κ∗` v` and show that u ∈ Hs(M) (which uses invariance of Sobolev

classes under multiplications by smooth functions and under pullbacks) and u(k) → u

in Hs(M) (which uses the compatibility conditions).)

(b) Show that if we take a different cutoff atlas on M , then the space Hs(M) stays

the same and the norms on Hs(M) given by two different cutoff atlases are equivalent.

(Hint: use the identity (5) and the fact that multiplications by smooth functions

and pullbacks by diffeomorphisms define continuous operators on appropriate Sobolev

spaces.)

3. (Optional) Let Sn = {θ ∈ Rn+1 : |θ| = 1} be the n-sphere, with n ≥ 2. We endow it

with the metric g which is the restriction of the Euclidean metric. In this exercise you

compute the eigenvalues of the operator −∆g, namely the numbers λ ∈ R such that

there exist nonzero u ∈ C∞(Sn;R) solving the eigenfunction equation

−∆gu = λu.

(a) Show that each eigenvalue λ has to satisfy λ ≥ 0. (Hint: compute the integral∫
Sn(∆gu)u d volg using the defining property of the Laplace–Beltrami operator.)

(b) Let a ≥ 0. Denote by ∆0 the usual Laplace operator on Rn+1. Show that the

equation

∆0v = 0 on Rn+1 \ {0} (6)

has a nonzero solution v ∈ C∞(Rn+1 \ {0}) which is homogeneous of degree a if and

only if a is a (nonnegative) integer. (Hint: show that v is a locally integrable function

on Rn+1 and defines a tempered distribution in S ′(Rn+1), which we denote ṽ. Arguing

similarly to the proof of the theorem in §10.3 in lecture notes, show that ∆0ṽ = 0.
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Now pass to the Fourier transform of ṽ and show that it is supported at a single point;

deduce from here that ṽ is a polynomial.)

(c) The pullback of the operator ∆0 by the polar coordinate diffeomorphism

Φ : (0,∞)× Sn → Rn+1 \ {0}, Φ(r, θ) := rθ

is equal to the operator ∂2
r + n

r
∂r + 1

r2
∆g, with the spherical Laplacian ∆g acting in the

θ variable. (This can be checked by noting that this operator has to be the Laplace–

Beltrami operator of the pullback by Φ of the Euclidean metric, but you don’t need to

do this computation here.) Using this, show that the eigenvalues of −∆g are given by

k(k + n − 1) where k runs over nonnegative integers. (Hint: if u is an eigenfunction

of −∆g then define v(rθ) = rau(θ) in polar coordinates for a right choice of a so that

∆0v = 0.) The eigenfunctions of −∆g are called spherical harmonics.

4. Let M be a manifold, U0 ⊂ M be an open set, and κ : U0 → V0, κ̃ : U0 → Ṽ0 be

two coordinate systems, where V0, Ṽ0 ⊂ Rn are open. Assume that P ∈ Diffm(M) is

a differential operator. Denote by κ−∗P , κ̃−∗P the pullbacks of P by κ−1 and κ̃−1,

which are differential operators on V0 and Ṽ0 respectively. Show that for each x ∈ U0,

ξ ∈ T ∗xM we have the equality of principal symbols

σm(κ−∗P )(κ(x), dκ(x)−T ξ) = σm(κ̃−∗P )(κ̃(x), dκ̃(x)−T ξ).

(Hint: use the pullback theorem from §14.1 in lecture notes. This implies that the

principal symbol is invariantly defined as a function on the cotangent bundle.)

5. Let U ⊂ Rn be an open set. Show the following properties of principal symbols of

operators on U . (All of the above properties are also satisfied on manifolds, which can

be deduced from the case of open subsets of Rn.)

(a) Product Rule: if P ∈ Diffm(U), Q ∈ Diff`(U), then σm+`(PQ) = σm(P )σ`(Q),

where PQ ∈ Diffm+`(U) is the composition of P and Q. (Hint: one way is to use (3).)

(b) Adjoint Rule: if P ∈ Diffm(U) and we fix a Riemannian metric g on U , then there

exists an adjoint operator P ∗ ∈ Diffm(U) such that for all ϕ ∈ C∞c (M), ψ ∈ C∞(M)

〈Pϕ, ψ〉L2(U ;d volg) = 〈ϕ, P ∗ψ〉L2(U ;d volg), 〈ϕ, ψ〉L2(U ;d volg) :=

∫
U

ϕ(x)ψ(x) d volg(x)

and σm(P ∗) = σm(P ). (Hint: you will likely need to integrate by parts.)

(c) (Optional) Commutator Rule: if P ∈ Diffm(U), Q ∈ Diff`(U) then the commutator

[P,Q] := PQ−QP lies in Diffm+`−1(U) and σm+`−1([P,Q]) = −i{σm(P ), σ`(Q)} where

the Poisson bracket {p, q} of p, q ∈ C∞(U × Rn) is defined by

{p, q} :=
n∑
j=1

(∂ξjp)(∂xjq)− (∂xjp)(∂ξjq).


