18.155, FALL 2021, PROBLEM SET 7

Review / helpful information:

- Schwartz space: a function $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ lies in $\mathscr{S}\left(\mathbb{R}^{n}\right)$ if

$$
\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} f(x)\right|<\infty \quad \text { for all } \quad \alpha, \beta
$$

- Fourier transform on Schwartz functions:

$$
\mathcal{F} \varphi(\xi)=\hat{\varphi}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} \varphi(x) d x
$$

- Fourier inversion formula: the inverse of the Fourier transform $\mathcal{F}: \mathscr{S}\left(\mathbb{R}^{n}\right) \rightarrow$ $\mathscr{S}\left(\mathbb{R}^{n}\right)$ is given by

$$
\mathcal{F}^{-1} \psi(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} \psi(\xi) d \xi
$$

- Tempered distributions: $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ consists of continuous linear forms on $\mathscr{S}\left(\mathbb{R}^{n}\right)$.
- Fourier transform on $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right):(\hat{u}, \varphi)=(u, \hat{\varphi})$ for all $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.

1. Assume that $a \in C^{\infty}\left(\mathbb{R}^{n}\right)$ has each derivative polynomially bounded, i.e. for each α there exist C, N such that $\left|\partial^{\alpha} a(x)\right| \leq C(1+|x|)^{N}$ for all x. Explain how to define the operation of multiplication by a on $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ (by duality, similarly to what we did for \mathcal{D}^{\prime}).
2. (a) Show that $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $\mathscr{S}\left(\mathbb{R}^{n}\right)$. (Hint: use multiplication by $\psi(\varepsilon x)$ for some cutoff function ψ. An important corollary of this is that an element of $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is determined by its pairing with functions in $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$, that is the map $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is injective.)
(b) (Optional) Show that $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$. (Hint: show that for an appropriate choice of $\psi, \chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ and each $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we have $\left(\psi_{\varepsilon} u\right) * \chi_{\varepsilon} \rightarrow u$ in $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0+$ where $\psi_{\varepsilon}(x):=\psi(\varepsilon x), \chi_{\varepsilon}(x):=\varepsilon^{-n} \chi(x / \varepsilon)$. To do that, show first that for each $\varphi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ we have $\left(\left(\psi_{\varepsilon} u\right) * \chi_{\varepsilon}, \varphi\right)=\left(u, \varphi_{\varepsilon}\right)$ where $\varphi_{\varepsilon}(x)=$ $\psi_{\varepsilon}(x) \int_{\mathbb{R}^{n}} \chi_{\varepsilon}(y) \varphi(x+y) d y$; for that statement it helps to use the definition of convolution in $\S 8.1$ in lecture notes.)
3. For $w \in \mathbb{R}^{n}$, define the following operators on $C^{\infty}\left(\mathbb{R}^{n}\right)$:

$$
\tau_{w} f(x)=f(x-w), \quad \sigma_{w} f(x)=e^{i x \cdot w} f(x)
$$

(a) Show that τ_{w}, σ_{w} define continuous operators on $\mathscr{S}\left(\mathbb{R}^{n}\right)$. Use this to extend τ_{w}, σ_{w} to sequentially continuous operators on $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
(b) Show that for each $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$

$$
\widehat{\tau_{w} u}=\sigma_{-w} \hat{u}, \quad \widehat{\sigma_{w} u}=\tau_{w} \hat{u}
$$

4. (a) Show that for $\varphi \in \mathscr{S}\left(\mathbb{R}^{n}\right), \psi \in \mathscr{S}\left(\mathbb{R}^{m}\right)$, we have $\varphi \otimes \psi \in \mathscr{S}\left(\mathbb{R}^{n+m}\right)$ and the Fourier transform of $\varphi \otimes \psi$ is given by $\hat{\varphi} \otimes \hat{\psi}$.
(b) (Optional) Let $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right), v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{m}\right)$, and let $u \otimes v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n+m}\right)$ be their distributional tensor product. Show that $u \otimes v \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n+m}\right)$ and the Fourier transform of $u \otimes v$ is given by $\hat{u} \otimes \hat{v}$.
5. Let $\varphi, \psi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. Show that the convolution $\varphi * \psi$ and the product $\varphi \psi$ both lie in $\mathscr{S}\left(\mathbb{R}^{n}\right)$.
6. (a) Assume that $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an invertible linear map. Show that the pullback $A^{*}: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ restricts to a map $\mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and for each $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ we have

$$
\widehat{A^{*} u}=|\operatorname{det} A|^{-1}\left(A^{-T}\right)^{*} \hat{u}
$$

where A^{-T} is the inverse of the transpose of A.
(b) Assume that $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is homogeneous of degree $a \in \mathbb{C}$. Show that \hat{u} is homogeneous and compute its degree of homogeneity.
7. Denote by $\langle\varphi, \psi\rangle_{L^{2}}:=\int_{\mathbb{R}^{n}} \varphi(x) \overline{\psi(x)} d x$ the inner product on $L^{2}\left(\mathbb{R}^{n}\right)$. Show that for all $\varphi, \psi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$ we have $\langle\mathcal{F} \varphi, \psi\rangle_{L^{2}}=(2 \pi)^{n}\left\langle\varphi, \mathcal{F}^{-1} \psi\right\rangle_{L^{2}}$ and $\|\hat{\varphi}\|_{L^{2}}=(2 \pi)^{n / 2}\|\varphi\|_{L^{2}}$.
8. (Optional) This exercise gives a method to compute Fourier transforms of certain distributions using analytic continuation.
(a) Assume that $u \in \mathscr{S}^{\prime}(\mathbb{R})$ and $\operatorname{supp} u \subset[a, \infty)$ for some $a \in \mathbb{R}$. Take a cutoff $\chi \in C^{\infty}(\mathbb{R})$ such that $\chi=1$ near $[a, \infty)$ and $\operatorname{supp} \chi \subset[a-1, \infty)$, and define the function

$$
F(\eta):=\left(u(x), \chi(x) e^{-i x \eta}\right), \quad \eta \in \mathbb{C}, \quad \operatorname{Im} \eta<0
$$

Explain why $F(\eta)$ is well-defined and independent of χ and show that it is holomorphic in $\{\operatorname{Im} \eta<0\}$.
(b) Show that $F(\xi-i \varepsilon) \rightarrow \hat{u}(\xi)$ in $\mathscr{S}^{\prime}(\mathbb{R})$ as $\varepsilon \rightarrow 0+$. (Hint: $F(\xi-i \varepsilon)$ is the Fourier transform of $e^{-\varepsilon x} u(x)$ but you should justify your arguments carefully.)
(c) Assume that $a \in \mathbb{C}$ and $\operatorname{Re} a>-1$. Show that the Fourier transform of x_{+}^{a} is given by $e^{-i \pi(a+1) / 2} \Gamma(a+1)(\xi-i 0)^{-a-1}$ where Γ is the Euler Gamma function and $(\xi-i 0)^{-a-1}$ was defined in Problemset 3, Exercise 4. In particular, compute the Fourier transform of the Heaviside function. (Hint: use parts (a)-(b), computing $F(\eta)$ for $\eta=-i s, s>0$ and then arguing by analytic continuation in η. The result actually holds for all $a \in \mathbb{C}$ by analytic continuation in a.)

