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Review / helpful information:

• If Φ : U → V is a C∞ submersion, then Φ∗ : D′(V ) → D′(U) is the unique

sequentially continuous operator such that Φ∗f = f ◦ Φ for all f ∈ L1
loc(V ).

• You may use without proof the following corollary of the Inverse Mapping

Theorem: if Φ is a submersion, then for each open set Ũ ⊂ U , the set Φ(Ũ) is

open.

• Advanced fundamental solution E ∈ D′(R4) of the wave operator � = ∂2x0 −
∂2x1 − ∂

2
x2
− ∂2x3 :

(E,ϕ) =
1

4π

∫
R3

ϕ(|x′|, x′)
|x′|

dx′ for all ϕ ∈ C∞c (R4). (1)

1. (Optional) Let Φ : U → V be a submersion and v ∈ D′(V ).

(a) Assume that Ũ ⊂ U , Ṽ ⊂ V are open sets such that Φ(Ũ) ⊂ Ṽ and thus Φ̃ := Φ|Ũ
is a submersion from Ũ to Ṽ . Show that (Φ∗v)|Ũ = Φ̃∗(v|Ṽ ).

(b) Show that if Φ(U) = V , then Φ∗ : D′(V ) → D′(U) is injective. (You might need

to review the construction of Φ∗ in Lecture 10.)

(c) Show that supp(Φ∗v) = Φ−1(supp v) and sing supp(Φ∗v) ⊂ Φ−1(sing supp v). (One

actually has sing supp(Φ∗v) = Φ−1(sing supp v) but let’s skip this one.)

2. Let Φ : R → R be given by Φ(x) = x2. Show that the pullback operator Φ∗ :

C∞(R) → C∞(R) does not extend to a sequentially continuous operator D′(R) →
D′(R). (Hint: let χ ∈ C∞c (R) be equal to 1 near 0, put χε(x) := ε−1χ(x/ε), and look

at the limit of (Φ∗χε, χ).)

3. If Φ : U → V is a C∞ map, then Φ∗ : C∞(V )→ C∞(U) is well-defined. Denote by

(Φ∗)t : C∞c (U)→ E ′(V ) the transpose of Φ∗, defined by

((Φ∗)tϕ, ψ) = (Φ∗ψ, ϕ) for all ϕ ∈ C∞c (U), ψ ∈ C∞(V ).

Compute the transposes of the following two simple maps. In each case decide whether

(Φ∗)t maps C∞c (U) to C∞c (V ) (which would allow to extend Φ∗ to distributions):

(a) Φ : R2 → R, Φ(x1, x2) = x1;

(b) Φ : R→ R2, Φ(x1) = (x1, 0).

4. Assume that W ⊂ Rn is open and F : W → Rm is a C∞ map. Define the submersion

Φ : W × Rm → Rm by Φ(x, y) = y − F (x).
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(a) Show that for each u ∈ D′(Rm) the distribution Φ∗u ∈ D′(W × Rm) is given by

(Φ∗u, ϕ) =

(
u(y),

∫
W

ϕ(x, y + F (x)) dx

)
for all ϕ ∈ C∞c (W × Rm). (2)

(Hint: start with u ∈ C∞(Rm) and extend by density.)

(b) Show that the Schwartz kernel of the pullback operator F ∗ : C∞(Rm)→ C∞(W )

is given by Q(x, y) = δ0(y − F (x)) where δ0(y − F (x)) is defined as Φ∗δ0. (In the

special case when F is the identity map we see that the Schwartz kernel of the identity

operator is given by δ(y − x).)

5. (Optional) Check that the distribution E given in (1) satisfies �E = δ0 directly,

without appealing to the classification of distributions supported at the origin. To

do this, introduce the spherical coordinates x′ = rθ where θ ∈ S2. You may use the

formula

∆x′ = ∂2r +
2

r
∂r +

1

r2
∆θ

where ∆θ : C∞(S2) → C∞(S2) is the Laplace–Beltrami operator for the standard

metric on the 2-sphere. You may also use that ∆θf integrates to 0 on S2 for all

f ∈ C∞(S2). After getting rid of ∆θ, you might find it useful to write everything in

terms of the function ψ(u, v, θ) = ϕ(u+ v, (u− v)θ) where ϕ ∈ C∞c (R4) and u, v ∈ R,

θ ∈ S2.

6. Let E ∈ D′(R4) be defined in (1).

(a) Assume that w ∈ D′(R4) and suppw ⊂ {x0 ≥ 0}. Show that for each ϕ ∈ C∞c (R4)

we have

(E ∗ w,ϕ) = (w,ψ)

for some ψ ∈ C∞c (R4) such that

ψ(x) =
1

4π

∫
R3

ϕ(x0 + |y′|, x′ + y′)

|y′|
dy′, x0 ≥ 0.

(b) Using part (a) and the formulas from §10.3 in lecture notes, show the following

version of Kirchhoff’s formula: if u ∈ C2({x0 ≥ 0}) is the solution to

�u = 0, u|x0=0 = 0, ∂x0u|x0=0 = g1(x
′),

then we have for all x0 ≥ 0 and x′ ∈ R3

u(x0, x
′) =

x0
4π

∫
S2
g1(x

′ + x0θ) dS(θ).

That is, the value of the solution at time x0 and space x′ is equal to x0 times the

average of the initial data g1 over the sphere of radius x0 centered at x′.


