18.155, FALL 2021, PROBLEM SET 5

Review / helpful information:

• Convolution of compactly supported distributions: if $u, v \in \mathcal{E}'(\mathbb{R}^n)$ then $u * v \in \mathcal{E}'(\mathbb{R}^n)$ is defined by

$$(u * v, \varphi) = (u(x) \otimes v(y), \varphi(x+y))$$
 for all $\varphi \in C^{\infty}(\mathbb{R}^n).$

- Two closed sets $V_1, V_2 \subset \mathbb{R}^n$ sum properly if for each R > 0 there exists T(R) > 0 such that for all $x \in V_1, y \in V_2$ such that $|x+y| \leq R$, we have $|x|, |y| \leq T(R)$.
- If $u, v \in \mathcal{D}'(\mathbb{R}^n)$ and $\operatorname{supp} u$, $\operatorname{supp} v$ sum properly, then define $u * v \in \mathcal{D}'(\mathbb{R}^n)$ by

$$(u * v, \varphi) = (u(x) \otimes v(y), \chi(x)\chi(y)\varphi(x+y))$$

for each $\varphi \in C_c^{\infty}(\mathbb{R}^n)$. Here $\chi \in C_c^{\infty}(\mathbb{R}^n)$ is chosen so that $\chi = 1$ near $\overline{B(0, T(R))}$ where $\operatorname{supp} \varphi \subset B(0, R)$. (The result does not depend on the choice of χ .) In other words,

 $u * v|_{B(0,R)} = (\chi u) * (\chi v)|_{B(0,R)} \quad \text{if} \quad \chi \in C_{c}^{\infty}(\mathbb{R}^{n}), \ \text{supp}(1-\chi) \cap \overline{B(0,T(R))} = \emptyset.$

We have $\operatorname{supp}(u * v) \subset \operatorname{supp} u + \operatorname{supp} v$.

- $E \in \mathcal{D}'(\mathbb{R}^n)$ is a fundamental solution of a constant coefficient differential operator P, if $PE = \delta_0$. In this case, if $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\operatorname{supp} u$, $\operatorname{supp} E$ sum properly, then u = E * (Pu) = P(E * u).
- A fundamental solution for $\partial_{x_1}^2 \partial_{x_2}^2$ on \mathbb{R}^2 is given by

$$E(x_1, x_2) = \begin{cases} \frac{1}{2}, & x_1 > |x_2|; \\ 0, & \text{otherwise.} \end{cases}$$
(1)

1. (Optional) Let $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ be open and fix $Q \in C^{\infty}(U \times V)$. Let $A : C_c^{\infty}(V) \to \mathcal{D}'(U)$ be the operator with Schwartz kernel Q. Show that A extends to a sequentially continuous operator $\widetilde{A} : \mathcal{E}'(V) \to C^{\infty}(U)$. (Such operators are called *smoothing*, we will encounter them again later in the course. The converse is true, a version of the Schwartz kernel theorem.)

(Hint: for $v \in \mathcal{E}'(V)$, define Av(x) := (v(y), Q(x, y)). The smoothness of this can be proved similarly to, or deduced from by using cutoffs, the lemma in §7.1 in lecture notes. For sequential continuity, if $v_k \to 0$ in $\mathcal{E}'(V)$, which automatically implies that supp v_k all lie in a fixed compact subset of V, you can use Banach–Steinhaus for distributions to see that every derivative of $\tilde{A}v_k$ is bounded locally uniformly. On the other hand, each derivative of $\tilde{A}v_k$ goes to 0 pointwise. Now you can use Arzelà–Ascoli.) **2.** Assume that $\operatorname{Re} a$, $\operatorname{Re} b > 0$. Show that $x_{+}^{a-1} * x_{+}^{b-1} = B(a, b) x_{+}^{a+b-1}$ where *B* denotes the beta function. (You can use the standard integral formula for convolution, no need to do things distributionally here. Note: using analytic continuation one can show that the same formula actually holds for all $a, b \in \mathbb{C}$, but you don't have to do this.)

3. Denote elements in \mathbb{R}^n (where $n \ge 2$) by $x = (x_1, x')$ where $x' \in \mathbb{R}^{n-1}$. Define the set $\Omega := \{x : x_1 \ge |x'|\}$. Show that $\Omega + \Omega = \Omega$. Show also that Ω sums properly with the set $\{x_1 \ge 0\}$. Does the set $\{x_1 \ge 0\}$ sum properly with itself?

4. (Optional) Show that a fundamental solution for the Cauchy–Riemann operator $P := \frac{1}{2}(\partial_{x_1} + i\partial_{x_2})$ on \mathbb{R}^2 is given by the locally integrable function

$$E(x_1, x_2) = \frac{1}{\pi(x_1 + ix_2)}.$$

5. Using the fact that the Heaviside function is a fundamental solution for ∂_x , show that for $u \in \mathcal{D}'(\mathbb{R})$, if $\operatorname{supp} u \subset [a, \infty)$ and $\operatorname{supp}(\partial_x u) \subset [b, \infty)$ for some $a \leq b$, then $\operatorname{supp} u \subset [b, \infty)$. Could we remove the condition that $\operatorname{supp} u \subset [a, \infty)$?

6. This exercise studies solutions to the initial value problem for the wave operator on \mathbb{R}^2 , $P := \partial_{x_1}^2 - \partial_{x_2}^2$. Assume that

$$Pu = f$$
, $u(0, x_2) = g_0(x_2)$, $\partial_{x_1}u(0, x_2) = g_1(x_2)$

Here $u \in C^2(\mathbb{R}^2)$ is the solution, $f \in C^0(\mathbb{R}^2)$ is the forcing term, and $g_0 \in C^2(\mathbb{R}), g_1 \in C^1(\mathbb{R})$ are the initial data.

(a) Define $v(x_1, x_2) = H(x_1)u(x_1, x_2) \in \mathcal{D}'(\mathbb{R}^2)$ where *H* is the Heaviside function. Show that, with derivatives in the sense of distributions,

$$Pv = \delta'_0(x_1) \otimes g_0(x_2) + \delta_0(x_1) \otimes g_1(x_2) + H(x_1)f.$$

(b) Using that supp $v \subset \{x_1 \ge 0\}$ show that v = E * (Pv) where E is defined in (1). (c) Assume that $w \in \mathcal{D}'(\mathbb{R}^2)$ and supp $w \subset \{x_1 \ge 0\}$. Show that for each $\varphi \in C_c^{\infty}(\mathbb{R}^2)$ we have

$$(E * w, \varphi) = (w, \psi)$$

for some $\psi \in C^{\infty}_{c}(\mathbb{R}^{2})$ such that

$$\psi(x) = \frac{1}{2} \int_{|y_2| < y_1} \varphi(x+y) \, dy, \quad x_1 \ge 0.$$

(d) (Optional) Using parts (a)–(c), show d'Alembert's formula: for $x_1 > 0$

$$u(x_1, x_2) = \frac{1}{2} (g_0(x_2 + x_1) + g_0(x_2 - x_1)) + \frac{1}{2} \int_{x_2 - x_1}^{x_2 + x_1} g_1(s) \, ds + \frac{1}{2} \int_0^{x_1} \int_{x_2 - (x_1 - \tau)}^{x_2 + (x_1 - \tau)} f(\tau, s) \, ds d\tau.$$

$$(2)$$

(This would need a fair amount of computation.)

(e) Assume that f = 0 and $\operatorname{supp} g_0, \operatorname{supp} g_1 \subset [-R, R]$. Show that

$$\operatorname{supp} u \cap \{x_1 > 0\} \subset \{|x_2| \le x_1 + R\}.$$

(This is called 'finite speed of propagation'.)

(f) Assume that $g_0 = g_1 = 0$ and $\operatorname{supp} f \subset \{x_1 > 0\}$. Show that singularities propagate at unit speed: namely, if $x \in \operatorname{sing supp} u$ and $x_1 > 0$, then we have x = y + (t, -t) or x = y + (t, t) for some $t \ge 0$ and $y \in \operatorname{sing supp} f$. (Hint: what is $\operatorname{sing supp} E$?)