18.155, FALL 2021, PROBLEM SET 5

Review / helpful information:

- Convolution of compactly supported distributions: if $u, v \in \mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ then $u * v \in$ $\mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined by

$$
(u * v, \varphi)=(u(x) \otimes v(y), \varphi(x+y)) \quad \text { for all } \quad \varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)
$$

- Two closed sets $V_{1}, V_{2} \subset \mathbb{R}^{n}$ sum properly if for each $R>0$ there exists $T(R)>$ 0 such that for all $x \in V_{1}, y \in V_{2}$ such that $|x+y| \leq R$, we have $|x|,|y| \leq T(R)$.
- If $u, v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp} u, \operatorname{supp} v$ sum properly, then define $u * v \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ by

$$
(u * v, \varphi)=(u(x) \otimes v(y), \chi(x) \chi(y) \varphi(x+y))
$$

for each $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$. Here $\chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ is chosen so that $\chi=1$ near $\overline{B(0, T(R))}$ where $\operatorname{supp} \varphi \subset B(0, R)$. (The result does not depend on the choice of χ.) In other words,
$\left.u * v\right|_{B(0, R)}=\left.(\chi u) *(\chi v)\right|_{B(0, R)} \quad$ if $\quad \chi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right), \operatorname{supp}(1-\chi) \cap \overline{B(0, T(R))}=\emptyset$.
We have $\operatorname{supp}(u * v) \subset \operatorname{supp} u+\operatorname{supp} v$.

- $E \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a fundamental solution of a constant coefficient differential operator P, if $P E=\delta_{0}$. In this case, if $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp} u$, $\operatorname{supp} E$ sum properly, then $u=E *(P u)=P(E * u)$.
- A fundamental solution for $\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}$ on \mathbb{R}^{2} is given by

$$
E\left(x_{1}, x_{2}\right)= \begin{cases}\frac{1}{2}, & x_{1}>\left|x_{2}\right| \tag{1}\\ 0, & \text { otherwise }\end{cases}
$$

1. (Optional) Let $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ be open and fix $Q \in C^{\infty}(U \times V)$. Let A : $C_{\mathrm{c}}^{\infty}(V) \rightarrow \mathcal{D}^{\prime}(U)$ be the operator with Schwartz kernel Q. Show that A extends to a sequentially continuous operator $\widetilde{A}: \mathcal{E}^{\prime}(V) \rightarrow C^{\infty}(U)$. (Such operators are called smoothing, we will encounter them again later in the course. The converse is true, a version of the Schwartz kernel theorem.)
(Hint: for $v \in \mathcal{E}^{\prime}(V)$, define $\widetilde{A} v(x):=(v(y), Q(x, y))$. The smoothness of this can be proved similarly to, or deduced from by using cutoffs, the lemma in $\S 7.1$ in lecture notes. For sequential continuity, if $v_{k} \rightarrow 0$ in $\mathcal{E}^{\prime}(V)$, which automatically implies that supp v_{k} all lie in a fixed compact subset of V, you can use Banach-Steinhaus for distributions to see that every derivative of $\widetilde{A} v_{k}$ is bounded locally uniformly. On the other hand, each derivative of $\widetilde{A} v_{k}$ goes to 0 pointwise. Now you can use Arzelà-Ascoli.)
2. Assume that $\operatorname{Re} a, \operatorname{Re} b>0$. Show that $x_{+}^{a-1} * x_{+}^{b-1}=B(a, b) x_{+}^{a+b-1}$ where B denotes the beta function. (You can use the standard integral formula for convolution, no need to do things distributionally here. Note: using analytic continuation one can show that the same formula actually holds for all $a, b \in \mathbb{C}$, but you don't have to do this.)
3. Denote elements in \mathbb{R}^{n} (where $n \geq 2$) by $x=\left(x_{1}, x^{\prime}\right)$ where $x^{\prime} \in \mathbb{R}^{n-1}$. Define the set $\Omega:=\left\{x: x_{1} \geq\left|x^{\prime}\right|\right\}$. Show that $\Omega+\Omega=\Omega$. Show also that Ω sums properly with the set $\left\{x_{1} \geq 0\right\}$. Does the set $\left\{x_{1} \geq 0\right\}$ sum properly with itself?
4. (Optional) Show that a fundamental solution for the Cauchy-Riemann operator $P:=\frac{1}{2}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right)$ on \mathbb{R}^{2} is given by the locally integrable function

$$
E\left(x_{1}, x_{2}\right)=\frac{1}{\pi\left(x_{1}+i x_{2}\right)}
$$

5. Using the fact that the Heaviside function is a fundamental solution for ∂_{x}, show that for $u \in \mathcal{D}^{\prime}(\mathbb{R})$, if $\operatorname{supp} u \subset[a, \infty)$ and $\operatorname{supp}\left(\partial_{x} u\right) \subset[b, \infty)$ for some $a \leq b$, then $\operatorname{supp} u \subset[b, \infty)$. Could we remove the condition that $\operatorname{supp} u \subset[a, \infty)$?
6. This exercise studies solutions to the initial value problem for the wave operator on $\mathbb{R}^{2}, P:=\partial_{x_{1}}^{2}-\partial_{x_{2}}^{2}$. Assume that

$$
P u=f, \quad u\left(0, x_{2}\right)=g_{0}\left(x_{2}\right), \quad \partial_{x_{1}} u\left(0, x_{2}\right)=g_{1}\left(x_{2}\right)
$$

Here $u \in C^{2}\left(\mathbb{R}^{2}\right)$ is the solution, $f \in C^{0}\left(\mathbb{R}^{2}\right)$ is the forcing term, and $g_{0} \in C^{2}(\mathbb{R}), g_{1} \in$ $C^{1}(\mathbb{R})$ are the initial data.
(a) Define $v\left(x_{1}, x_{2}\right)=H\left(x_{1}\right) u\left(x_{1}, x_{2}\right) \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ where H is the Heaviside function. Show that, with derivatives in the sense of distributions,

$$
P v=\delta_{0}^{\prime}\left(x_{1}\right) \otimes g_{0}\left(x_{2}\right)+\delta_{0}\left(x_{1}\right) \otimes g_{1}\left(x_{2}\right)+H\left(x_{1}\right) f .
$$

(b) Using that $\operatorname{supp} v \subset\left\{x_{1} \geq 0\right\}$ show that $v=E *(P v)$ where E is defined in (1).
(c) Assume that $w \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$ and $\operatorname{supp} w \subset\left\{x_{1} \geq 0\right\}$. Show that for each $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$ we have

$$
(E * w, \varphi)=(w, \psi)
$$

for some $\psi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{2}\right)$ such that

$$
\psi(x)=\frac{1}{2} \int_{\left|y_{2}\right|<y_{1}} \varphi(x+y) d y, \quad x_{1} \geq 0
$$

(d) (Optional) Using parts (a)-(c), show d'Alembert's formula: for $x_{1}>0$

$$
\begin{align*}
u\left(x_{1}, x_{2}\right)= & \frac{1}{2}\left(g_{0}\left(x_{2}+x_{1}\right)+g_{0}\left(x_{2}-x_{1}\right)\right)+\frac{1}{2} \int_{x_{2}-x_{1}}^{x_{2}+x_{1}} g_{1}(s) d s \\
& +\frac{1}{2} \int_{0}^{x_{1}} \int_{x_{2}-\left(x_{1}-\tau\right)}^{x_{2}+\left(x_{1}-\tau\right)} f(\tau, s) d s d \tau . \tag{2}
\end{align*}
$$

(This would need a fair amount of computation.)
(e) Assume that $f=0$ and $\operatorname{supp} g_{0}, \operatorname{supp} g_{1} \subset[-R, R]$. Show that

$$
\operatorname{supp} u \cap\left\{x_{1}>0\right\} \subset\left\{\left|x_{2}\right| \leq x_{1}+R\right\}
$$

(This is called 'finite speed of propagation'.)
(f) Assume that $g_{0}=g_{1}=0$ and $\operatorname{supp} f \subset\left\{x_{1}>0\right\}$. Show that singularities propagate at unit speed: namely, if $x \in \operatorname{sing} \operatorname{supp} u$ and $x_{1}>0$, then we have $x=y+(t,-t)$ or $x=y+(t, t)$ for some $t \geq 0$ and $y \in \operatorname{sing} \operatorname{supp} f$. (Hint: what is $\operatorname{sing} \operatorname{supp} E$?)

