18.155, FALL 2021, PROBLEM SET 4

Review / helpful information:

- Sumset: if $X, Y \subset \mathbb{R}^{n}$ then $X+Y:=\{x+y \mid x \in X, y \in Y\} \subset \mathbb{R}^{n}$.
- Convolution with smooth function: if $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$, then $u * \varphi(x)=$ $(u, \varphi(x-\bullet))$ and $u * \varphi \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
- Tensor product: if $u \in \mathcal{D}^{\prime}(U), v \in \mathcal{D}^{\prime}(V)$, then $u \otimes v \in \mathcal{D}^{\prime}(U \times V)$ is uniquely determined by

$$
(u \otimes v, \varphi \otimes \psi)=(u, \varphi)(v, \psi) \quad \text { for all } \quad \varphi \in C_{\mathrm{c}}^{\infty}(U), \psi \in C_{\mathrm{c}}^{\infty}(V)
$$

where $(\varphi \otimes \psi)(x, y)=\varphi(x) \psi(y)$.

- Schwartz kernels: a sequentially continuous operator $A: C_{\mathrm{c}}^{\infty}(V) \rightarrow \mathcal{D}^{\prime}(U)$ has Schwartz kernel $Q \in \mathcal{D}^{\prime}(U \times V)$ when

$$
(A \psi, \varphi)=(Q, \varphi \otimes \psi) \quad \text { for all } \quad \varphi \in C_{\mathrm{c}}^{\infty}(U), \psi \in C_{\mathrm{c}}^{\infty}(V) .
$$

1. (a) Assume that $X \subset \mathbb{R}^{n}$ is closed and $Y \subset \mathbb{R}^{n}$ is compact. Show that $X+Y$ is closed.
(b) (Optional) Give an example when $X, Y \subset \mathbb{R}$ are both closed but $X+Y$ is not closed.
(c) Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that

$$
\operatorname{supp}(u * \varphi) \subset \operatorname{supp} u+\operatorname{supp} \varphi
$$

(d) (Optional) Give an example of when the above inclusion is not an equality.
2. Let $u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi, \psi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$. Show that

$$
(u * \varphi) * \psi=u *(\varphi * \psi)
$$

(Hint: one way is to use density of C_{c}^{∞} in \mathcal{D}^{\prime}.)
3. Let $u \in \mathcal{D}^{\prime}(U), v \in \mathcal{D}^{\prime}(V)$ where $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ are open and write elements of \mathbb{R}^{n+m} as $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$. Show that:
(a) $\operatorname{supp}(u \otimes v)=\operatorname{supp} u \times \operatorname{supp} v$;
(b) $\partial_{x_{j}}(u \otimes v)=\left(\partial_{x_{j}} u\right) \otimes v$ and $\partial_{y_{j}}(u \otimes v)=u \otimes\left(\partial_{y_{j}} v\right)$.
4. Assume that $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ are open, $0 \in U$, and write elements of \mathbb{R}^{n+m} as $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$. Show that the space of solutions $w \in \mathcal{D}^{\prime}(U \times V)$ to the equations

$$
x_{1} w=\ldots=x_{n} w=0
$$

is given by distributions of the form $\delta_{0} \otimes v$ where $\delta_{0} \in \mathcal{D}^{\prime}(U)$ is the delta distribution and $v \in \mathcal{D}^{\prime}(V)$ is arbitrary.
5. Find the Schwartz kernels of the differentiation operators $\partial_{x_{j}}: C_{\mathrm{c}}^{\infty}(U) \rightarrow C_{\mathrm{c}}^{\infty}(U)$ and the multiplication operators $u \mapsto a u$, where $a \in C^{\infty}(U)$.
6. Let $A: C_{\mathrm{c}}^{\infty}(V) \rightarrow \mathcal{D}^{\prime}(U)$ be a sequentially continuous operator with Schwartz kernel $Q \in \mathcal{D}^{\prime}(U \times V)$. Here $U \subset \mathbb{R}^{n}, V \subset \mathbb{R}^{m}$ are open and we write elements of \mathbb{R}^{n+m} as $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$. Denote by $\partial_{x_{j}}: \mathcal{D}^{\prime}(U) \rightarrow \mathcal{D}^{\prime}(U), \partial_{y_{\ell}}: C_{\mathrm{c}}^{\infty}(V) \rightarrow C_{\mathrm{c}}^{\infty}(V)$ the differentiation operators. Show that the composition $\partial_{x_{j}} A$ has Schwartz kernel $\partial_{x_{j}} Q$ and $A \partial_{y_{\ell}}$ has Schwartz kernel $-\partial_{y_{\ell}} Q$.
7. (Optional) Let $A: C_{\mathrm{c}}^{\infty}(V) \rightarrow \mathcal{D}^{\prime}(U)$ be a sequentially continuous operator with Schwartz kernel $Q \in \mathcal{D}^{\prime}(U \times V)$. Show that Q is compactly supported (i.e. $Q \in \mathcal{E}^{\prime}(U \times$ $V)$) if and only if A extends to a sequentially continuous operator $\widetilde{A}: C^{\infty}(V) \rightarrow \mathcal{E}^{\prime}(U)$. (Here the convergence of sequences on \mathcal{E}^{\prime} is defined as follows: $u_{k} \rightarrow u$ in $\mathcal{E}^{\prime}(U)$ iff $\left(u_{k}, \varphi\right) \rightarrow(u, \varphi)$ for all $\varphi \in C^{\infty}(U)$. Equivalently, $u_{k} \rightarrow u$ in $\mathcal{D}^{\prime}(U)$ and there exists $K \subset U$ compact such that $\operatorname{supp} u_{k} \subset K$ for all K.)

