18.155, FALL 2021, PROBLEM SET 4

Review / helpful information:

- Sumset: if $X, Y \subset \mathbb{R}^n$ then $X + Y := \{x + y \mid x \in X, y \in Y\} \subset \mathbb{R}^n$.
- Convolution with smooth function: if $u \in \mathcal{D}'(\mathbb{R}^n)$, $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, then $u * \varphi(x) = (u, \varphi(x \bullet))$ and $u * \varphi \in C^{\infty}(\mathbb{R}^n)$.
- Tensor product: if $u \in \mathcal{D}'(U)$, $v \in \mathcal{D}'(V)$, then $u \otimes v \in \mathcal{D}'(U \times V)$ is uniquely determined by

$$(u \otimes v, \varphi \otimes \psi) = (u, \varphi)(v, \psi)$$
 for all $\varphi \in C^{\infty}_{c}(U), \ \psi \in C^{\infty}_{c}(V)$

where $(\varphi \otimes \psi)(x, y) = \varphi(x)\psi(y)$.

• Schwartz kernels: a sequentially continuous operator $A: C_c^{\infty}(V) \to \mathcal{D}'(U)$ has Schwartz kernel $Q \in \mathcal{D}'(U \times V)$ when

$$(A\psi,\varphi) = (Q,\varphi\otimes\psi)$$
 for all $\varphi \in C^{\infty}_{c}(U), \ \psi \in C^{\infty}_{c}(V).$

1. (a) Assume that $X \subset \mathbb{R}^n$ is closed and $Y \subset \mathbb{R}^n$ is compact. Show that X + Y is closed.

(b) (Optional) Give an example when $X, Y \subset \mathbb{R}$ are both closed but X + Y is not closed.

(c) Let $u \in \mathcal{D}'(\mathbb{R}^n)$ and $\varphi \in C^{\infty}_{c}(\mathbb{R}^n)$. Show that

$$\operatorname{supp}(u \ast \varphi) \subset \operatorname{supp} u + \operatorname{supp} \varphi.$$

(d) (Optional) Give an example of when the above inclusion is not an equality.

2. Let $u \in \mathcal{D}'(\mathbb{R}^n), \varphi, \psi \in C^{\infty}_{c}(\mathbb{R}^n)$. Show that

$$(u * \varphi) * \psi = u * (\varphi * \psi).$$

(Hint: one way is to use density of $C_{\rm c}^{\infty}$ in \mathcal{D}' .)

3. Let $u \in \mathcal{D}'(U)$, $v \in \mathcal{D}'(V)$ where $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ are open and write elements of \mathbb{R}^{n+m} as $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m$. Show that:

(a) $\operatorname{supp}(u \otimes v) = \operatorname{supp} u \times \operatorname{supp} v;$

(b) $\partial_{x_j}(u \otimes v) = (\partial_{x_j}u) \otimes v$ and $\partial_{y_j}(u \otimes v) = u \otimes (\partial_{y_j}v)$.

4. Assume that $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^m$ are open, $0 \in U$, and write elements of \mathbb{R}^{n+m} as $(x, y) \in \mathbb{R}^n \times \mathbb{R}^m$. Show that the space of solutions $w \in \mathcal{D}'(U \times V)$ to the equations

$$x_1w = \ldots = x_nw = 0$$

is given by distributions of the form $\delta_0 \otimes v$ where $\delta_0 \in \mathcal{D}'(U)$ is the delta distribution and $v \in \mathcal{D}'(V)$ is arbitrary.

5. Find the Schwartz kernels of the differentiation operators $\partial_{x_j} : C^{\infty}_{c}(U) \to C^{\infty}_{c}(U)$ and the multiplication operators $u \mapsto au$, where $a \in C^{\infty}(U)$.

6. Let $A: C_{c}^{\infty}(V) \to \mathcal{D}'(U)$ be a sequentially continuous operator with Schwartz kernel $Q \in \mathcal{D}'(U \times V)$. Here $U \subset \mathbb{R}^{n}$, $V \subset \mathbb{R}^{m}$ are open and we write elements of \mathbb{R}^{n+m} as $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$. Denote by $\partial_{x_{j}} : \mathcal{D}'(U) \to \mathcal{D}'(U)$, $\partial_{y_{\ell}} : C_{c}^{\infty}(V) \to C_{c}^{\infty}(V)$ the differentiation operators. Show that the composition $\partial_{x_{j}}A$ has Schwartz kernel $\partial_{x_{j}}Q$ and $A\partial_{y_{\ell}}$ has Schwartz kernel $-\partial_{y_{\ell}}Q$.

7. (Optional) Let $A : C_c^{\infty}(V) \to \mathcal{D}'(U)$ be a sequentially continuous operator with Schwartz kernel $Q \in \mathcal{D}'(U \times V)$. Show that Q is compactly supported (i.e. $Q \in \mathcal{E}'(U \times V)$) if and only if A extends to a sequentially continuous operator $\widetilde{A} : C^{\infty}(V) \to \mathcal{E}'(U)$. (Here the convergence of sequences on \mathcal{E}' is defined as follows: $u_k \to u$ in $\mathcal{E}'(U)$ iff $(u_k, \varphi) \to (u, \varphi)$ for all $\varphi \in C^{\infty}(U)$. Equivalently, $u_k \to u$ in $\mathcal{D}'(U)$ and there exists $K \subset U$ compact such that supp $u_k \subset K$ for all K.)