18.155, FALL 2021, PROBLEM SET 3

Review / helpful information:

- Support: $x \in U$ does not lie in $\operatorname{supp} u$, where $u \in \mathcal{D}'(U)$, iff there is a neighborhood V of x in U such that $(u, \varphi) = 0$ for all $\varphi \in C_c^{\infty}(U)$ with $\operatorname{supp} \varphi \subset V$.
- For $u \in \mathcal{D}'(U)$, we have $u|_{U \setminus \text{supp } u} = 0$.
- $\mathcal{E}'(U)$ consists of distributions in $\mathcal{D}'(U)$ which have compact support. We can define the pairing (u, φ) for $u \in \mathcal{E}'(U)$ and $\varphi \in C^{\infty}(U)$.
- Convergence in $C^{\infty}(U)$: we say $\varphi_k \to \varphi$ iff for each compact $K \subset U$ and each multiindex α we have $\sup_K |\partial^{\alpha}(\varphi_k \varphi)| \to 0$.
- Homogeneous distributions: $u \in \mathcal{D}'(\mathbb{R}^n)$ is homogeneous of degree $a \in \mathbb{C}$ if $(u, \varphi) = t^a(u, \varphi_t)$ for all t > 0 and $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, where we put $\varphi_t(x) := t^n \varphi(tx)$.
- For $a \in \mathbb{C}$, $\operatorname{Re} a > -1$ define $x_{+}^{a} := x^{a}$ when x > 0 and $x_{+}^{a} = 0$ when x < 0. Similarly define $x_{-}^{a} := (-x)_{+}^{a}$. These distributions can be defined for all $a \in \mathbb{C} \setminus -\mathbb{N}$ using the identity $\partial_{x}(x_{+})^{a} = ax_{+}^{a-1}$.
- Principal value distribution 1/x is defined as the distributional derivative of $\log |x|$.

1. Show the following basic properties of support of a distribution:

(a) If $u \in \mathcal{D}'(U)$ and $V \subset U$ is open, then $\operatorname{supp}(u|_V) = \operatorname{supp} u \cap V$.

(b) If $u \in \mathcal{E}'(U)$ and $V \supset U$ is open, then there exists unique $v \in \mathcal{E}'(V)$ such that $v|_U = u$ and $\operatorname{supp} v \subset \operatorname{supp} u$. (This is the distributional analogue of the extension by zero operator $C_c^{\infty}(U) \to C_c^{\infty}(V)$.)

(c) If $u \in \mathcal{D}'(U)$, then $\operatorname{supp} \partial_{x_i} u \subset \operatorname{supp} u$.

(d) If $u \in \mathcal{D}'(U)$ and $a \in C^{\infty}(U)$, then $\operatorname{supp}(au) \subset \operatorname{supp} u \cap \operatorname{supp} a$.

(e) If $u \in \mathcal{D}'(U)$ then $\operatorname{supp} u \cap \{x \in U \mid a(x) \neq 0\} \subset \operatorname{supp}(au)$. In particular, if au = 0 then $\operatorname{supp} u \subset \{x \in U \mid a(x) = 0\}$.

2. Let $U \subset \mathbb{R}^n$ be open. This exercise elaborates on the metric topology on $C^{\infty}(U)$. (a) Take a sequence of compact subsets $K_1 \subset K_2 \subset \ldots$ of U such that $U = \bigcup_N K_N^{\circ}$. Define the seminorms on $C^{\infty}(U)$

$$\|\varphi\|_N := \max_{|\alpha| \le N} \sup_{K_N} |\partial^{\alpha} \varphi|.$$

Show that $\varphi_k \to \varphi$ in $C^{\infty}(U)$ (according to the definition given in the beginning of this problemset) if and only if $\|\varphi_k - \varphi\|_N \to 0$ for all N.

(b) Show that the space $C^{\infty}(U)$ with the seminorms $\|\bullet\|_N$ is complete in the following sense: if $\varphi_k \in C^{\infty}(U)$ is a sequence such that $\sup_{j,k\geq r} \|\varphi_j - \varphi_k\|_N \to 0$ as $r \to \infty$ for all N, then there exists $\varphi \in C^{\infty}(U)$ such that $\varphi_k \to \varphi$ in $C^{\infty}(U)$. (A vector space with a countable family of seminorms which make it complete in the above sense is called a *Fréchet space*.)

(c) For $\varphi, \psi \in C^{\infty}(U)$, define

$$d(\varphi, \psi) := \sum_{N=1}^{\infty} 2^{-N} \frac{\|\varphi - \psi\|_N}{1 + \|\varphi - \psi\|_N}$$

Show that d defines a metric on $C^{\infty}(U)$.

(d) Show that $\varphi_k \to \varphi$ in $C^{\infty}(U)$ if and only if $d(\varphi_k, \varphi) \to 0$ as $k \to \infty$.

(e) Show that the space $C^{\infty}(U)$ is complete with the metric $d(\bullet, \bullet)$.

3. Show that if $u \in \mathcal{D}'(\mathbb{R}^n)$ is homogeneous of degree a, then $x_j u$ is homogeneous of degree a + 1 and $\partial_{x_j} u$ is homogeneous of degree a - 1. What is the degree of homogeneity of $\partial^{\alpha} \delta_0$?

4. (Optional) This exercise explores homogeneous distributions on \mathbb{R} which are an alternative to x^a_+ and $x^a_- := (-x)^a_+$.

(a) For $\varepsilon > 0$ and $a \in \mathbb{C}$, define $(x + i\varepsilon)^a \in C^{\infty}(\mathbb{R})$ by the formula $(x + i\varepsilon)^a := \exp(a \log(x + i\varepsilon))$ where we use the branch of log on $\mathbb{C} \setminus (-\infty, 0]$ which sends $(0, \infty)$ to reals. Similarly we can define $(x - i\varepsilon)^a$. Show that there exist limits in $\mathcal{D}'(\mathbb{R})$

$$(x \pm i0)^a = \lim_{\varepsilon \to 0+} (x \pm i\varepsilon)^a \in \mathcal{D}'(\mathbb{R}).$$

(Hint: for $\operatorname{Re} a > -1$ this is direct and $(x \pm i0)^a$ are locally integrable functions. For a = -1, write $(x \pm i\varepsilon)^{-1} = \partial_x \log(x \pm i\varepsilon)$ and note that $\log(x \pm i\varepsilon)$ has a distributional limit which is in $L^1_{\operatorname{loc}}(\mathbb{R})$. For general $a \neq -1$, reduce to the case of a + 1 by antidifferentiation, similarly to what was done for x^a_+ in lecture.)

(b) For $a \in \mathbb{C} \setminus -\mathbb{N}$, express $(x \pm i0)^a$ as a linear combination of x^a_+ and x^a_- . (Hint: it is enough to consider the case $\operatorname{Re} a > -1$ by analytic continuation.)

(c) Show that $(x-i0)^{-1} - (x+i0)^{-1} = 2\pi i \delta_0$ and $(x+i0)^{-1} + (x-i0)^{-1}$ is twice the principal value distribution 1/x. (Hint: write $(x \pm i0)^{-1} = \partial_x \log(x \pm i0)$. Note that $\log(x \pm i0) = \log x$ for x > 0 and $\log(x \pm i0) = \log(-x) \pm i\pi$ for x < 0.)