
18.155, FALL 2021, PROBLEM SET 2

Review / helpful information:

• Some of the exercises below might be solved in the suggested textbooks. You

may read these but you need to write your own solutions, and you can only

use the statements that are covered in the lecture notes (don’t say ‘this is

Theorem blah in Hörmander, the solution is done’).

• Restrictions: if V ⊂ U ⊂ Rn open and u ∈ D′(U) then

u|V ∈ D′(V ), (u|V , ϕ) = (u, ϕ) for all ϕ ∈ C∞c (V ) ⊂ C∞c (U).

• Differentiation: for u ∈ D′(U), ϕ ∈ C∞c (U)

(∂xj
u, ϕ) = −(u, ∂xj

ϕ).

• Multiplication by smooth functions: for u ∈ D′(U), ϕ ∈ C∞c (U), a ∈ C∞(U)

(au, ϕ) = (u, aϕ).

1. (Optional) Show that

u(ϕ) =
∞∑
k=1

∂kxϕ(1/k), ϕ ∈ C∞c ((0,∞))

defines a distribution on (0,∞) but this distribution does not extend to R, that is

there exists no v ∈ D′(R) such that u = v|(0,∞). (Hint: pair u with a dilated cutoff

function whose support contains 1/k but no other points of the form 1/j, j ∈ N.)

2. (Optional) Let U ⊂ Rn, V ⊂ Rn′
be open and consider a linear operator

A : C∞c (U)→ C∞c (V ).

Show that the following two definitions of continuity of A are equivalent:

(1) the following two conditions both hold:

(a) for every compact K ⊂ U there exists compact K ′ ⊂ V such that for all

ϕ ∈ C∞c (U) with suppϕ ⊂ K, we have supp(Aϕ) ⊂ K ′ (we can call this

‘uniform control on compact support’); and

(b) for every compact K ⊂ U and N ∈ N there exist C > 0, N ′ ∈ N such that

we have the seminorm bound

‖Aϕ‖CN (V ) ≤ C‖ϕ‖CN′ (U) for all ϕ ∈ C∞c (U) with suppϕ ⊂ K;

(2) for each sequence ϕk ∈ C∞c (U) such that ϕk → 0 in C∞c (U), we have Aϕk → 0

in C∞c (V ) (this is called ‘sequential continuity’).
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(Hint: for the direction (2) ⇒ (1) you can argue by contradiction: if either 1(a) or

1(b) fails then construct a sequence ϕk which violates sequential continuity. In case of

1(a) it helps to take a sequence of compact subsets K` exhausting V : if 1(a) fails then

there exists K ⊂ U such that neither of the sets K` will work as K ′.)

3. Consider a function f : R → C such that f lies in C1 on (−∞, a) and (a,∞) for

some a ∈ R and the derivative f ′ ∈ C0(R \ {a}) is locally integrable on R. The latter

implies the existence of one-sided limits f(a+ 0) and f(a− 0). Show that

∂xf = f ′ + (f(a+ 0)− f(a− 0))δa

where ∂xf denotes the distributional derivative of f ∈ D′(R).

4. Assume that u, v ∈ C0(R) and ∂xu = v in the sense of distributions in D′(R). Show

that u ∈ C1(R) and u′ = v in the sense of the ordinary derivative. That is, if the

distributional derivative is continuous, then it is the ordinary derivative.

5. (a) For m ∈ N, write x∂mx δ0 ∈ D′(R) as a linear combination of δ0, ∂xδ0, . . . , ∂
m−1
x δ0.

(b) Show that the space of solutions to the equation xmu = 0, u ∈ D′(R), is the span

of δ0, ∂xδ0, . . . , ∂
m−1
x δ0. (Hint: for m = 1 this was done in class. The m = 1 result can

be iterated to get the general case.)

6. (a) Assume that ϕ ∈ C∞(Rn). Show that there exist ψ1, . . . , ψn ∈ C∞(Rn) such

that

ϕ(x) = ϕ(0) + x1ψ1(x) + · · ·+ xnψn(x).

(Hint: apply the Fundamental Theorem of Calculus to the function t 7→ ϕ(tx).)

(b) Show that every solution u ∈ D′(Rn) to the system of equations x1u = · · · =

xnu = 0 is a constant multiple of δ0.

7. (Optional) Find all u ∈ D′(R) such that u sinx = 0.


