18.155, FALL 2021, PROBLEM SET 10

Review / helpful information:

- Kohn-Nirenberg symbol class: if $U \subset \mathbb{R}^{n}$ is open and $\ell \in \mathbb{R}$, then $S^{\ell}\left(U \times \mathbb{R}^{n}\right) \subset$ $C^{\infty}\left(U \times \mathbb{R}^{n}\right)$ consists of functions $a(x, \xi)$ such that for each α, β, and a compact set $K \subset U$, there exists $C=C_{\alpha \beta K}$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \leq C\langle\xi\rangle^{\ell-|\beta|} \quad \text { for all } \quad x \in K, \xi \in \mathbb{R}^{n} .
$$

- If $a \in S^{\ell}\left(U \times \mathbb{R}^{n}\right)$, then $\operatorname{Op}(a): C_{\mathrm{c}}^{\infty}(U) \rightarrow C^{\infty}(U)$ is defined by

$$
\operatorname{Op}(a) \varphi(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a(x, \xi) \widehat{\varphi}(\xi) d \xi
$$

One sometimes denotes $\operatorname{Op}(a)=a\left(x, D_{x}\right)$, motivated by Exercise 3 below.

1. Show that if $a \in S^{\ell}\left(U \times \mathbb{R}^{n}\right)$ and $b \in S^{r}\left(U \times \mathbb{R}^{n}\right)$, then $a b \in S^{\ell+r}\left(U \times \mathbb{R}^{n}\right)$.
2. Show that for any ℓ, the function $\langle\xi\rangle^{\ell}$ lies in $S^{\ell}\left(U \times \mathbb{R}^{n}\right)$.
3. Assume that $a(x, \xi)=\sum_{|\alpha| \leq m} a_{\alpha}(x) \xi^{\alpha}$ is a polynomial of degree m in ξ with coefficients $a_{\alpha}(x)$ which are smooth functions on U. Show that $\operatorname{Op}(a)$ is a differential operator:

$$
\operatorname{Op}(a) \varphi(x)=\sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha} \varphi(x), \quad D_{x}:=-i \partial_{x}
$$

4. Show that if $a \in S^{\ell}\left(U \times \mathbb{R}^{n}\right)$, then the transpose $\operatorname{Op}(a)^{t}: \mathcal{E}^{\prime}(U) \rightarrow \mathcal{D}^{\prime}(U)$ restricts to a sequentially continuous operator $C_{\mathrm{c}}^{\infty}(U) \rightarrow C^{\infty}(U)$. (This implies that $\mathrm{Op}(a)$ extends by duality to an operator $\mathcal{E}^{\prime}(U) \rightarrow \mathcal{D}^{\prime}(U)$. Another way to prove this would be to use Sobolev spaces, but please don't use them in your solution to this exercise.) (Hint: write $\operatorname{Op}(a)^{t} \varphi=\widehat{B \varphi}$ where B is a certain integral operator. Then show that if $\varphi \in C_{\mathrm{c}}^{\infty}(U)$ then $B \varphi(\xi)=\mathcal{O}\left(\langle\xi\rangle^{-\infty}\right)$, either by using Fourier transform or directly by repeated integration by parts.)
5. (Optional) In this exercise you show the following version of Borel's Theorem: for any sequence $a_{k} \in \mathbb{C}, k=0,1, \ldots$, there exists $f \in C^{\infty}(\mathbb{R})$ such that $f^{(k)}(0) / k!=a_{k}$ for all k.
(a) Fix $\chi \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ such that $\chi=1$ near 0 . Show that there exists a sequence $\varepsilon_{k}>0$, $k=0,1, \ldots$, such that $\varepsilon_{k} \rightarrow 0$ and

$$
\max _{0 \leq j<k} \sup _{x}\left|\partial_{x}^{j} g_{k}(x)\right| \leq 2^{-k} \quad \text { where } \quad g_{k}(x):=\chi\left(\frac{x}{\varepsilon_{k}}\right) a_{k} x^{k} .
$$

(b) Show that the series

$$
f(x):=\sum_{k=0}^{\infty} g_{k}(x)
$$

converges in $C_{\mathrm{c}}^{j}(\mathbb{R})$ for every j to a function $f \in C_{\mathrm{c}}^{\infty}(\mathbb{R})$ and $f^{(j)}(0) / j!=a_{j}$ for all j.
6. Show that if $a \in S^{\ell}\left(U \times \mathbb{R}^{n}\right)$, then $\operatorname{Op}(a)^{t}$ is a bounded operator $H_{\mathrm{c}}^{s}(U) \rightarrow H_{\mathrm{loc}}^{s-\ell}(U)$ for all s. (Hint: using the mapping properties of $\operatorname{Op}(a)$ on Sobolev spaces, show that for each $\chi \in C_{\mathrm{c}}^{\infty}(U), u \in H^{s}\left(\mathbb{R}^{n}\right), \varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$, we have the bound $\left|\left(\chi \operatorname{Op}(a)^{t} \chi u, \varphi\right)\right| \leq$ $C\|u\|_{H^{s}\left(\mathbb{R}^{n}\right)}\|\varphi\|_{H^{\ell-s}\left(\mathbb{R}^{n}\right)}$ where the constant C depends on a, χ, s, but not on u or φ. Then use Exercise 1(b) from Problemset 8, together with Continuous Linear Extension. Here the proof of Exercise 1(b) also gives a norm bound - you should state it but don't need to prove it.)

