18.155, FALL 2021, PROBLEM SET 10

Review / helpful information:

• Kohn–Nirenberg symbol class: if $U \subset \mathbb{R}^n$ is open and $\ell \in \mathbb{R}$, then $S^{\ell}(U \times \mathbb{R}^n) \subset C^{\infty}(U \times \mathbb{R}^n)$ consists of functions $a(x, \xi)$ such that for each α, β , and a compact set $K \subset U$, there exists $C = C_{\alpha\beta K}$ such that

$$|\partial_x^{\alpha}\partial_{\xi}^{\beta}a(x,\xi)| \le C\langle\xi\rangle^{\ell-|\beta|} \quad \text{for all} \quad x \in K, \ \xi \in \mathbb{R}^n.$$

• If $a \in S^{\ell}(U \times \mathbb{R}^n)$, then $\operatorname{Op}(a) : C_c^{\infty}(U) \to C^{\infty}(U)$ is defined by $\operatorname{Op}(a)\varphi(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{ix \cdot \xi} a(x,\xi)\widehat{\varphi}(\xi) d\xi.$

One sometimes denotes $Op(a) = a(x, D_x)$, motivated by Exercise 3 below.

1. Show that if $a \in S^{\ell}(U \times \mathbb{R}^n)$ and $b \in S^r(U \times \mathbb{R}^n)$, then $ab \in S^{\ell+r}(U \times \mathbb{R}^n)$.

2. Show that for any ℓ , the function $\langle \xi \rangle^{\ell}$ lies in $S^{\ell}(U \times \mathbb{R}^n)$.

3. Assume that $a(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x)\xi^{\alpha}$ is a polynomial of degree m in ξ with coefficients $a_{\alpha}(x)$ which are smooth functions on U. Show that Op(a) is a differential operator:

$$Op(a)\varphi(x) = \sum_{|\alpha| \le m} a_{\alpha}(x) D_x^{\alpha}\varphi(x), \quad D_x := -i\partial_x.$$

4. Show that if $a \in S^{\ell}(U \times \mathbb{R}^n)$, then the transpose $\operatorname{Op}(a)^t : \mathcal{E}'(U) \to \mathcal{D}'(U)$ restricts to a sequentially continuous operator $C_c^{\infty}(U) \to C^{\infty}(U)$. (This implies that $\operatorname{Op}(a)$ extends by duality to an operator $\mathcal{E}'(U) \to \mathcal{D}'(U)$. Another way to prove this would be to use Sobolev spaces, but please don't use them in your solution to this exercise.) (Hint: write $\operatorname{Op}(a)^t \varphi = \widehat{B\varphi}$ where B is a certain integral operator. Then show that if $\varphi \in C_c^{\infty}(U)$ then $B\varphi(\xi) = \mathcal{O}(\langle \xi \rangle^{-\infty})$, either by using Fourier transform or directly by repeated integration by parts.)

5. (Optional) In this exercise you show the following version of Borel's Theorem: for any sequence $a_k \in \mathbb{C}$, k = 0, 1, ..., there exists $f \in C^{\infty}(\mathbb{R})$ such that $f^{(k)}(0)/k! = a_k$ for all k.

(a) Fix $\chi \in C_c^{\infty}(\mathbb{R})$ such that $\chi = 1$ near 0. Show that there exists a sequence $\varepsilon_k > 0$, $k = 0, 1, \ldots$, such that $\varepsilon_k \to 0$ and

$$\max_{0 \le j < k} \sup_{x} |\partial_x^j g_k(x)| \le 2^{-k} \quad \text{where} \quad g_k(x) := \chi\left(\frac{x}{\varepsilon_k}\right) a_k x^k.$$

(b) Show that the series

$$f(x) := \sum_{k=0}^{\infty} g_k(x)$$

converges in $C^j_{\rm c}(\mathbb{R})$ for every j to a function $f \in C^{\infty}_{\rm c}(\mathbb{R})$ and $f^{(j)}(0)/j! = a_j$ for all j.

6. Show that if $a \in S^{\ell}(U \times \mathbb{R}^n)$, then $\operatorname{Op}(a)^t$ is a bounded operator $H^s_c(U) \to H^{s-\ell}_{\operatorname{loc}}(U)$ for all s. (Hint: using the mapping properties of $\operatorname{Op}(a)$ on Sobolev spaces, show that for each $\chi \in C^{\infty}_c(U), u \in H^s(\mathbb{R}^n), \varphi \in C^{\infty}_c(\mathbb{R}^n)$, we have the bound $|(\chi \operatorname{Op}(a)^t \chi u, \varphi)| \leq C ||u||_{H^s(\mathbb{R}^n)} ||\varphi||_{H^{\ell-s}(\mathbb{R}^n)}$ where the constant C depends on a, χ, s , but not on u or φ . Then use Exercise 1(b) from Problemset 8, together with Continuous Linear Extension. Here the proof of Exercise 1(b) also gives a norm bound – you should state it but don't need to prove it.)