§\$8. Vector bundles \& Hodge Theory
Let M be a manifold, $\operatorname{dim} M=n$.
An m-dimensional (complex)
vector bundle over M
is a collection of m-dimensional complex vector spaces $\left(\varepsilon_{x}\right)_{x \in M}$ which "depend smoothly on x ". More precisely,
Defn A vector bundle is an $n+2 m$ dimensional mauritold \mathcal{E} and a projection mp $\pi: \xi \rightarrow M$ which is out o. Zach fiber

$$
\xi_{x}:=\pi^{-1}(x) C \xi_{,}, \quad x \in M_{3}
$$

should have the structure of an m-dimensioned complex vector space
and we should have local trivializations:
$\forall x_{0} \in M \exists$ open set $U \subset M, x_{0} \in U$ and a C^{∞} diffeomorphism

$$
\varphi: \pi_{n}^{-1}(U) \rightarrow U \times \mathbb{C}^{m}
$$

such that ${ }^{\varepsilon} \quad \forall x \in U$,
ais a linear iso morphism from
ε_{x} onto the space

$$
\left\{(x, w) \mid w \in \mathbb{C}^{m}\right\}
$$

If we change to a different trivialization $\tilde{\varphi} ; \pi^{-1}(U) \rightarrow U \times \mathbb{C}^{m}$ then we hove the transition formula:

$$
\begin{aligned}
& \widetilde{\varphi}(x, v)=\left(x, \stackrel{\mathbb{C}^{w}}{w}\right), \varphi(x, v)=\left(x, \stackrel{\mathbb{R}^{m}}{w}\right) \Rightarrow \\
& \Rightarrow \widetilde{w}=A(x) w
\end{aligned}
$$

where $A(x)$ is an invertible
complex $m \times m$ matrix
which is C^{∞} in x, ie.
$A \in C^{\infty}(U ; G L(m, \mathbb{C}))$
Examples:
(2) The trivial bundles

$$
\varepsilon=M \times \mathbb{C}^{m}, \pi(x, v)=x
$$

(2.) The tangent bundle (complexities)

$$
\varepsilon=T_{\mathbb{C}} M, \varepsilon_{x}=T_{x} M \otimes \mathbb{C}
$$

(3) The cotangent bundle $T_{\mathbb{C}}^{*} M$ Coil stop writing the subscript
(4.) The bundle of densities $|\Omega|, 1$-dimensional;
for each $x \in M$,
$\left(\left.\Omega\right|_{x}\right.$ is the space of maps

$$
\alpha_{x}: \underbrace{T_{x} M \times \cdots \times T_{x} M}_{n \text { times }} \rightarrow \mathbb{C}
$$

which are multilineor and satisfy for each $n \times n$ real matrix $A=\left(a_{j k}\right)$ and vectors $v_{1}, \ldots, v_{n} \in T_{x} M$

$$
\alpha_{x}\left(\widetilde{V}_{1}, \ldots, \widetilde{V}_{n}\right)=|\operatorname{det} A| \cdot \alpha_{x}\left(v_{1}, \ldots, v_{n}\right)
$$

where $\widetilde{v}_{j}:=\sum_{k=1}^{n} a_{j k} v_{k}$.
One can check that this does give a 1-D complex vector bundle over M.

Sections of vector bundles:
We say that a mop

$$
x \in M \mapsto n(x) \in \xi_{x}
$$

is a C^{∞} section of the vector bundle ξ if it is C^{∞} in each trivialization $\varphi: \pi(V) \rightarrow U \times \mathbb{C}^{m}:$
for $x \in U,,_{\rho} \varphi(u(x))=(x, v(x))$ for some $C^{\infty} \operatorname{map} v: V \rightarrow \mathbb{C}^{m}$.
Dentate by $C^{\infty}(M ; l)$ the space of C^{∞} sections.
Similarly can define $L_{l o c}^{p}(M ; \varepsilon)$
Examples:

$$
\begin{aligned}
\cdot C^{\infty}(M ; T M)= & \text { (complexified) } \\
& \text { vector fields } \\
\cdot C^{\infty}\left(M ; \tau^{\infty} M\right)= & 1-\text { forms }
\end{aligned}
$$

(more later)

- Any density $u \in L_{c}^{1}\left(M_{j}|\Omega|\right)$ can be integrated:
$u \in L_{c}^{2}(M ;|\Omega|) \longmapsto \int_{M} u \in \mathbb{C}$.
For $M C \mathbb{R}^{n}$ open, define $\int_{M} u$ to be $\int_{M} u(x)\left(e_{1}, \ldots, e_{n}\right) d x$
where e_{1}, \ldots, e_{n} is the canonical basis of \mathbb{R}^{n}.
For general M, can use loco trivializations \& check that the integral does not depend on the trivialization
- If g is a Riemanuian metric thu dVolg is a density:

$$
d V_{0}(x)\left(v_{1}, \ldots, v_{n}\right)=\sqrt{\operatorname{det} B}
$$

where $B=\left(b_{j k}\right), b_{j k}=g(x)\left(v_{j}, v_{k}\right)$

- If $u \in C^{\infty}(M)$ is a function and $v \in C_{c}^{\infty}\left(M_{j}|\Omega|\right)$ is a compactly supported density
then $u \cdot v \in C_{c}^{\infty}(M ;|\Omega|)$.
Con define invariantry (no need to

$$
(u, v):=\int_{M} u \cdot v
$$

So it is more natural to define distributions as

$$
D^{\prime}(M)=\text { deral space to }
$$

$$
C_{c}^{\infty}(M ;|\Omega|)
$$

- If ε is a vector bundle, define $D^{\prime}(M ; \varepsilon)=$ dual space to

$$
C_{c}^{\infty}(M ; \operatorname{Hom}(\xi ;|\Omega|))
$$

where $\forall x, \operatorname{Hom}(\xi ;|\Omega|)_{x}$ is the space of all linear maps $\varepsilon_{x} \rightarrow \mid \Omega_{x}$

Indeed, if

$$
u \in C^{\infty}(M ; \eta), v \in C_{c}^{\infty}\left(M ; \operatorname{Hom}\left(\varepsilon_{j}|\Omega|\right)\right)
$$

we con define $\forall x \in M$ the pairing

$$
\langle u, v\rangle_{x}=V_{x}\left(u_{x}\right) \in|\Omega|_{x}
$$

And then define the pairing
$(u, v)=\int_{M}\langle u, v\rangle$ where

$$
\langle u, v\rangle \in C_{c}^{\infty}(M ;|\Omega|)
$$

- Con define Sobobev spaces

$$
H_{l o c}^{S}(M ; \varepsilon) \subset D^{\prime}(M ; \varepsilon)
$$

\$18.2. Differential operators on vector bundles
First the case of trivial bundles: if Bis a manifold
and we consider trivial bundles $\left\{\begin{array}{l}18.155 \\ L E(18\end{array}\right.$

$$
\begin{aligned}
& \mathbb{C}^{l}=" M \times \mathbb{C}^{l} \\
& \mathbb{C}^{l}{ }^{\prime \prime}=" M \times \mathbb{C}^{l^{\prime}}
\end{aligned}
$$

then a_{n} operator

$$
\underline{L}: C^{\infty}\left(M ; \mathbb{C}^{l}\right) \rightarrow C^{\infty}\left(M ; \mathbb{C}^{l}\right)
$$

is called a differential operator of order m
if it's a matrix of differential operators: $\forall \vec{u}=\left(u, \ldots, u_{e^{\prime}}\right) \in C^{\infty}\left(M ; \mathbb{C}^{\ell}\right)$ where the components $u_{j} \in C^{\infty}(M ; \mathbb{C})$
We have $(P \vec{u})_{j}=\sum_{j=1}^{e^{\prime}} P_{j j^{\prime}} u_{j}$
where $\operatorname{Dj}_{j,} \in \operatorname{Diff}^{m}(M)$.
Denote by $\operatorname{Diff}^{m}\left(M ; \mathbb{C}^{e^{\prime}} \rightarrow \mathbb{C}^{e}\right)$
the space of all such operators.

Basic example:
if $M \subset \mathbb{R}^{n}$ is open then
$d: C^{\infty}(M ; \mathbb{C}) \rightarrow C^{\infty}\left(M ; \mathbb{C}^{n}\right)$
is in Diff l
Here $d f=\left(\partial_{x_{1}} f, \ldots, \partial_{x_{n}} f\right)$
"The principal syubl of P
is the matrix $\left(\sigma_{m}\left(P_{j j^{\prime}}\right)\right)_{j \text {, }}$,
We think of it as a mop from
$T^{*} M$ into $\operatorname{Hom}\left(\mathbb{C}^{e^{\prime}} ; \mathbb{C}^{l}\right)$
space of linear ups $\mathbb{C}^{\ell^{\prime}} \rightarrow \mathbb{C}^{l}$.
Namely, if $(x, \xi) \in T^{*} M$ and $\vec{v}=\left(v_{1}, \ldots, v_{e^{\prime}}\right) \in \mathbb{C}^{l^{\prime}}$ then
$\sigma_{m}(P)(x, \xi) \cdot \vec{v} \in_{e_{1}} \mathbb{C}^{l}$ is given by $\left(\sigma_{m}(R)(x, j) \vec{v}\right)_{j}=\sum_{j=1}^{t^{i}} \sigma_{m}\left(P_{j j^{\prime}}\right) v_{j \prime}$

Example: if $M \subset \mathbb{R}^{n}$ open $\left\lvert\, \begin{gathered}18.155 \\ 8 \times 18 \\ \text { (in) }\end{gathered}\right.$ then $\sigma_{1}(d)(x, \xi)=i \xi \quad \quad(i=\sqrt{-1})$
Here $x \in M, \xi \in \mathbb{R}^{n}$, and
the ξ on the RHS is
the map $t \in \mathbb{C} \mapsto t \cdot \xi \in \mathbb{C}^{n}$.

- Can define differential operators on sections of vector bundles: if ε, F
are vector bundles over M
then can define $D_{\text {Bf }}{ }^{m}(M ; \varepsilon \rightarrow F)$
by using local trivializations.
And can define for $P \in \operatorname{Diff}^{m}(M ; \varepsilon \rightarrow F)$
the principe symbol $\sigma_{m}(P)$:
for $x \in M, \xi \in T_{x}^{*} M$,
$\sigma_{m}(P)(x, \xi)$ is a linear mop $\left\lvert\, \begin{aligned} & 18.155 \\ & \text { LAC } 18\end{aligned}\right.$

$$
\varepsilon_{x} \rightarrow \theta_{x}
$$

Can write $\sigma_{m}(P) \in C^{\infty}\left(T^{\infty} M ; T^{*} H_{\text {om }}(\Omega \rightarrow F)\right)$ where $\operatorname{Hom}(\ell \rightarrow F)$ is the bundle Cover M) of linear maps $\xi_{x} \rightarrow F_{x}$
and $\pi^{*}(i t)$ is the pullback of that bundle by $\left.\pi: T^{*} M \rightarrow M\right]$

Elliptic Regularity II,
Elliptic Estimate, and
Fr ed holm mapping properties (if M compact) Still hold for operators DEDiffim
on vector bundles which are elliptic in the following sense: $\forall(x, \xi) \in T_{x} M, \xi \neq 0$, the map $\sigma_{m}(I)(x, \xi): \xi_{x} \rightarrow F_{x}$ is invertible Cued $\operatorname{dim}\{=\operatorname{din} \theta)$

Why se? Can reduce to
$M \subset \mathbb{R}^{n}$ open, $\varepsilon=F=\mathbb{C}^{l}$.
Then $P=\left(P_{j j^{\prime}}\right)$ is an $l \times l$ matrix of differential operators.
Can constr rust elliptic parametric as a matrix of pseudo diff. Gperatous:

$$
\begin{aligned}
& \left.Q=\left(O p\left(q_{j j}\right)\right)\right)_{j j^{\prime}=1}^{l}, \\
& (Q \vec{u})_{j}=\sum_{j^{\prime}=1}^{e^{\prime}} O_{p}\left(q_{j j^{\prime}}\right) u_{j}^{\prime}
\end{aligned}
$$

where $\vec{u}^{j=1}=\left(u_{1}, \ldots, u_{l}\right) \in D^{\prime}\left(M ; \mathbb{R}^{l}\right)$.
The elliptic paramotrix construction
works similarly to the scaler case $l=1$ except we ster with $q_{j j}^{0}(x, \xi)$ st. $\left(a_{j j^{\prime}}^{0}(x, \xi)\right)_{j, j j^{\prime}}=\left(\sigma_{m}\left(\sigma_{p} \text { verse of }\left(j^{\prime}\right)(x, \xi)\right)_{j^{\prime}, \prime^{\prime}=1}\right.$
\&18. 3. Differeatid forms
Let M be a compact manifold.
Assume also it's oriented:
$\forall x \in M \&$ a basis $v_{1, \ldots,}, v_{n}$ of $T_{x} M$ con decide if $\left(v_{1}, \ldots, v_{n}\right)$ is positively or negatively oriented in a way which depends continuously on X.
For $0 \leq k \leq n$, define the vector bundle of (complexified) k-forms on M as

$$
\Omega^{k}:=\Lambda^{k} T_{c}^{*} M
$$

Here Λ^{k} stands for antisymmetric k-th tensor power.
That is, for each $x \in M$, Ω_{x}^{k} consists of maps $\underbrace{T_{x} M_{x} \cdots T_{X} M}_{k+i m s} \rightarrow \mathbb{C}$
which are multilinear and
change sign if we permute
two arguments. Note: $\Omega^{2}=T_{\tau}^{*} M$.
Sections in $C^{\infty}\left(M ; \Omega^{k}\right)$
are called differential k-forms.
A lot of wonderful properties. in particular,

- \forall coordinate system $x: U_{U}^{M} \rightarrow \mathbb{V}^{n}$,

$$
x(y)=\left(x,(y), \ldots, x_{n}(y)\right)
$$

Can define the differentials $\left.d x_{1, \ldots,} d x_{n} \in C^{\infty}(U) ; \Omega^{1}\right)$ and a basis of each $\Omega_{x,}^{k}, x \in U$, is given by $d x_{j}, \wedge \ldots \Lambda d x_{j k}$ where $1 \leqslant j_{1}<\cdots<j_{k} \leqslant n$.

- Form differential:
$d: C^{\infty}\left(M_{j} \Omega^{k}\right) \rightarrow C^{\infty}\left(M_{j} \Omega^{k+1}\right)$
In coordinates,
$d\left(f(x) d x_{j} \wedge \ldots \wedge d x_{j k}\right)$
$=d f \wedge d x_{j}, \wedge \ldots \Lambda d x_{j k}$
where $d f=\sum_{e=1}^{n} \partial_{x_{e}} f \cdot d x_{e} \in C^{d}\left(U ; \Omega^{1}\right)$
We have $\frac{l=1}{d^{2}=0}$
- Integration: if $\omega \in C^{\infty}\left(M ; \Omega^{n}\right)$, $n=\operatorname{dim} M$, then can define
$\int_{M} \omega$. (This is where we use that M is oriented)
- Stakes The (M pet, no boundary): $\forall \omega \in C^{\infty}\left(M ; \Omega^{n-1}\right)$, we have $\int_{M} d \omega=0$.
- de Rham cohomology: should really be (R instead of \mathbb{C})
for $0 \leq k \leq n$, the k-th
Cohomology group is

$$
H_{d R}^{k}(M ; \mathbb{C}):=\frac{\left\{\omega \in C^{\infty}\left(M ; \Omega^{k}\right) \mid d \omega=0\right\}}{\left\{d \beta \mid \beta \in C^{\infty}\left(M ; \Omega^{k-1}\right)\right\}}
$$

§18.4. Hodge Theory
Now assume we fix
a Riemannian metric g on M This defines a Volume form dull \& an inner product on each Ω^{k}.
The latter is defined ass follows:

- $k=1 \rightarrow$ the inner product on $T^{*} M$ given by g
- $k>1$: for $\alpha_{1}, \ldots, \alpha_{k} \in \Omega_{x}^{1}\left[\begin{array}{l}18.155 \\ L E C \text { 18 }\end{array}\right.$

$$
\begin{equation*}
\beta_{1}, \ldots, \beta_{k} \in \Omega_{\lambda}^{1} \tag{18}
\end{equation*}
$$

define $\left\langle\alpha_{1} \wedge \ldots \wedge \alpha_{k}, \beta_{1} \wedge \ldots \wedge \beta_{k}\right\rangle g$
to be the determinant of the matrix with entries $\left(\langle\alpha ; \beta, l\rangle_{g}\right)_{j, l=1}^{k}$.
(Turns out this extends to an inner product on $\left.\Omega_{x}^{k} ..\right)$

- Now define the L^{2} inner product on $C^{\infty}\left(M ; \Omega^{k}\right)$ by

$$
\langle u, v\rangle_{L^{2}}:=\int_{M}\langle u(x), \overline{V(x)}\rangle_{z} d V_{0} \lg _{g}(x)
$$

for all $u, v \in C^{\infty}\left(M_{j} \Omega^{k}\right)$.

- The operator $d_{k} C^{\infty}\left(M ; \Omega^{k}\right) \rightarrow C^{\infty}\left(M ; s^{k+1}\right)$ is a differential operator of order 1:

$$
\begin{aligned}
& d_{k}\left(f d_{x_{j}} \wedge \ldots \wedge d x_{j k}\right) \\
& =\sum_{l=1}^{n} \partial_{r e} f_{\uparrow} d x_{e} \wedge d x_{j_{1}} \wedge \cdots 1 d x_{j k}
\end{aligned}
$$

this is 0 if $e \in\left\{j_{1}, \ldots, j_{k}\right\}$
aud its prinapel symbol
$\sigma_{1}\left(d_{k}\right)$ is given by
$\sigma_{1}\left(d_{k}\right)(x, \xi)(\alpha)=i(\xi \wedge \alpha)$
for all $x \in M, \xi \in T_{x}^{\infty} M=\Omega_{x}^{L}$, $\alpha \in \Omega_{x}^{k}, \xi \Lambda \alpha$ is the wedge product,

$$
\xi \wedge \alpha \in \Omega_{x}^{k+1} .
$$ product,

- Now define the differential operator $\delta_{k}: C^{\infty}\left(M ; \Omega^{k}\right) \rightarrow C^{\infty}\left(M, \Omega^{k-1}\right)$ as the adjoint of $d_{k-1}: \delta_{k}=d_{k-1}^{*}$

That is, for all

$$
u \in C^{\infty}\left(M ; \Omega^{k}\right)
$$

$v \in C^{\infty}\left(M ; \Omega^{k-1}\right)$ we have

$$
\begin{aligned}
& \left\langle\delta_{k} u, v\right\rangle_{L^{2}}=\left\langle u, d_{k} v\right\rangle L^{2} \\
& \int_{M}\left\langle\delta_{k} u(x), v(x)\right\rangle_{g} d U d_{j}(x)=\int_{M}\left\langle u(x), d_{k} v(x)\right\rangle_{g} d v d_{g}(x)
\end{aligned}
$$

The principal syubl of δ_{k} should be the adjoint of the principal symbl of d_{k-1} if $(x, \xi) \in T^{*} M$ and $\alpha \in \Omega_{x}^{k}$ $\beta \in \Omega_{\lambda}^{h-2}$

$$
\begin{aligned}
& \text { then }\left\langle\sigma_{1}\left(\delta_{k}\right)(x \xi) \alpha, \beta\right\rangle_{g(x)}= \\
& =-i\langle\alpha, \xi \wedge \beta\rangle_{g(x)} .
\end{aligned}
$$

- Consider the bundle of all differential forms

$$
\Omega^{0}:=\bigoplus_{k=0}^{n} \Omega^{k} .
$$

Then d_{k}, δ_{k} define operators

$$
d, \delta: C^{\infty}\left(M ; \Omega^{\circ}\right) \rightarrow C^{\infty}\left(M_{j} \Omega^{0}\right)
$$

$$
\text { and } d, \delta \in \operatorname{Diff}^{1}\left(M ; \Omega^{0} \rightarrow \Omega^{i}\right)
$$

Key fact: the "Dirac operator"

$$
d+\delta \in \operatorname{Diff}^{2}(M ; \Omega \rightarrow \Omega)
$$

is elliptic and self-adjoint.
self-adjoint hess follows from the fact that $\delta=d^{*}$.

For ellipticity
we need to show that \qquad $\forall x \in M, \xi \in T_{x}^{*} M, \xi \neq 0$,
the principe symbol $\sigma_{1}(x, \xi)=\sigma_{1}(d+\delta)(x, \xi)$

$$
\sigma_{1}(x, \xi): \Omega_{x} \rightarrow \Omega_{x}
$$

is an invertible (linear) map
Can assume that $|\xi|_{g}=1$
$\&$ pick a system of coordinates such that $d x_{1}, \ldots, d x_{n}$ is
a g-orthonormal basis of $T_{x}^{*} M$
(at just one point x)
and $\mid \xi=d x_{1}$.
Then an orthonormal basis of Ω_{x} is given by $d x_{A}:=d x_{j,}, \ldots \Lambda d x_{j k}$ where $A=\left\{_{j}, \ldots, j k\right\}, j \ll \ldots<j k$ goes subsets of $\{1, \ldots, n\}$

We then have

$$
\sigma\left(x_{j} \xi\right)\left(d x_{d}\right)= \begin{cases}i d x_{\{1\} \cup \mathcal{A}}, & \text { if } 1 \notin d \tag{23}\\ -i d x_{A N\{1\}}, & \text { if } 1 \in \phi\end{cases}
$$

Che first line comes from d \& the second line comes from δ recalling $\left.\sigma=\sigma_{1}(d+\delta)\right)$ milch is indeed invertible.

- The Hodge Laplacian

$$
\Delta_{g}=\begin{gathered}
(d+\delta)^{2}=d \delta+\delta d \\
\text { since } d^{2}=0=\delta^{2}
\end{gathered}
$$

since $d^{2}=0=\delta^{2}$
Ob o elliptic $\left.\operatorname{in} \operatorname{Diff}^{2}\left(M ; \Omega \rightarrow \Omega^{i}\right)\right)$ and self-adjoint,
I fact, $\sigma\left(\Delta_{g}\right)(x, \xi)$
is the multiplication by $|\xi|^{2}$

So $\forall s$, $d+\delta: H^{s+1}\left(M ; \Omega^{0}\right) \rightarrow H^{s}(M ; \Omega)$ and $\Delta_{g}: H^{s+2}(M ; \Omega) \rightarrow H^{s}(M ; \Omega)$ are Fredholu of index 0 .
What is the kernel?
Lemma $\operatorname{Ker}\left(\Delta_{g}\right)=\operatorname{Ker}(d+\delta)$

This also equals $\oplus_{k=0}^{n} f^{k}$
where $\mathscr{H}^{k}:=\left\{u \in C^{\infty}\left(M ; \Omega^{k}\right) \backslash \begin{array}{l}d u=0 \\ \delta u=0\end{array}\right\}$
is the space of
harmonic k-forms
And by the Fredholm property $\operatorname{dim} f f^{k}<\infty$.

Proof It's easy to see that $\operatorname{Ker}(A) \supset \operatorname{Kar}(d+\delta) \supset\{u \cdot d u=0$ So we just need to show that if $u \in C^{\infty}(M ; \Omega)$ and $\Delta_{g} u=0$ then $d u=0$ and $\delta u=0$.
Compute $D=\left\langle\Delta_{g} u, u\right\rangle_{L^{2}}$

$$
\begin{aligned}
& \left.=\langle d \delta u+\delta d u, u\rangle_{L^{2}} \quad \text { (using } \delta=\partial^{*}\right) \\
& =\langle\delta u, \delta u\rangle_{L^{2}}+\langle d u, d u\rangle_{L^{2}} \\
& =\|\delta u\|_{L^{2}}^{2}+\|d u\|_{L^{2}}^{2}, \text { so } d u=0 \\
& \quad \text { as weeded. } \quad \square=0
\end{aligned}
$$

Now we consider

$$
\begin{aligned}
& \left.d_{k}\left(C^{\alpha}\right)=\left\{d u \mid u \in C^{\infty}(M ; \Omega)\right]\right\}^{c^{\omega}\left(M, M_{j} b^{*}\right)} \\
& \left.\operatorname{Ker}_{c_{c}}^{k} d_{\bar{k}}\left\{u \in C^{*}\left(M ; \Omega^{k}\right)\right\} d u=0\right\}
\end{aligned}
$$

Theorem $[$ Hoodge decompostion $]\left[\begin{array}{c}18.155 \\ \text { BC } \\ \text { I6 } \\ \hline 18\end{array}\right]$
We have

$$
C^{\infty}\left(M_{j} S^{k}\right)=H^{k} \oplus d_{k-1}\left(c^{\alpha}\right) \oplus \delta_{k+1}\left(c^{\infty}\right)
$$

and

$$
\operatorname{Ker}_{c^{+}} d_{k}=H^{k} \oplus d_{k-1}\left(c^{\infty}\right)
$$

In particulor, the de Rham cohomology group

$$
H_{d R}^{k}(M ; \mathbb{C})=\operatorname{Ker}_{C^{a}} d_{k} / d_{k-1}\left(C^{\alpha}\right)
$$

is isomorphic to fek
(each cohomology closs has a unique harmavic form)

Proof (1.) The sum
$A^{k} \oplus d_{k-1}\left(C^{\infty}\right) \oplus \delta_{k+1}\left(C^{\infty}\right)$
is direct: assume $u \in \mathcal{H}^{k}$

$$
\begin{aligned}
& v \in C^{\infty}\left(M ; \Omega^{k-1}\right) \\
& w \in C^{\infty}\left(M ; \Omega^{k+1}\right)
\end{aligned}
$$

and $u+d v+\delta w=0$.
Apply d : Since $d u=0 \quad \& d^{2}=0$ got $d \delta w=0$. But then

$$
0=\langle d \delta w, w\rangle_{L^{2}}=\langle\delta w, \delta \omega\rangle_{L^{2}} \Rightarrow \delta \omega=0 .
$$

Apply δ : get $\delta d v=0$, so

$$
0=\langle\delta d v, v\rangle_{2}=\langle d v, d v\rangle_{L^{2}} \Rightarrow d v=0
$$

Thus $u=0$ as well.
 $C^{\infty}(M ; \Omega) C \mathcal{H}^{\infty} \oplus d\left(C^{\infty}\right) \oplus \delta\left(C^{\infty}\right)$ Indeed, toke $\beta \in C^{\infty}\left(M ; \Omega^{\circ}\right)$ and any $s \in \mathbb{R}$.
The operator $d+\delta: \|(M ; \Omega) \rightarrow H_{(M ; \Omega)}^{-1}$ is Fredholer and self-adjoint on L' with kernel se.
Its range $(d+\delta)\left(H^{S}\right)$ is $\left\{\alpha \in H^{-1}(M ; \Omega) \left\lvert\, \begin{array}{l}\langle\alpha, \omega\rangle_{L^{2}}=0 \\ \left.\forall \omega \in \mathcal{H}^{\cdot}\right\}\end{array}\right.\right.$
Thus there exists enrique $u \in f e^{\circ}$ such that $\beta-u \in(d+\delta)(H)$.
And then there exists marque $\forall \in H^{3}(M ; \Omega)$ such that $\beta=u+(d+\delta) v$ and $v L_{L} f l$

Since u, v are unique they have to be the same for all S
Thus $v \in H^{s}\left(M ; \Omega^{\prime}\right) \quad \forall s$ which by Sobllev embedding (Piet 8, Exercise 2(b))
Shows that $v \in C^{\alpha+}(M ; \Omega)$
Now $\beta=u+d v+\delta v$ as needed.
(3.) It remains to show that $\operatorname{Ker}_{C^{*}} d=H l^{\circ} \oplus d\left(C^{\infty}\right)$.
\geqslant is immediate $\quad\left(d\left(f f^{\prime}\right)=0, d^{2}=0\right)$.
To show \subseteq, foll any $\beta \in \operatorname{Ker}_{C^{* 1}} d C C^{-1}\left(M ; \Omega^{\prime}\right)$

$$
\beta=u+d v+\delta w, \quad v, w \in c^{\infty}(M ; \Omega)
$$

Since $d \beta=0, d u=0, d^{2} v=0$,
get $d \delta w=0$
which as in Step 1 shows that

$$
\delta w=0 \text {. So } \beta=u+d v
$$

as needed.
Using that $H_{d R}^{k}(M ; \mathbb{C}) \simeq \mathcal{H}^{k}$
we can show the de Rham version of Poincare duality:
$\operatorname{dim} H^{k}=\operatorname{dim} f^{n-k} \forall k$.
This is because there exists
a Ot order diff. operator

$$
*: C^{\infty}\left(M_{;} \Omega^{k}\right) \rightarrow C^{\infty}\left(M ; \Omega^{n-k}\right) \forall k
$$

Such that $\delta_{k}: C^{\infty}\left(M ; \Omega^{k}\right) \rightarrow C^{-1}\left(M ; \lambda^{k j}\right) \left\lvert\, \begin{gathered}18.155 \\ L_{k} C(3) \\ (3)\end{gathered}\right.$ is given by $\delta_{k}=(-1)^{k} *^{-1} d *$ and $* *=(-1)^{k(n-k)}$ on k-forms From here one can see that $*: H^{k} \rightarrow H^{n-k}$ is
an isomorphism $\forall k$
(i.e. if $d u=0, \delta u=0$ then

$$
d(* u)=0, \delta(* u)=0 .)
$$

