§17. A bit of spectral theory
§17.1. A spectral theorem
Here we prove
Thu Assume M is a compact manifold, $P \in \operatorname{Diff}^{m}(M)$ is elliptic and formally self-adjoint (i.e. $P^{*}=P$, or equirdently and $m>0$.

$$
\begin{aligned}
& \left\langle P_{\varphi}, \psi\right\rangle_{L^{2}}=\left\langle\varphi, P_{\psi}\right\rangle_{L^{2}} \\
& \left.\forall \varphi, \psi \in C^{\infty}(M)\right) .
\end{aligned}
$$

Then \exists a sequence $u_{k} \in C^{\infty}(M)$
\& a sequence $\lambda_{k} \in \mathbb{R}$, st.

- $P_{k} u_{k}=\lambda_{k} u_{k}$
- $\left|\lambda_{k}\right| \rightarrow \infty$
- $\left\{u_{k}\right\}$ forms an orthonormal (Hilbert) basis of $L^{2}(M)$, in particular we have "Fourier series": $f \in L^{2}(M) \Leftrightarrow$ $\Leftrightarrow f=\sum_{k} c_{k} u_{k}$ in $L^{2}(M)$ where $\sum_{k}\left|c_{k}\right|^{2}<\infty$.

Remarks
(1) A fundamental example is
the Laplacian $-\Delta$ g on a compact Riemannian manifold (M, g) Note that $\lambda_{k} \geqslant 0$ in this case:

$$
\begin{aligned}
\lambda_{k}=\left\langle\lambda_{k} u_{k}, u_{k}\right\rangle_{L^{2}} & =\left\langle-\Delta_{g} u_{k}, u_{k}\right\rangle L^{2} \\
& =\int_{M}\left|\nabla_{g} u_{k}\right|^{2} d v_{0} l_{g} \geqslant 0
\end{aligned}
$$

(2) Can use Thy to get solutions to evolution equations. Egg. the wave equation:

$$
\left\{\begin{array}{l}
\text { The wave equation: } \\
\left(\partial_{t}^{2}-\Delta_{g}\right) u(t, x)=0, \quad t \geqslant 0, \quad x \in M \\
\left.u\right|_{t=0}=f_{0}(x) \\
\left.u t\right|_{t=0}=f_{1}(x) .
\end{array}\right.
$$

If $f_{0}(x)=\sum_{k} f_{0, k}\left(\frac{k}{2} \cdot u_{k}(x), f_{1}(x)=\sum_{k} f_{1, k} u_{k}(x)\right.$
then

$$
\begin{aligned}
& u(t, x)=\sum_{k}\left(f_{0, k} \cos \left(\sqrt{\lambda_{k}} t\right)+\right.\left.f_{1, k} \frac{\sin \left(\sqrt{\lambda_{k}} t\right)}{\sqrt{\lambda_{k}}}\right) * \\
& 0 u_{k}(x) .
\end{aligned}
$$

Proof
(1.) For each $\lambda \in \mathbb{R}$, the operator

$$
P-\lambda=P-\lambda I: H^{m}(M) \rightarrow L^{2}(M)
$$

is Fredholm.
Indeed, since $m>0, p-\lambda \in \operatorname{Diff}^{m}(M)$ has same principal symbol as P and thus is elliptic.
Moreover, the index of $P-\lambda$ is equal to 0 since $(P-\lambda)^{*}=P-\lambda$ and ind $(P-\lambda)^{*}=-$ ind $(P-\lambda)$
So, either $P-\lambda$ is invertible $H^{m} \rightarrow L^{2}$ or the eigen space

$$
E_{\lambda}:=\left\{u \in C^{\infty}(M) \mid P u=\lambda_{u}\right\}
$$

is nontrivial, but $\operatorname{dim} E_{\lambda}<\infty$.
Define the spectrum

$$
\operatorname{Spec}(P)=\left\{\lambda \in \mathbb{R} \mid E_{\lambda} \neq\{0\}\right\}
$$

(2.) We next show that the set $\left\lvert\, \begin{gathered}18.155 \\ L E C 17 \\ (4)\end{gathered}\right.$ Spec (P) is discrete:
if $\lambda \in \operatorname{Spec}(\underline{P})$ then $\exists \varepsilon>0$:

$$
(\lambda-\varepsilon, \lambda+\varepsilon) \cap \operatorname{Spec} P=\{\lambda\}
$$

Indeed, define the orthogonal complements

$$
\begin{aligned}
& H_{\perp}^{m}:=\left\{u \in H^{m}(M) \mid \forall v \in E_{\lambda,}\langle u, v\rangle_{L^{2}}=0\right\} \\
& L_{\perp}^{2}:=\left\{u \in L^{2}(M) \mid \forall v \in E_{\lambda_{7}}\langle u, v\rangle_{L^{2}}=0\right\}
\end{aligned}
$$

Then $P-\lambda: H_{\perp}^{m} \rightarrow L_{\perp}^{2}$ is invertible:

- Since $H_{m}^{m}=H_{\perp}^{m} \oplus E_{\lambda}$, we have

$$
(P-\lambda) H_{\perp}^{m}=(P-\lambda) H^{m^{\prime 2}}=L_{1}^{2}
$$

Since Range $(P-\lambda)=$ or tho goal couplemat or he or $(P-\lambda)^{+}$
or ed
and $(P-\lambda)^{2}=(P-\lambda)$
\& $P-\lambda: H_{\perp}^{m} \rightarrow L_{\perp}^{2}$ is infective, as $H_{\perp}^{m} \cap E_{\lambda}=\{0\}$ - by Banadi's Thu, $(p-\lambda)^{-1}: L_{\perp}^{2} \rightarrow H_{\perp}^{*} \underset{\substack{\text { isspouanded } \\ \text { operator }}}{\text { a }}$

Now $\exists \varepsilon>0 \quad \forall \lambda^{\prime} \in(\lambda-\varepsilon, \lambda+\varepsilon), \begin{gathered}18,155 \\ L E c 17 \\ 5\end{gathered}$ the operator $P-\lambda^{\prime}: H_{\perp}^{m} \rightarrow L_{\perp}^{2}$ is invertible.
If $\lambda^{\prime} \neq \lambda$ then $P-\lambda^{\prime}: E_{\lambda} \rightarrow E_{\lambda}$ is also invertible: it's equal to $\left(\lambda-\lambda^{\prime}\right) I$.
Since $H^{m}=H_{\perp}^{m} \oplus E_{\lambda}, L^{2}=L_{\perp}^{2} \oplus E_{\lambda}$ we see that $P-\lambda^{\prime}: H^{m} \rightarrow L^{2}$ is invertible, so $\lambda^{\prime} \notin \operatorname{Spec}(P)$.
(3.) If $\lambda \neq \lambda^{\prime}$ are in $\operatorname{Spec}(P)$, then $E_{\lambda} \perp E_{\lambda^{\prime}}$ in L^{2}.
Indeed, $\forall u_{\lambda} \in E_{\lambda^{\prime}} u_{\lambda^{\prime}} \in E_{\lambda^{\prime}}$

$$
\begin{aligned}
& \left\langle P u_{\lambda \lambda}, u_{\lambda^{\prime}}\right\rangle_{L^{2}}=\left\langle u_{\lambda,} P u_{\lambda^{\prime}}\right\rangle_{L^{2}} \\
& \lambda\left\langle u_{\lambda^{\prime}} u_{\lambda^{\prime}}\right\rangle_{L^{2}}=\lambda^{\prime}\left\langle u_{\lambda}, u_{\lambda^{\prime}}\right\rangle_{L^{2}}
\end{aligned}
$$

So \exists an orthonormal system consisting of orthonormal bases of all E_{λ}.
(4.) It remains to show that the above orthonormal system is complete. That is, we need to show that the orthogonal complement

$$
V:=\left(\underset{\lambda \in S_{\text {pec }}(P)}{E_{\lambda}}\right)^{\perp}=\left\{\begin{array}{c}
u \in L^{2}(M): \\
u \perp E_{\lambda}
\end{array} \forall \lambda\right\}
$$

is equal to $\{0\}$.
WLOG $O \notin S_{\text {pec }}(P)$
(can replace $E^{\text {pec by }} P$ - λ_{0} for Some $\lambda_{0} E S_{\text {ce }}(1)$)
Then P is invertible $H_{2}^{m} \rightarrow L_{2}^{2}$,
with the inverse $P^{-1}: L^{2} \rightarrow H^{m}$.
We can think of I^{-1} as an operator $L^{2} \rightarrow L^{2}$, then
(1) $P^{-1}: L^{2} s$ is compact
[2] P^{-1} is self -adj ont because P is:

$$
\begin{aligned}
& \forall u, v \in L^{2},\left\langle P^{-1} u, v\right\rangle_{L^{2}}=\left\langle P^{-1} u, P P^{-1} v\right\rangle \\
& =\left\langle P P^{-1} u, P^{-1} v\right\rangle=\left\langle u, P^{-1} v\right\rangle
\end{aligned}
$$

(here we use that $\langle P f, g\rangle=\left\langle f, P_{g}\right\rangle \left\lvert\, \begin{array}{cc}18.155 \\ 10<1\end{array}\right.$
$\left.\forall f, g \in \mathfrak{h}^{m}\right)$
(3) $P^{-1}: V \rightarrow V$. Indeed, if $u \in V$ and $v \in E_{\lambda}$ for some λ
then $\left\langle P^{-1} u, v\right\rangle_{L^{2}}=\left\langle u, P^{-1} v\right\rangle_{L^{2}}$

$$
=\lambda^{-1}\langle u, v\rangle_{L}{ }^{2}=0 \text {, so } P^{-1} u \in V \text {. }
$$

$\left.4 P^{-1}\right|_{V}$ has no ${ }^{(r-\lambda)}$ eigenvalues: indeed, if $\mu \in \mathbb{R}$ and $u \in V$ satisfy $u \neq 0$, $P^{-1} u=\mu \cdot u$, then $\mu \neq 0$
(as $P I^{-1} u=u$), $u \in H^{m}$, and $P_{u}=\mu^{-1} u$, so $u \in E_{\mu^{-1}}$, which is impossible as $V \perp E_{\lambda} \forall \lambda \in S_{p e c}(P)$.
Now if $V \neq\{0\}$ then
1 - 4 cannot all be true.
This follows by applying to $p^{-1} \mid v$
the Thu on the next pase.

Thu [Hilbert - Schmidt]
Assume $\quad A: V \rightarrow V$ is a compact self-adjoint operator on a Hilbert space
and A is not identically O.
Then A has anonzero eigenvalue.
Prof (1) $\|A\|=\sup _{\substack{u \in \bigcup \\\|u\|=1}}|\langle A u, u\rangle|$
Indeed, \geqslant is immediate.
For (©), use the idutity (using that $A_{A^{*}=A}$

$$
\begin{aligned}
& \langle A(u+v), u+v\rangle-\langle A(u-v), u-v\rangle \\
& =4 \operatorname{Re}\langle A u, v\rangle \text { to set, }
\end{aligned}
$$

with $\left.r:=\sup _{\substack{u \in d \\ \| u l=1}} K A u, u\right\rangle \mid$,

$$
\begin{aligned}
4 \operatorname{Re}\langle A u, v\rangle & \leq r(\|u\|=1 \\
& =2 r\left(\|u\|^{2}+\|u-v\|^{2}\right) \\
& \left.2 v \|^{2}\right)
\end{aligned}
$$

Put $v:=t$ Au for same $t>0$,
then $4 t\|A u\|^{2} \leqslant 2 r\left(\|u\|^{2}+t^{2}\|A u\|^{2}\right)$
Putting $t:=\frac{\|u\|}{\|A u\|}$, get

$$
4\|u\| .\left\|A_{u}\right\| \leq 4 r\|u\|^{2} \Rightarrow\left\|A_{u}\right\| \leq r\|u\|
$$

(2) Since $A \neq 0$, we know that

$$
r=\|A\|=\sup _{\|u\|=1}|\langle A u, u\rangle|>0 .
$$

Tate a sequence $u_{k}:\left\|u_{k}\right\|=1$,

$$
\left\langle A u_{k}, u_{k}\right\rangle \longrightarrow r \quad \text { or }-r
$$

WLOG the limit is r (can do $A \rightarrow-A)$ Since A is compact, passing to a subsequence can male
$A u_{k} \rightarrow v$ for same $v \in V$.
We now claim that $v \neq 0$ and $A v=r v$, ie. r is an eigenvalue of A :

$$
\begin{aligned}
& \left\|A u_{k}-r u_{k}\right\|^{2}= \\
& 18.155 \\
& \text { fEC } 17 \\
& =\left\|A u_{k}\right\|^{2}-2 r\left\langle A u_{k}, u_{k}\right\rangle+r^{2}\left\|u_{k}\right\|^{2} \\
& \leqslant \quad r^{2}-2 r\left\langle A u_{k}, u_{k}\right\rangle+r^{2} \\
& =2 r^{2}-2 r\left\langle A u_{k}, u_{k}\right\rangle \underset{k \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

So $A u_{k}-r u_{k} \rightarrow 0$.
But $A u_{k} \rightarrow v$, so $r u_{k} \rightarrow v$.
Thus $u_{k} \rightarrow r^{-1} v$. This
implies that $A u_{k} \rightarrow A r^{-1} v=v$,
So $A v=r v$ as needed.
\$17.2. Various results on Δ_{g}
Assume (M, g) is a compact Riemannien manifold.
Lade at the spectrum of $-\Omega_{g}$:

$$
\begin{aligned}
& -\Delta_{g} u_{k}=\lambda_{k} u_{k} \\
& 0=\lambda_{1}<\lambda_{2} \leq \ldots, \lambda_{k} \rightarrow \infty \\
& u_{1}, u_{2}, \ldots, C^{\infty}(M)
\end{aligned}
$$

$$
18.155
$$

orthonormal basis of $L^{2}(M)$
One can ask a lot of questions on the behavior of λ_{k} and u_{k} as $k \rightarrow \infty$ Here we discuss some results. No proofs are given in this section.
(1.) Weyl Law: if $\operatorname{dim} M=n$

$$
N(R)=\#\left\{k: \quad \lambda_{k} \leqslant R^{2}\right\}
$$

then as $R \rightarrow \infty \quad\left(\omega_{n}:=\operatorname{Vol}\left(B_{\mathbb{R}^{n}}(0,1)\right)\right)$

$$
N(R)=(2 \pi)^{-n} \omega_{n} \operatorname{Volg}_{g}(M) R^{n}+O\left(R^{n-1}\right)^{\prime}
$$

Goes back to Weyl 1911 (domains in \mathbb{R}^{n})
In the setting stated above: evitan 1952, 1955
Arakumoric 1956
(2) Better remainder in Weyl Law:

Con we improve $O\left(R^{n-1}\right)$?
In general, NO:
if $M=S^{2}$ is the round 2 -sphere then it has eigenvalues $l(l+1)$, $l=0,1, \ldots$, with multiplicities $2 l+1$.
If $R_{e}=\sqrt{l(l+1)}$ then

$$
N\left(R_{e}+\varepsilon\right)-N\left(R_{e}-\varepsilon\right)=U+1 \sim R_{e}
$$

So count set $N(R) \sim R^{2}+o(R)$

But typically, YES:
if the set of closed geodesics on (M, g) has measure O (as a subset of the tangent bundle TM)
then $N(R)=(2 \pi)^{-n} \omega_{n} V_{n} l_{g}(M) R^{n}+o\left(R^{n-1}\right)$
This was proved in
Duistermant - Guillemin 1975
Open problem: if MAs negatively cured, can we est
(3) Better remainder when
M has a boundary
(and we study Dirichlet eigenvalues:

$$
\left.\left.u_{k}\right|_{\partial M}=0\right):
$$

Weyl's conjecture:

$$
\begin{gathered}
N(R)=(2 \pi)^{-n} \omega_{n} V \operatorname{ldg}_{g}(M) R^{n}-\frac{(2 \pi)^{1-n} \omega_{n-1} V_{0} \|_{g}(\partial \mu) R^{n-1}}{}+\quad \circ\left(R^{n-1}\right)
\end{gathered}
$$

Assuming the set of closed billiard $\left\lvert\, \begin{aligned} & 18.155 \\ & \text { REC } 17\end{aligned}\right.$ geodesics has measure O, this was proved by
Melrose 1980 if ∂M is strictly concave Ivrii 1980 for any C^{∞} boundary
(4) Nodal sets: take u_{k} real valued. What is the asymptotic
of $A\left(\lambda_{k}\right)=\operatorname{Area}\left(\left\{x \in M: u_{k}(x)=0\right\}\right)$?
Yau's conjecture: $\exists c, C \quad \forall k$

$$
c \sqrt{\lambda_{k}} \leqslant A\left(\lambda_{k}\right) \leqslant C \sqrt{\lambda_{k}}
$$

Still open in general but
Donnelly - Fefferman 1988:
true for real analytic (M, g)
Colcling - Minicozzi 2011 :

$$
A\left(\lambda_{k}\right) \geqslant c \lambda_{k}^{\frac{3-n}{4}}, \quad n=\operatorname{dim} M
$$

Logunov $2018:$

$$
c \sqrt{\lambda_{k}} \leqslant A\left(\lambda_{k}\right) \leqslant C \lambda_{k}^{c_{n}}
$$

C_{n} constant depending only on h
(5) Lower bounds on mass:

Thu Assume (M, g) is either \mathbb{I}^{n} or a negatively curved surface.
Then \forall nonempty open $\Omega \subset M$ $\exists c_{\Omega}>0 \forall k$

$$
\left\|u_{k}\right\|_{L^{2}(\Omega)} \geqslant c_{\Omega}
$$

Remark: this fails for the sphere S^{2} : for some Ω e.g.

$$
\begin{aligned}
& \text { we have } \\
& \left\|u_{k}\right\|_{L^{2}(\Omega)} \sim e^{-C \sqrt{\lambda_{k}}} \text { (Unique cont inaction } \\
& \text { gives the lower bound } \forall M \text {) }
\end{aligned}
$$

For $I^{n}:$ Jaffard 1990, Haraux 1989 For negatively curved surfaces: Komornik 1992
Dyatlou- Sin - Nonnenmacher 2021
using Bourgain- Dyathov 2018
Open problem: does this hold
for (M, g) negatively curved of $\operatorname{dim} \geq 3$?

