### 18.118, SPRING 2022, PROBLEM SET 4

1. Consider the following vector field on $\mathbb{R}_{x, \xi}^{2}$ :

$$
V=\xi \partial_{x}+(\sin x) \partial_{\xi}
$$

(This vector field corresponds to motion of a pendulum, with $x$ being the angle to the vertical axis and $x=0$ corresponding to the pendulum pointing directly upwards.) Let $e^{t V}$ be the flow of $V$ and define the diffeomorphism $\varphi$ on $\mathbb{R}^{2}$ as $\varphi:=e^{1 V}$ (i.e. the time-one map of the flow). Show that $(0,0)$ is a hyperbolic fixed point of $\varphi$ and find its global stable/unstable manifolds. (Hint: the energy $\frac{1}{2} \xi^{2}+\cos x$ is conserved along the flow. Look at points with the same energy as the fixed point.)
2. Assume that $X$ is a compact manifold, $\varphi: X \rightarrow X$ is a diffeomorphism, and $x_{0}$ be a hyperbolic fixed point of $\varphi$. Let $W^{s}\left(x_{0}\right)$ be a local stable manifold of $\varphi$ at $x_{0}$. Fix a volume form on $X$; for $x \in X$ and $n \geq 0$ denote by $\left|\operatorname{det} d \varphi^{n}(x)\right|$ the absolute value of the determinant of $d \varphi^{n}(x): T_{x} X \rightarrow T_{\varphi^{n}(x)} X$ with respect to this volume form. Show that even for large $n$, the values of $\left|\operatorname{det} d \varphi^{n}(x)\right|$ at different points $x \in W^{s}\left(x_{0}\right)$ are comparable to each other, namely there exists $C$ such that

$$
\left|\operatorname{det} d \varphi^{n}(x)\right| \leq C\left|\operatorname{det} d \varphi^{n}(y)\right| \quad \text { for all } \quad x, y \in W^{s}\left(x_{0}\right), \quad n \geq 0
$$

(Hint: use the Chain Rule and multiplicativity of the determinant, together with the fact that $d\left(\varphi^{n}(x), \varphi^{n}(y)\right) \rightarrow 0$ exponentially fast as $n \rightarrow \infty$. This exercise also works for arbitrary hyperbolic $\varphi$-invariant sets, as well as separately for the stable and the unstable Jacobians, i.e. determinants of $d \varphi^{n}(x)$ restricted to stable/unstable spaces; the latter uses Hölder dependence of $E_{u}, E_{s}$ on the base point. However, the conclusion is false if we instead took $n \leq 0$.)
3. Assume that $X$ is a compact manifold and $\varphi: X \rightarrow X$ is an Anosov diffeomorphism. This exercise shows that the number of periodic points of $\varphi$ grows at most exponentially. For $n \geq 1$, define the set of periodic points of period $n$

$$
Z_{n}:=\left\{x \in X \mid \varphi^{n}(x)=x\right\} .
$$

Denote by $d$ a metric on $X$.
(a) Show that there exist $c>0, \Lambda>1$ such that for all $n \geq 1$

$$
x, y \in Z_{n}, d(x, y) \leq c \Lambda^{-n} \quad \Longrightarrow \quad x=y
$$

(Hint: you can take $\Lambda$ to be the Lipschitz constant of $\varphi$ with respect to the metric $d$ and $c:=\varepsilon_{0}$ be chosen in the Stable/Unstable Manifold Theorem; recall from that theorem that if the orbits of $x, y$ stay $\varepsilon_{0}$-close to each other for all times then $x=y$.)
(b) Use part (a) to show that as $n \rightarrow \infty$

$$
\left|Z_{n}\right|=\mathcal{O}\left(\Lambda^{d n}\right) \quad \text { where } \quad d:=\operatorname{dim} X
$$

(Hint: the radius $\frac{1}{3} c \Lambda^{-n}$ balls centered at the points of $Z_{n}$ are nonintersecting. Now count the volume.)
4. (Optional) This exercise studies a particular kind of hyperbolic fixed point, namely an attractive point in dimension 1 , showing that near such a point, there are coordinates in which the map is linear. To simplify the setup, we construct a $C^{1}$ coordinate system, but this argument can give $C^{\infty}$ coordinates. Put $I:=(-1,1)$ and assume

$$
\varphi: I \rightarrow \varphi(I) \subset \mathbb{R}
$$

is a $C^{\infty}$ diffeomorphism such that

$$
\begin{equation*}
\varphi(0)=0, \quad \varphi^{\prime}(0)=a \in(0,1) \tag{1}
\end{equation*}
$$

Show that there exists an open interval $J \subset I$ containing 0 and a $C^{1}$ diffeomorphism

$$
\psi: J \rightarrow \psi(J) \subset \mathbb{R}
$$

such that $\psi(0)=0$ and for all $x \in J$

$$
\psi(\varphi(x))=a \cdot \psi(x)
$$

Follow the steps below:
(a) From (1) we can write

$$
\varphi(x)=a x(1+\widetilde{\varphi}(x)), \quad x \in I
$$

where $\widetilde{\varphi} \in C^{\infty}(I ; \mathbb{R})$ satisfies $\widetilde{\varphi}(0)=0$. (You don't need to prove this.) We put $J:=(-\delta, \delta)$ where $\delta>0$ will be chosen to be small later. Let $\mathcal{X}$ be the Banach space of $C^{1}$ functions $g$ on $[-\delta, \delta]$ such that $g(0)=0$, with the norm

$$
\|g\|_{\mathcal{X}}:=\sup _{|x| \leq \delta}\left|g^{\prime}(x)\right| .
$$

Define the linear operator $\Phi: \mathcal{X} \rightarrow \mathcal{X}$ by (here we use that $|\varphi(x)| \leq|x|$ for $x$ small enough)

$$
\Phi g(x):=(1+\widetilde{\varphi}(x)) g(\varphi(x)), \quad|x| \leq \delta .
$$

Show that it suffices to prove that for $\delta$ small enough, the equation

$$
\begin{equation*}
g=\Phi g+\widetilde{\varphi} \tag{2}
\end{equation*}
$$

has a solution $g \in \mathcal{X}$. (Hint: take $\psi(x):=x(1+g(x))$.)
(b) Show that the equation (2) has a solution $g \in \mathcal{X}$ if $\delta$ is small enough, by proving that $\|\Phi\|_{\mathcal{X} \rightarrow \mathcal{X}}<a+C \delta$.

