18.118, SPRING 2022, PROBLEM SET 3

Review/useful information:

- Lie group $\operatorname{SL}(2, \mathbb{R})$: consists of 2×2 real matrices with determinant 1 .
- $\operatorname{PSL}(2, \mathbb{R})$: the quotient of $\operatorname{SL}(2, \mathbb{R})$ by the central subgroup $\{I,-I\}$ where I denotes the identity matrix.
- Lie algebra $\mathfrak{s l}(2, \mathbb{R})$: consists of 2×2 real matrices with trace 0 . Note that $\mathfrak{s l}(2, \mathbb{R})$ is the tangent space to $\operatorname{SL}(2, \mathbb{R})$ (and thus to $\operatorname{PSL}(2, \mathbb{R}))$ at the identity. Also, if $\mathbf{a} \in \mathfrak{s l}(2, \mathbb{R})$, then the matrix exponential $\exp (\mathbf{a})$ lies in $\mathrm{SL}(2, \mathbb{R})$ and can also be viewed as an element of $\operatorname{PSL}(2, \mathbb{R})$.
- For $A \in \operatorname{PSL}(2, \mathbb{R})$, denote by $L_{A}: \operatorname{PSL}(2, \mathbb{R}) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ the left multiplication by A : $L_{A}(B)=A B$.
- For $\mathbf{a} \in \mathfrak{s l}(2, \mathbb{R})$, define the vector field $Z_{\mathbf{a}}$ on $\operatorname{PSL}(2, \mathbb{R})$ by

$$
Z_{\mathbf{a}}(A)=d L_{A}(I) \mathbf{a} \in T_{A} \operatorname{PSL}(2, \mathbb{R})
$$

Note that $Z_{\mathbf{a}}$ is left-invariant, that is

$$
d L_{A}(B) Z_{\mathbf{a}}(B)=Z_{\mathbf{a}}\left(L_{A}(B)\right)
$$

- The flow $e^{t Z_{\mathbf{a}}}: \operatorname{PSL}(2, \mathbb{R}) \rightarrow \operatorname{PSL}(2, \mathbb{R})$ is the right multiplication by matrix exponential:

$$
\begin{equation*}
e^{t Z_{\mathbf{a}}}(A)=A \exp (t \mathbf{a}) \quad \text { for all } \quad A \in \operatorname{PSL}(2, \mathbb{R}), \quad \mathbf{a} \in \mathfrak{s l}(2, \mathbb{R}) \tag{1}
\end{equation*}
$$

- Pushforward of left-invariant vector fields by the flows of left-invariant vector fields: if $\mathbf{a}, \mathbf{b} \in \mathfrak{s l}(2, \mathbb{R})$ and $A \in \operatorname{PSL}(2, \mathbb{R})$ then

$$
\begin{equation*}
d e^{t Z_{\mathbf{a}}}(A) Z_{\mathbf{b}}(A)=Z_{\mathbf{c}}\left(e^{t Z_{\mathbf{a}}}(A)\right) \quad \text { where } \quad \mathbf{c}=\exp (-t \mathbf{a}) \mathbf{b} \exp (t \mathbf{a}) \in \mathfrak{s l}(2, \mathbb{R}) \tag{2}
\end{equation*}
$$

- We have the commutation identity

$$
\begin{equation*}
\left[Z_{\mathbf{a}}, Z_{\mathbf{b}}\right]=Z_{[\mathbf{a}, \mathbf{b}]} \quad \text { for all } \quad \mathbf{a}, \mathbf{b} \in \mathfrak{s l}(2, \mathbb{R}) \tag{3}
\end{equation*}
$$

where the left-hand side is the Lie bracket of the vector fields $Z_{\mathbf{a}}, Z_{\mathbf{b}}$ on PSL(2, $\left.\mathbb{R}\right)$ and the right-hand side features the commutator $[\mathbf{a}, \mathbf{b}]=\mathbf{a b}-\mathbf{b a}$ of the matrices \mathbf{a}, \mathbf{b}.

- Poincaré upper half-plane model for the hyperbolic plane:

$$
\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}, \quad g=\frac{|d z|^{2}}{(\operatorname{Im} z)^{2}}
$$

- Action of $\operatorname{SL}(2, \mathbb{R})$ on \mathbb{H}^{2} :

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R}) \quad \Longrightarrow \quad \gamma_{A}(z)=\frac{a z+b}{c z+d}
$$

Acts on the left (i.e. $\gamma_{A B}=\gamma_{A} \circ \gamma_{B}$) by isometries and descends to $\operatorname{PSL}(2, \mathbb{R})$. Also defines the natural (left) action on the sphere bundle $S \mathbb{H}^{2}$:

$$
(z, v) \in S \mathbb{H}^{2} \quad \Longrightarrow \quad \widetilde{\gamma}_{A}(z, v)=\left(\gamma_{A}(z), \gamma_{A}^{\prime}(z) v\right)
$$

where $\gamma_{A}^{\prime}(z) \in \mathbb{C}$ is the derivative of $\gamma_{A}(z)$ as a complex analytic function of z, which can be computed to be

$$
\gamma_{A}^{\prime}(z)=\frac{1}{(c z+d)^{2}}
$$

In this problemset we express the vector fields $V, W, V_{\perp}, U_{+}, U_{-}$that we introduced on $S \mathbb{H}^{2}$ in terms of the Lie algebra of the Lie group

$$
G:=\operatorname{PSL}(2, \mathbb{R})
$$

(If $M=\Gamma \backslash \mathbb{H}^{2}$ is a hyperbolic surface, then one can show that $S M \simeq \Gamma \backslash G$ is the set of left Γ-cosets on G. Since the vector fields defined below are left-invariant, they descend to $S M$. This gives a Lie algebraic way of thinking about the geodesic and horocyclic flows on hyperbolic surfaces.)

1. The point $(z, v)=(i, i)$ lies in $S \mathbb{H}^{2}$. Show that the map

$$
\Phi: G \rightarrow S \mathbb{H}^{2}, \quad \Phi(A)=\widetilde{\gamma}_{A}(i, i)
$$

is a diffeomorphism. (Hint: injectivity can be checked directly. Bijectivity of the differential can be reduced to the case $A=I$ because we have a group action. For surjectivity, we need to show that the group G acts transitively on $S \mathbb{H}^{2}$: to do this we can first show that any $(z, v) \in S \mathbb{H}^{2}$ can be mapped to (i, w) for some $w \in \mathbb{C},|w|=1$, and then map (i, w) to (i, i) by another element of $S \mathbb{H}^{2}$.)
2. Let V, W be the vector fields on $S \mathbb{H}^{2}$ such that $e^{t V}$ is the geodesic flow and $e^{s W}(z, v)=\left(z, R_{s} v\right)$ where $R_{s}: T_{z} \mathbb{H}^{2} \rightarrow T_{z} \mathbb{H}^{2}$ is the counterclockwise rotation by angle s; if we think of v as an element of $\mathbb{C}=T_{z} \mathbb{H}^{2}$ then $R_{s} v=e^{i s} v$.
(a) Explain why the maps $e^{t V}$ and $e^{s W}$ commute with the map $\widetilde{\gamma}_{A}$ for any $A \in G$. Show that the pullbacks $\Phi^{*} V, \Phi^{*} W$ are left-invariant vector fields on G and conclude that

$$
\Phi^{*} V=Z_{\mathbf{v}}, \quad \Phi^{*} W=Z_{\mathbf{w}} \quad \text { for some } \quad \mathbf{v}, \mathbf{w} \in \mathfrak{s l}(2, \mathbb{R})
$$

(b) Recall the vector fields $V_{\perp}:=[V, W], U_{+}:=V_{\perp}+W, U_{-}:=V_{\perp}-W$ on $S \mathbb{H}^{2}$. Show that

$$
\begin{equation*}
\Phi^{*} V=Z_{\mathbf{v}}, \quad \Phi^{*} W=Z_{\mathbf{w}}, \quad \Phi^{*} V_{\perp}=Z_{\mathbf{v}_{\perp}}, \quad \Phi^{*} U_{ \pm}=Z_{\mathbf{u}_{ \pm}} \tag{4}
\end{equation*}
$$

for the following matrices in $\mathfrak{s l}(2, \mathbb{R})$:
$\mathbf{v}=\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & -\frac{1}{2}\end{array}\right), \quad \mathbf{w}=\left(\begin{array}{cc}0 & \frac{1}{2} \\ -\frac{1}{2} & 0\end{array}\right), \quad \mathbf{v}_{\perp}=\left(\begin{array}{cc}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right), \quad \mathbf{u}_{+}=\left(\begin{array}{cc}0 & 1 \\ 0 & 0\end{array}\right), \quad \mathbf{u}_{-}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
(Hint: for V and W, use part (a) and compute V and W at the point (i, i) to find $\mathbf{v}=\left(\Phi^{*} V\right)(I), \mathbf{w}=\left(\Phi^{*} W\right)(I)$. You can use the fact that $\delta(t)=e^{t} i$ is a geodesic on \mathbb{H}^{2}. For $V_{\perp}, U_{ \pm}$use their definitions and (3).)
3. (Optional) Assume that $a, b, a^{\prime}, b^{\prime}, t \in \mathbb{R}$ satisfy

$$
a b=e^{-t / 2}-1, \quad a^{\prime}=e^{-t / 2} a, \quad b^{\prime}=e^{t / 2} b
$$

Check that

$$
\begin{equation*}
\exp \left(b \mathbf{u}_{-}\right) \exp \left(a \mathbf{u}_{+}\right)=\exp (t \mathbf{v}) \exp \left(a^{\prime} \mathbf{u}_{+}\right) \exp \left(b^{\prime} \mathbf{u}_{-}\right) \tag{5}
\end{equation*}
$$

Using (4) and (1), show the following commutation identity for the geodesic and horocycle flows on $S \mathbb{H}^{2}$:

$$
\begin{equation*}
e^{a U_{+}} \circ e^{b U_{-}}=e^{b^{\prime} U_{-}} \circ e^{a^{\prime} U_{+}} \circ e^{t V} \tag{6}
\end{equation*}
$$

4. (Optional) Define the differential 3-form ω on $S \mathbb{H}^{2}$ uniquely by the condition

$$
\omega\left(V, U_{+}, U_{-}\right)=1 \quad \text { on the entire } S \mathbb{H}^{2} .
$$

Show that it is invariant under the flows $e^{t V}$ and $e^{s U_{+}}$, namely $\left(e^{t V}\right)^{*} \omega=\left(e^{s U_{+}}\right)^{*} \omega=$ ω. (Hint: you can use the definition of pullback of a differential form together with Exercise 2 and the pushforward formula (2).) (One can similarly show invariance under $e^{s U_{-}}$. The volume form ω gives the Liouville measure and this exercise shows that the Liouville measure is invariant under the geodesic flow and the horocycle flows.)

