1. Consider the matrix \(A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 & -1 \end{pmatrix} \).

(a) Find a basis for and the dimension of the null space of \(A \).
(b) Find a basis for and the dimension of the column space of \(A \).
(c) What is the rank of \(A \)? Explain why the rank-nullity theorem holds for \(A \).
(d) Are the columns of \(A \) linearly independent? Do they span \(\mathbb{R}^3 \)?

2. Assume that a \(5 \times 3 \) matrix \(A \) has rank 3.

(a) What are the dimensions of the nullspace of \(A \) and the column space of \(A \)?
(b) Are the columns of \(A \) linearly independent? Do they span \(\mathbb{R}^5 \)?
(c) Could it be that the equation \(A\vec{x} = \vec{b} \) has no solution for some \(\vec{b} \)? Could it be that this equation has more than one solution for some \(\vec{b} \)?

*3. Let \(A \) be an \(n \times n \) matrix and assume that the null space of \(A \) is equal to the column space of \(A \). Show that \(A^2 = 0 \).

4. For which values of the real parameter \(c \) is the matrix \(A_c = \begin{pmatrix} 1 & c \\ 2c & 8 \end{pmatrix} \) invertible?
Find a formula for the inverse \(A_c^{-1} \).

5. Consider the matrix \(A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \).

(a) Is the matrix \(A \) invertible? If so, find the inverse.
(*b) Find the eigenvalues and eigenvectors of \(A \)
(*c) Diagonalize \(A \), i.e. write it as \(A = SDS^{-1} \) where \(D \) is a diagonal matrix.

6. Consider the matrix \(A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \).

(a) Find the eigenvectors and eigenvalues of \(A \).
(b) Diagonalize \(A \), i.e. write it as \(A = SDS^{-1} \) where \(D \) is a diagonal matrix.
(c) Compute the 10th power \(A^{10} \). (Hint: use the diagonalization. To compute the 10th power of \(D \) use the polar form of the complex eigenvalues of \(A \).)
*7. Assume that a diagonalizable $n \times n$ matrix A has only eigenvalues 1 and -1. Show that $A^2 = I$.