1. Consider the initial value problem \(y'' + 4y = \cos(\omega t) \), \(y(0) = 0 \), \(y'(0) = 0 \) where \(\omega > 0 \) is a real parameter.

(a) Find the solution of this initial value problem when \(\omega \neq 2 \).

Solution. To get the general solution to the non-homogeneous ODE
\[
y'' + 4y = \cos(\omega t),
\]
we first find the solution to the homogeneous part \(y'' + 4y = 0 \). The characteristic polynomial is \(P(z) = z^2 + 4 \) with a pair of complex roots \(\pm 2i \). Therefore, the solution to the homogeneous equation \(y'' + 4y = 0 \) is
\[
y_h(t) = C_1 \cos(2t) + C_2 \sin(2t).
\]

To get a particular solution, we use complex replacement together with ERF. The right-hand side \(\cos(\omega t) \) in its complex form is \(\Re(e^{i\omega t}) \). ERF applied to the complex version of the ODE gives
\[
y_c(t) = e^{i\omega t} \frac{P(i\omega)}{(i\omega)^2 + 4} = \frac{e^{i\omega t}}{4 - \omega^2},
\]
for \(\omega \neq 2 \). Taking the real part of \(y_c \), we get a particular solution to the ODE \(1) \),
\[
y_p(t) = \Re(y_c(t)) = \frac{\cos \omega t}{4 - \omega^2},
\]

By superposition principle, the general solution to \(1) \) is
\[
y(t) = y_p(t) + y_h(t) = \frac{\cos \omega t}{4 - \omega^2} + C_1 \cos(2t) + C_2 \sin(2t).
\]

Plugging in the initial conditions, we get
\[
0 = y(0) = \frac{1}{4 - \omega^2} + C_1,
\]
\[
0 = y'(0) = 2C_2.
\]

Therefore, \(C_1 = \frac{1}{\omega^2 - 4} \) and \(C_2 = 0 \). Hence, the solution to the IVP is
\[
y(t) = \frac{\cos \omega t}{4 - \omega^2} - \frac{1}{4 - \omega^2} \cos(2t).
\]

\[\square \]
(b) Find the complex gain, amplitude gain, and phase lag as functions of ω when $\omega \neq 2$.

Solution. Complex gain is given by

$$\text{complex gain} = \frac{1}{P(i\omega)} = \frac{1}{4 - \omega^2}.$$

Notice that the complex gain can also be written as $re^{i\theta}$ where r is the amplitude gain and $-\theta$ is the phase lag. Writing the complex gain in the polar form, we get

$$\text{complex gain} = \begin{cases} \frac{1}{|4 - \omega^2|}e^{i\theta}, & \text{if } 0 < \omega < 2, \\ \frac{1}{|4 - \omega^2|}e^{i\pi}, & \text{if } \omega > 2. \end{cases}$$

Therefore, the amplitude gain in this case is

$$\text{amplitude gain} = \frac{1}{|4 - \omega^2|},$$

and the phase lag is

$$\text{phase lag} = \begin{cases} 0, & \text{if } 0 < \omega < 2, \\ -\pi, & \text{if } \omega > 2. \end{cases}$$

\(\square\)

(c) Find the solution of this initial value problem when $\omega = 2$.

Solution. The solution to the homogeneous part of the ODE remains the same:

$$y_h(t) = C_1 \cos(2t) + C_2 \sin(2t).$$

To get a particular solution, we use complex replacement with ERF'. The right-hand side $\cos(2t)$ in its complex form is $Re(e^{i2t})$. (ERF no longer works now as $P(2i) = 0$.) We use ERF’ and get

$$y_p(t) = \frac{te^{i2t}}{P'(2i)} = \frac{te^{i2t}}{4i} = \frac{te^{i2t}}{4e^{i\pi/2}} = \frac{t}{4} e^{i(2t - \pi/2)}.$$

Taking its real part, we get

$$y_p(t) = Re(y_e(t)) = \frac{t}{4} \cos(2t - \frac{\pi}{2}).$$

By superposition principle, the general solution is

$$y(t) = y_p(t) + y_h(t) = \frac{t}{4} \cos(2t - \frac{\pi}{2}) + C_1 \cos(2t) + C_2 \sin(2t).$$
Plugging in the initial conditions, we have
\[
0 = y(0) = C_1
\]
\[
0 = y'(0) = 2C_2.
\]

Therefore, the solution to the IVP is
\[
y(t) = \frac{t}{4} \cos(2t - \frac{\pi}{2}) = \frac{t}{4} \sin(2t)
\]
\[
\square
\]

(d) (*) Show that as \(\omega \to 2 \), the solution in part (a) converges to the solution in part (b) for any fixed \(t \).

Solution. For any fixed \(t \), we take the limit
\[
\lim_{\omega \to 2} \cos \omega t = \frac{1}{2} \cos(2t) = \lim_{\omega \to 2} \frac{\cos \omega t - \cos 2t}{-2\omega} = \lim_{\omega \to 2} \frac{-t \sin \omega t}{-2\omega} = \frac{\sin 2t}{4},
\]
which is precisely the solution when \(\omega = 2 \). Notice that in the second-to-last equality, we used L'Hôpital's rule and also note that since the variable in the limit is \(\omega \), the derivative should be with respect to \(\omega \).
\[
\square
\]

(e) For your entertainment, the graphs of \(y(t) \) for several values of \(\omega \) are included on the next page.

Solution. Nothing to be done here—it is for your entertainment.
\[
\square
\]

2. Which of the following ODEs are stable? For those that are not, give an example of a solution that does not go to 0 as \(t \to \infty \).

(a) \(y'' + 7y' + 8y = 0 \)

Solution. Recall that the stability test for 2nd order equation says the equation
\[
a_2y'' + a_1y' + a_0y = 0
\]
is stable if and only if \(a_0 > 0, a_1 > 0 \).

In this case, \(a_1 = 7, a_0 = 8 \). Therefore, it is \boxed{\text{stable}}.

Alternatively, one may also tell this ODE is stable by looking at the real part of the characteristic roots. Recall that an ODE \(P(D)y = 0 \) is stable if and only if the real part of every characteristic root is negative.

In this case, the roots are
\[
\frac{-7 \pm \sqrt{7^2 - 4 \cdot 8}}{2} = \frac{-7 \pm \sqrt{17}}{2}.
\]
Both of them are negative, yielding the same answer as before.
\[
\square
\]

(b) \(y'' + y' - 2y = 0 \)
Solution. By the stability test for 2nd order equations, we conclude that the equation is not stable.

Alternatively, we may also look at the characteristic roots. The characteristic roots are
\[\frac{-1 \pm \sqrt{1 + 4 \cdot 2}}{2} = \frac{-1 \pm 3}{2} = 1, -2.\]

Thus, it is not stable.

The following is a solution that does not go to 0 as \(t \to \infty\):
\[y(t) = e^t\]

\[\square\]

3. Compute the linear combination \(2\vec{a} - 3\vec{b}\) where
\[\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \vec{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\]

Solution.
\[2\vec{a} - 3\vec{b} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -1 \\ 5 \end{pmatrix}.\]

\[\square\]

4. Are the following sets of vectors linearly independent? For those which are linearly dependent, find a nontrivial linear combination which gives the zero vector. (Hint: write the equation that a linear combination of those is equal to 0 and solve for the coefficients.)

(a) \(\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\)

Solution. As there is a zero vector, this set is linearly dependent. A nontrivial linear combination that is equal to the zero vector is
\[0\vec{a} + 1\vec{b} = \vec{0}.\]

\[\square\]

(b) \(\vec{a} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \vec{b} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}\)

Solution. To tell whether there is a nontrivial linear combination that leads to the zero vector, we solve the linear system
\[\begin{pmatrix} 0 \\ 0 \end{pmatrix} = x\vec{a} + y\vec{b} = x\begin{pmatrix} 1 \\ 1 \end{pmatrix} + y\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} x + y \\ x - y \end{pmatrix}.\]
Observe that $x = 0, y = 0$ is the **only** solution to this linear system. That means, no non-trivial linear combination is equal to the zero vector. Hence, this set is **linearly independent**.

Alternatively, **two** non-zero vectors are linearly dependent only if one is a multiple of another. In this case, this is apparently not true. Hence, they are linearly independent. □

(c) $\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} 2 \\ -1 \\ -3 \end{pmatrix}$

Solution. To tell whether there is a nontrivial linear combination that leads to the zero vector, we solve the linear system

$$
\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = x\vec{a} + y\vec{b} + z\vec{c} = \begin{pmatrix} x \\ x \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y \\ y \end{pmatrix} + \begin{pmatrix} 2z \\ -z \\ -3z \end{pmatrix} = \begin{pmatrix} x + 2z \\ x + y - z \\ y - 3z \end{pmatrix}.
$$

A nonzero solution to this linear system is $x = -2, y = 3, z = 1$. Therefore, the following nontrivial linear combination is equal to the zero vector:

$$-2\vec{a} + 3\vec{b} + \vec{c} = 0.$$

Thus, this set is **linearly dependent**. □