18.03 RECITATION SHEET WEEK 11

(Questions with * are optional)

1. Compute the exponential $\exp(tA)$, where
 $$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$ Verify by hand that $\vec{y}(t) = \exp(tA)\vec{w}$ solves the system of ODEs $\vec{y}' = A\vec{y}$ for any constant vector \vec{w}.

2. In this problem we solve the system of ODEs $y_1' = y_2 + 1$, $y_2' = y_1 + 2$ using variation of parameters.
 (a) Write the system in the vector form $\vec{y}' = A\vec{y} + \vec{b}(t)$.
 (b) Compute the matrix exponential e^{tA}.
 (c) We will look for the solution in the form $\vec{y}(t) = e^{tA}\vec{u}(t)$. Write the equation for $\vec{u}''(t)$.
 (d) Integrate to find $\vec{u}(t)$.
 (e) Find the general solution $\vec{y}(t)$ to the system.

3. In this problem we follow the method of Section 9.2 in the lecture notes to find the Neumann eigenvalues and eigenfunctions for D^2 on the interval $[0, \pi]$. Namely we will find all complex numbers λ such that there exists a nonzero function $y(x)$ on the interval $[0, \pi]$ satisfying
 $$y'' = \lambda y, \quad y'(0) = y'(\pi) = 0.$$
 (a) Use integration by parts to show that each eigenvalue λ has to be a nonpositive real number.
 (b) Find all λ (eigenvalues) and for each of them find a corresponding function y (eigenfunctions).