§10. PDEs & Fourier series

We now study partial differential equations (PDEs). The unknown function for a PDE is a function \(u \) of several variables and PDEs feature partial derivatives (from 18.02). PDEs are generally more difficult to study than ODEs, so we only study the following two linear equations in 1 time variable \(t \) and 1 space variable \(x \):

- The heat equation
 \[
 \frac{\partial u}{\partial t} = \Delta \frac{\partial u}{\partial x^2}
 \] (\(\Delta > 0 \) constant)

- The wave equation
 \[
 \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}
 \] (\(c > 0 \) constant)
§10.1. The heat equation

§10.1.1. Setup

The heat equation is

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
\]

where:

- \(t \geq 0 \) is the time variable
- \(x \) is the space variable.

We take \(x \) in an interval of length \(L \):

\(0 \leq x \leq L \) where \(L > 0 \) is fixed

- \(u(x,t) \) is the unknown function defined for \(t \geq 0, 0 \leq x \leq L \).

Here is the picture of the domain of \(u \):

- \(J > 0 \) is a given constant
- \(\frac{\partial u}{\partial t} \) is the partial derivative of \(u \) in \(t \) (fix \(x \) & differentiate in \(t \))
- \(\frac{\partial^2 u}{\partial x^2} \) is the second partial derivative of \(u \) in \(x \) (fix \(t \) & differentiate in \(x \) twice)
10.1.2. Modeling

The heat equation models the temperature of a heated rod of length L:

Here $u(t, x) =$ temperature at time t at position x in the rod.

Units (sample):

- t in seconds
- x in meters
- $u(t, x)$ in °F
- $\frac{\partial u}{\partial t}$ in °F/sec
- $\frac{\partial^2 u}{\partial x^2}$ in °F/m²
- γ in m²/sec is related to the heat conductivity of the rod.

Rough justification for the heat equation:

If $\frac{\partial^2 u}{\partial x^2} = 0$ then $\frac{\partial u}{\partial t} = 0$, i.e. $u(x, t)$ does not depend on t.

This corresponds to the linear distribution of temperature being a steady state:

$u \uparrow \quad \Rightarrow$ no change in temperature
For general $u(t, x)$, the second derivative $\frac{\partial^2 u}{\partial x^2}$ gives how far u is from being linear in x, and the heat equation is pushing u to become more linear as time goes on:

\[\frac{\partial^2 u}{\partial x^2} < 0 \Rightarrow \frac{\partial u}{\partial t} < 0 \quad \frac{\partial^2 u}{\partial x^2} > 0 \Rightarrow \frac{\partial u}{\partial t} > 0 \]
(arrows indicate $\frac{\partial u}{\partial t}$)

§10.1.3. Initial-boundary value problem (1-BVP)

\[
\begin{cases}
\frac{\partial u}{\partial t} = \sqrt{\frac{\partial^2 u}{\partial x^2}}, & u = u(x,t), \ t \geq 0, \ 0 \leq x \leq L \\
u(x,0) = f(x) & \text{initial condition: fixing temperature at time 0} \\
u(0, t) = 0 & \text{Dirichlet boundary conditions: keeping the ends of the rod at temperature 0} \\
u(L, t) = 0 & \text{the rest of the rod is insulated}
\end{cases}
\]
Another option is to impose Neumann boundary conditions:
\[
\begin{align*}
\frac{\partial u}{\partial x}(0,t) &= 0 \\
\frac{\partial u}{\partial x}(L,t) &= 0
\end{align*}
\]
These correspond to insulating the entire rod.

Theorem For any (sufficiently regular) function \(f \) the I-BVP above has a unique solution \(u \).

Note: one actually does not have a solution for \(t < 0 \). This corresponds to the fact that thermodynamics is not time reversible (First law of thermodynamics).

§10.1.4. Special solutions

Recall that for a system of ODES \(\vec{y}' = A \vec{y} \) we found solutions in the form \(\vec{y}(t) = e^{\lambda t} \vec{v}(t) \) where \(A \vec{v} = \lambda \vec{v} \).

Now for the heat equation we look for solutions in the form
$u(x,t) = e^{\lambda t} v(x)$

Where λ is a number and v is a function. To satisfy the heat equation we need

$$x e^{\lambda t} v(x) = \frac{\partial u}{\partial t} = \nabla \cdot \nabla u = \nabla e^{\lambda t} \cdot v''(x)$$

That is,

$$v''(x) = \frac{1}{\lambda} v(x)$$

We also need v to satisfy the boundary conditions. E.g. for Dirichlet b.c. we get

$$\begin{cases} v''(x) = \frac{1}{\lambda} v(x) , & 0 \leq x \leq L \\ v(0) = 0 \\ v(L) = 0 \end{cases}$$

That is, we want $\frac{1}{\lambda}$ to be an eigenvalue of D^2 on $[0,L]$ with the Dirichlet boundary conditions and v to be the corresponding eigenfunction.

Recalling the computation in §9.2 we get

$$\frac{\lambda}{\lambda} = -\left(\frac{\pi k}{L} \right)^2$$

for some $k \geq 1$ integer

$$v(x) = C \sin \left(\frac{\pi k x}{L} \right).$$
That is, we can take
\[\lambda = -\sqrt{\frac{n\pi}{L}}^2, \quad V(x) = \sin \left(\frac{n\pi}{L} x \right). \]
and
\[u(x, t) = e^{-\sqrt{\frac{n\pi}{L}}^2 t} \sin \left(\frac{n\pi}{L} x \right) \]
Solves the heat equation
& the Dirichlet boundary conditions

8.10.1.5. The general solution
Recall that for \(\ddot{y} = Ay \) the general solution was
\[\ddot{y}(t) = C_1 e^{\lambda_1 t} \sqrt{\lambda_1}, \ldots, C_n e^{\lambda_n t} \sqrt{\lambda_n}. \]
For the heat equation we have a similar "Theorem" The general solution to
\[\begin{align*}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad t \geq 0, \quad 0 \leq x \leq L \\
u(0, t) &= 0 \quad \text{could replace Dirichlet} \\
u(L, t) &= 0 \quad \text{with Neumann here but the formula below will change}
\end{align*} \]
has the form
\[u(x, t) = \sum_{k=1}^{\infty} b_k e^{-\sqrt{\frac{n\pi}{L}}^2 t} \sin \left(\frac{n\pi}{L} x \right) \]
Where \(b_1, b_2, \ldots \) are constants.
(Why "Theorem"? Because we do not discuss conditions on \(b_k \) as \(k \to \infty \) which ensure convergence of the series.)
Remark: note that each
\[e^{-\frac{1}{(\pi k)^2} t} \rightarrow 0 \quad t \rightarrow \infty \]

Thus \(u(t, x) \rightarrow 0 \) as \(t \rightarrow \infty \).

This corresponds to the fact that the rod will eventually reach the ambient temperature.

For Neumann b.c. we instead will have \(u(t, x) \rightarrow \text{const} \) as \(t \rightarrow \infty \).

\[\S 10.1.6. \text{ Solving the I-BVP} \]

Here we come back to the initial-boundary value problem
\[
\begin{align*}
\frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2}, \quad u = u(x, t), \quad t \geq 0, \quad 0 \leq x \leq L \\
u(0, t) &= u(L, t) = 0 \\
u(x, 0) &= f(x).
\end{align*}
\]

The general solution is
\[
u(x, t) = \sum_{k=1}^{\infty} b_k e^{-\frac{1}{(\pi k)^2} t} \sin\left(\frac{\pi k}{L} x\right)
\]

To find \(b_k \), we use the initial condition, plugging in \(t = 0 \):
Definition. The Sine Fourier series on the interval \([0, L]\) has the form

\[
\sum_{k=1}^{\infty} b_k \sin \left(\frac{\pi k}{L} x \right).
\]

For \(b_k\) which decay sufficiently fast as \(k \to \infty\), this series converges and defines a function on the interval \([0, L]\).

We study Fourier series in more detail in §10.3 later. For now we just use the following:

Fact: if \(f\) is a (continuously differentiable) function on \([0, L]\) then \(f\) can be written as a sum of the sine Fourier series above with

\[
b_k = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{\pi k}{L} x \right) dx.
\]

This leads to:
ALGORITHM for solving the I-BVP (x):

Step 1: Write the initial condition \(f \) as the sum of Fourier series:
\[
f(x) = \sum_{k=1}^{\infty} b_k \sin \left(\frac{\pi k}{L} x \right) \quad \text{where} \quad b_k = \frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{\pi k}{L} x \right) dx
\]

Step 2: The solution \(u \) is given by
\[
u(x,t) = \sum_{k=1}^{\infty} b_k e^{-\left(\frac{\pi k}{L} \right)^2 t} \sin \left(\frac{\pi k}{L} x \right).
\]

Example: Solve the I-BVP
\[
\begin{align*}
\frac{\partial u}{\partial t} &= 2 \frac{\partial^2 u}{\partial x^2}, \quad u = u(x,t), \quad t \geq 0, \quad 0 \leq x \leq \pi \\
u(0,t) &= u(\pi,t) = 0 \\
u(x,0) &= 2 \sin x - \sin(3x).
\end{align*}
\]

Solution: we have \(L = \pi, \quad \lambda = 2, \quad f(x) = 2 \sin x - \sin(3x) \)

Step 1: Write \(f(x) = \sum_{k=1}^{\infty} b_k \sin(kx) \)
where, rather than using the formula for \(b_k \), we just write
\[
b_1 = 2, \quad b_3 = -1,
\]
\[
b_k = 0 \quad \text{for all other} \quad k
\]
Step 2: to get $u(t,x)$ we start with the Fourier series for $f(x)$ and multiply each term $\sin(kx)$ by e^{-2k^2t} to make sure it solves the heat equation:

$$f(x) = 2\sin x - \sin(3x)$$

$$u(x,t) = 2e^{-2t}\sin x - e^{-18t}\sin(3x).$$

This does solve the heat equation

$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2},$$

the boundary conditions

$$u(0,t) = u(L,t) = 0,$$

and the initial condition $u(x,0) = 2\sin x - \sin(3x)$

§ 10.1.7. Neumann boundary conditions

Now let us solve

$$\begin{cases}
\frac{\partial u}{\partial t} = \sqrt{\frac{\partial^2 u}{\partial x^2}}, & u = u(x,t), \ t \geq 0, \ 0 \leq x \leq L \\
\frac{\partial u}{\partial x}(0,t) = 0 \rightarrow \text{Neumann boundary conditions} \\
\frac{\partial u}{\partial x}(L,t) = 0 \\
u(x,0) = f(x)
\end{cases}$$
As in §10.1.4 we look for special solutions
\[u(x,t) = e^{\lambda t} v(x) \] where
\[
\begin{aligned}
& v'' = \frac{\lambda}{D} v, \quad 0 \leq x \leq L \\
& v'(0) = 0 \\
& v'(L) = 0.
\end{aligned}
\]
That is, \(\lambda \) & \(v \) are eigenvalue & eigenfunction for \(D^2 \) on \([0,L]\) with Neumann boundary conditions.

Recalling the solution of this problem from §9.2, we get
\[
\lambda = -\pi \left(\frac{\pi k}{L} \right)^2, \quad k \geq 0 \text{ integer}
\]
\[v(x) = \cos \left(\frac{\pi k}{L} x \right) \] (in particular, if \(k = 0 \), then \(v = 1 \))

This gives the general solution
\[u(x,t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k e^{-\left(\frac{\pi k}{L} \right)^2 t} \cos \left(\frac{\pi k}{L} x \right) \]
(we split off the \(k=0 \) term for later convenience)
where \(a_0, a_1, a_2, \ldots \) are some constants.
It remains to find the coefficients a_k. Plug in $t=0$:

$$U(x,0) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi k}{L} x\right) = f(x).$$

This is called the cosine Fourier series. The coefficients are (see §10.3)

$$a_k = \frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{\pi k}{L} x\right) \, dx.$$

In particular, $a_0 = \frac{2}{L} \int_{0}^{L} f(x) \, dx$.