18.125 Homework 9

due Wed Apr 13 in class

1. (2 pts) Assume that $M \subset \mathbb{R}^N$ is a hypersurface and (Ψ, U) is a coordinate chart for M. Assume also that $U' \subset \mathbb{R}^{N-1}$ is an open set and $\Phi : U' \to U$ is a diffeomorphism, and put $\Psi' := \Psi \circ \Phi$; then (Ψ', U') is another coordinate chart for M. Without using the surface measure λ_M , show that for each Borel measurable nonnegative $f : M \to \mathbb{R}$,

$$\int_{U} (f \circ \Psi) J_{\Psi} \, d\lambda_{\mathbb{R}^{N-1}} = \int_{U'} (f \circ \Psi') J_{\Psi'} \, d\lambda_{\mathbb{R}^{N-1}}$$

where $J_{\Psi}, J_{\Psi'}$ are defined by (5.2.12). (Hint: use Jacobi's formula and the fact that $J_{\Psi}(y) = \sqrt{\det(d\Psi(y)^T d\Psi(y))}$.)

- **2.** (2 pts) Do Exercise 6.1.6.
- **3.** (2 pts) Do Exercise 6.1.7.
- **4.** (2 pts) Do Exercise 6.1.9.

5. (1 pt) Let (E, \mathcal{B}, μ) be a measure space and $f : E \to \mathbb{R}$ a measurable function. Show that for all $p \in [1, \infty)$,

$$\left(\|f\|_{L^p}\right)^p = \int_0^\infty pt^{p-1} \mu\left(\{x \in E : |f(x)| \ge t\}\right) dt.$$

6. (1 pt) Assume that (E, \mathcal{B}, μ) is a finite measure space and $f : E \to \mathbb{R}$ is a bounded measurable function. It is easy to see that $f \in L^p(E, \mu)$ for all p. Show that for any sequence $p_j \in [1, \infty]$ converging to some $p \in [1, \infty]$, we have $||f||_{L^{p_j}} \to ||f||_{L^p}$.