18.125 Homework 6

due Wed Mar 16 in class

1. (1 pt) Assume that $f \in L^1(\mathbb{R}^N; \lambda_{\mathbb{R}^N})$ has the following property:

$$\int_{\mathbb{R}^N} f(x)\varphi(x)\,dx = 0$$

for each continuous compactly supported $\varphi : \mathbb{R}^N \to \mathbb{R}$. (Here compactly supported means that there exists a compact set $K \subset \mathbb{R}^N$ such that $\varphi = 0$ outside of K.) Show that f = 0 almost everywhere.

2. (1 pt) Assume that μ is a finite measure on \mathbb{R} . Show that μ can be written as a sum of two measures $\mu_1 + \mu_2$, where μ_1 has a continuous distribution function and μ_2 is purely atomic, namely there exist at most countably many $x_j \in \mathbb{R}$, $\rho_j \geq 0$ such that

$$\mu_2(A) = \sum_{j: x_j \in A} \rho_j, \quad A \in \mathcal{B}_{\mathbb{R}}.$$

- **3.** (2 pts) Do Exercise 2.2.38.
- **4.** (2 pts) Do Exercise 2.2.39 (correction: change $F(b_n)$ to $F(b_n-)$).
- 5. (3 pts) This exercise gives the construction of Cantor measures on Cantor sets.

For each $\theta \in (0, 1)$ and a closed interval I = [a, b], define closed intervals

$$J_{-}(I,\theta) = \left[a, \frac{a+b}{2} - \theta \frac{b-a}{2}\right], \quad J_{+}(I,\theta) = \left[\frac{a+b}{2} + \theta \frac{b-a}{2}, b\right]$$

so that I is a nonoverlapping union of $J_{-}(I,\theta)$, $J_{+}(I,\theta)$, and the middle part of length $\theta|I|$. Fix a sequence

$$\theta_j \in (0,1), \quad j=1,2,\ldots$$

For each string $\alpha_1 \ldots \alpha_n$ with $\alpha_1, \ldots, \alpha_n \in \{-, +\}$, and \emptyset denoting the empty string, define the intervals $I(\alpha_1 \ldots \alpha_n)$ inductively by

$$I(\emptyset) = [0,1], \quad I(\alpha_1 \dots \alpha_n) = J_{\alpha_n} (I(\alpha_1 \dots \alpha_{n-1}), \theta_n).$$

For instance, $I(-+) = J_+(J_-([0, 1], \theta_1), \theta_2)$. (It might be helpful to visualize these intervals as lying on a tree, with $I(\alpha_1 \dots \alpha_{n-1})$ being the parent of $I(\alpha_1 \dots \alpha_n)$.) Define the Cantor set:

$$C = \bigcap_{n=1}^{\infty} C_n, \quad C_n = \bigcup_{\alpha_1,\dots,\alpha_n \in \{-,+\}} I(\alpha_1 \dots \alpha_n)$$

(a) Show that C is a closed uncountable set such that $\mathbb{R} \setminus C$ is dense in \mathbb{R} . Show that C has Lebesgue measure zero if and only if the series $\sum_{n} \theta_n$ diverges.

(b) Show that there exists unique finite Borel measure μ on \mathbb{R} such that

$$\mu(\mathbb{R} \setminus \mathcal{C}) = 0; \quad \mu(I_{\alpha_1 \dots \alpha_n}) = 2^{-n} \text{ for all } \alpha_1, \dots, \alpha_n \in \{-, +\}.$$

(Hint: construct the distribution function F_{μ} instead.) Show that F_{μ} is continuous.

(c) Show that μ is absolutely continuous with respect to the Lebesgue measure λ when $\sum_n \theta_n$ converges and μ is singular with respect to λ when $\sum_n \theta_n$ diverges. (Hint: for the first part, the density is a multiple of the indicator function of C.)

6. (1 pt) Do Exercise 3.3.16.