
The Central Limit Theorem, Stirling’s Formula, and All That

Euler’s Gamma Function: For γ > 0, set

(1) Γ(γ) =
∫ ∞

0

tγ−1e−t dt.

Using integration by parts, one has

Γ(γ + 1) =
∫ ∞

0

tγe−t dt = −tγe−t
∣∣∣∞
0

+ γ

∫ ∞
0

tγ−1e−t dt

and therefore

(2) Γ(γ + 1) = γΓ(γ).

In particular, because Γ(1) = 1 and Γ(n + 1) = nΓ(n), it follows, by induction on n ≥ 1, that

(3) Γ(n) = (n− 1)! for n ≥ 1,

where we have adopted the convention that 0! = 1. Evaluation of Γ(γ) for non-integer γ’s is more
challenging. For example,

Γ
(

1
2

)
=

∫ ∞
0

t−
1
2 e−t dt

τ=(2t)
1
2

= 2
1
2

∫ ∞
0

e−
τ2
2 dτ = 2−

1
2

∫ ∞
−∞

e−
τ2
2 dτ,

and (∫ ∞
−∞

e−
τ2
2 dτ

)2

=
∫∫
R2

e−
x2+y2

2 dxdy =
∫ 2π

0

(∫ ∞
0

re−
r2
2 dr

)
dθ = 2π.

Hence,

(4)
∫ ∞
−∞

e−
t2
2 dt =

√
2π and Γ

(
1
2

)
=
√

π.

Random Variables: We say that f : R −→ [0,∞) is a probability density if
∫∞
−∞ f(x) dx = 1. Given

a probability density f and −∞ ≤ a < b ≤ ∞, we say that the random variable X has density f if
the probability P(a ≤ X ≤ b) that X lies in the interval [a, b] is given by

∫ b

a
f(x) dx. More generally,

if ϕ : R −→ R and X has density f , the expected value E[ϕ(X)] of the random variable ϕ(X) is given
by

∫∞
−∞ ϕ(x)f(x) dx. Note that P(a ≤ X ≤ b) is the expected value of 1[a,b](X), where 1[a,b](x) equals

1 or 0 depending on whether x is or is not in the interval [a, b].
Two important quantities associated with a random variable x are its expectation value E[X] and

its variance

(5) Var(X) ≡ E
[
(X − E[X])2

]
= E[X2]− E[X]2,

where the last equality is a consequence of

E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E[X2]− 2E[X]2 + E[X]2.
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The expected value of X should be thought of as the most typical value of X, and its variance is a
measure of the amount by which X differs from its expected value. When X has density f ,

(6)

E[X] =
∫ ∞
−∞

xf(x) dx and

Var(X) =
∫ ∞
−∞

(
x− E[X]

)2
f(x) dx =

∫ ∞
−∞

x2f(x) dx−
(∫ ∞
−∞

xf(x) dx

)2

.

An important observation, known as Chebychev’s inequality, is that

(7) P
(
|X − E[X]| ≥ R

)
≤ R−2Var(X).

To prove (7), observe that

P
(
|X − E[X]| ≥ R

)
= E

[
1[R,∞)

(∣∣X − E[X]
∣∣)] ≤ E

[
(X − E[X])2

R2
1[R,∞)

(∣∣X − E[X]
∣∣)]

≤ E
[
(X − E[X])2

R2

]
=

Var(X)
R2

.

Gamma and Normal Random Variables: Clearly, for each γ > 0, the function

fγ(x) =
{

Γ(γ)−1xγ−1e−x if x > 0
0 if x ≤ 0

is a probability density. A random variable for which fγ is the density function is said to be a γ-Gamma
random variable. If Xγ is such a random variable, then (cf. (2))

E[Xγ ] =
1

Γ(γ)

∫ ∞
0

xγe−x dx =
Γ(γ + 1)

Γ(γ)
= γ,

and similarly

E[X2
γ ] =

Γ(γ + 2)
Γ(γ)

=
(γ + 1)Γ(γ + 1)

Γ(γ)
= (γ + 1)γ.

Hence,

(8) E[Xγ ] = γ = Var(Xγ).

In particular,

X̄γ ≡
Xγ − γ

γ
1
2

=⇒ E[X̄γ ] = 0 and Var(X̄γ) = 1.

Next, by the first calculation in (4), we see that g(x) = (2π)−
1
2 e−

x2
2 is a probability density. In fact,

g may be the most important probability density function, an assertion which is reflected in the fact
that a random variable with density g is called a standard normal random variable. The origin of its
importance is a general result, known as the Central Limit Theorem, which says that, with remarkable
frequency, a standard normal random variable will be a good approximation for any random variables
which has expectation value 0 and variance 1. (In Exercise 3 below, you will be asked to verify,
among other things, that 0 and 1 are the expectation value and variance of a standard normal random
variable.) In the present setting, the central limit theorem says that, for any −∞ < a < b < ∞,

(9)
lim

γ→∞

1
Γ(γ)

∫ γ+γ
1
2 b

γ+γ
1
2 a

tγ−1e−t dt = lim
γ→∞

P
(
a ≤ X̄γ ≤ b

)
= P

(
a ≤ Y ≤ b) = (2π)−

1
2

∫ b

a

e−
x2
2 dx,

where Y is a standard normal random variable. The rest of this lecture will be devoted to proving (9),
and, along the way, we will give a proof of Stirling’s formula (cf. (11) below).
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Stirling’s Formula: We begin by noting that, by (7), for R > 0 and γ > R2,

1− 1
R2

≤ P
(
−R ≤ X̄γ ≤ R

)
≤ 1

and

P
(
−R ≤ X̄γ ≤ R

)
= P

(
γ − γ

1
2 R ≤ Xγ ≤ γ + γ

1
2 R

)
=

1
Γ(γ)

∫ γ+γ
1
2 R

γ−γ
1
2 R

tγ−1e−t dt

=
e−γ

Γ(γ)

∫ γ
1
2 R

−γ
1
2 R

(γ + t)γ−1e−t dt =
γγ−1e−γ

Γ(γ)

∫ γ
1
2 R

−γ
1
2 R

(1 + γ−1t)γ−1e−t dt

=
γγ− 1

2 e−γ

Γ(γ)

∫ R

−R

(1 + γ−
1
2 t)γ−1e−γ

1
2 t dt.

Hence, if

S(γ) ≡ γγ− 1
2 e−γ

Γ(γ)
,

then, for any 0 < R ≤ γ
1
2 ,

(10) 1− 1
R2

≤ S(γ)
∫ R

−R

(
1 + γ−

1
2 t

)γ−1
e−γ

1
2 t dt ≤ 1.

To complete the derivation of Stirling’s formula starting from (10), use Taylor’s theorem to see that

(11) log(1 + x) = x− x2

2
+ E(x) where 0 ≤ E(x)

x3
≤ 1 for 0 < |x| ≤ 2

3
.

Hence, for R ≤ 2γ
1
2

3 ,(
1 + γ−

1
2 t

)γ
e−γ

1
2 t = exp

[
γ log

(
1 + γ−

1
2 t

)
− γ

1
2 t

]
= exp

[
− t2

2
+ γE

(
γ−

1
2 t

)]
,

and so (cf. (4))∫ R

−R

(
1 + γ−

1
2 t

)γ−1
e−γ

1
2 t dt ≤

(
1− γ−

1
2 R

)−1
eγ−

1
2 R3

∫ R

−R

e−
t2
2 dt ≤

√
2π

(
1− γ−

1
2 R

)−1
eγ−

1
2 R3

and ∫ R

−R

(
1 + γ−

1
2 t

)γ−1
e−γ

1
2 t dt ≥

(
1 + γ−

1
2 R

)−1
e−γ−

1
2 R3

∫ R

−R

e−
t2
2 dt ≥

√
2π

1−R−2

1 + γ−
1
2 R

e−γ−
1
2 R3

,

since, by (7),
1√
2π

∫ R

−R

e−
t2
2 dt = P

(
|Y | ≤ R

)
= 1− P

(
|Y | ≥ R

)
≥ 1−R−2.

After plugging these into (10), we arrive at(
1−R−2

)(
1− γ−

1
2 R

)
e−γ−

1
2 R3

≤
√

2πS(γ) ≤
(
1−R−2

)−1(1 + γ−
1
2 R

)
eγ−

1
2 R3

for all R ≤ 2γ
1
2

3 . In particular, by taking R = γ
1
9 and letting γ →∞, we come to the conclusion that

(12) lim
γ→∞

√
2π
γ

(
γ
e

)γ

Γ(γ)
= 1,

which is Stirling’s formula, although his formula is usually expressed as the asymptotic formula

(11’) Γ(γ) ∼
√

2π

γ

(γ

e

)γ

,

whose meaning is that ratio limit (12) holds.
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The Central Limit Theorem: Given (12), it is now an easy matter to verify the Central Limit
Theorem for the random variables {X̄γ : γ > 0}. Namely, given −∞ < a < b < ∞ and γ > (a−)2,
where a− ≡ max{−a, 0} is the negative part of a, we can proceed in precisely the same way as we did
in the first step of the preceding section to get

P
(
a ≤ X̄γ ≤ b

)
=

√
2π
γ

(
γ
e

)γ

Γ(γ)
1√
2π

∫ b

a

(
1 + γ−

1
2 t

)γ−1
e−

t2
2 +γE(γ−

1
2 t) dt.

Hence, by (11) and (12),

P
(
a ≤ X̄γ ≤ b

)
−→ 1√

2π

∫ b

a

e−
t2
2 dt,

which is a special case of the Central Limit Theorem alluded to earlier.

Exercise 1: Most applications of Stirling’s formula are to cases in which γ = n is a positive integer.
As an application of (3) and (11’), we know that

n! ∼
√

2π

n + 1

(
n + 1

e

)n+1

.

Starting from this, show that
n! ∼

√
2πn

(n

e

)n

,

which is the most familiar form in which Stirling’s formula appears.

Exercise 2: Starting from the second part of (4), show that

Γ
(

2n + 1
2

)
=
√

π
∏n−1

m=0(2m + 1)
2n

for n ≥ 1.

Exercise 3: Show that

1√
2π

∫ ∞
−∞

x2n+1e−
x2
2 dx = 0 for all n ≥ 0

1√
2π

∫ ∞
−∞

x2ne−
x2
2 dx =

{
1 if n = 0∏n−1

m=0(2m + 1) if n ≥ 1.
.


