The Central Limit Theorem, Stirling’s Formula, and All That

Euler’s Gamma Function: For v > 0, set
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Using integration by parts, one has
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and therefore

(2) Iy +1) =T ().

In particular, because I'(1) = 1 and I'(n + 1) = nI'(n), it follows, by induction on n > 1, that
(3) I'(n)=(n—-1)! forn>1,

where we have adopted the convention that 0! = 1. Evaluation of I'(y) for non-integer +’s is more
challenging. For example,
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Hence,
(4) / e Tdt=v2r and T(1)= 7.

Random Variables: We say that f: R — [0,00) is a probability density if ffooo f(x)dr =1. Given
a probability density f and —oo < a < b < 00, we say that the random variable X has density f if
the probability P(a < X < b) that X lies in the interval [a, b] is given by f; f(z)dx. More generally,
if o : R — R and X has density f, the expected value E[p(X)] of the random variable ¢(X) is given
by ffooo ¢(z) f(x) dz. Note that P(a < X < b) is the expected value of 1(, 3 (X), where 1, (z) equals
1 or 0 depending on whether x is or is not in the interval [a, b].

Two important quantities associated with a random variable x are its expectation value E[X] and
its wariance

(5) Var(X) = E[(X — E[X])?] = E[X?] — E[X]?,
where the last equality is a consequence of

E[(X — E[X])?] = E[X? - 2XE[X] + E[X]’] = E[X?] — 2E[X)* + E[X]*.
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The expected value of X should be thought of as the most typical value of X, and its variance is a
measure of the amount by which X differs from its expected value. When X has density f,

E[X] = /OO xf(x)dr and
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An important observation, known as Chebychev’s inequality, is that

(7) P(|X — E[X]| > R) < R™*Var(X).
To prove (7), observe that
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Gamma and Normal Random Variables: Clearly, for each v > 0, the function
T(y)~ta7te=® ifz >0
fy(z) = .
0 ifx<0

is a probability density. A random variable for which f, is the density function is said to be a y-Gamma
random variable. If X, is such a random variable, then (cf. (2))
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and similarly
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Hence,
(8) E[X,] =~ = Var(X,).
In particular,
X, = Xy =7 = E[X,]=0 and Var(X,)=1.

Next, by the first calculation in (4), we see that g(z) = (QW)_%e_é is a probability density. In fact,
g may be the most important probability density function, an assertion which is reflected in the fact
that a random variable with density ¢ is called a standard normal random variable. The origin of its
importance is a general result, known as the Central Limit Theorem, which says that, with remarkable
frequency, a standard normal random variable will be a good approximation for any random variables
which has expectation value 0 and variance 1. (In Exercise 3 below, you will be asked to verify,
among other things, that 0 and 1 are the expectation value and variance of a standard normal random
variable.) In the present setting, the central limit theorem says that, for any —oo < a < b < o0,

lim L /v+’y2bt7_1e_t dt = lim P(a < X, <)
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where Y is a standard normal random variable. The rest of this lecture will be devoted to proving (9),

and, along the way, we will give a proof of Stirling’s formula (cf. (11) below).



Stirling’s Formula: We begin by noting that, by (7), for R > 0 and v > R?,
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To complete the derivation of Stirling’s formula starting from (10), use Taylor’s theorem to see that
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Hence, for R < 2?,) ,
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(1 +y 2t)7677%t = exp [wlog(l Jrv*%t) —’y%t} = exp [—% +7E(77%t)],
and so (cf. (4))
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since, by (7),
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After plugging these into (10), we arrive at
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for all R < 2’% In particular, by taking R = 7% and letting v — 0o, we come to the conclusion that

(12) lim @ =1

= T(y) 7
which is Stirling’s formula, although his formula is usually expressed as the asymptotic formula

ar) ren~ 2 (2)

whose meaning is that ratio limit (12) holds.
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The Central Limit Theorem: Given (12), it is now an easy matter to verify the Central Limit
Theorem for the random variables {X, : v > 0}. Namely, given —c00 < a < b < oo and v > (a™)?,
where ¢~ = max{—a, 0} is the negative part of a, we can proceed in precisely the same way as we did
in the first step of the preceding section to get
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Hence, by (11) and (12),
_ 1 b +2
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which is a special case of the Central Limit Theorem alluded to earlier.

Exercise 1: Most applications of Stirling’s formula are to cases in which v = n is a positive integer.
As an application of (3) and (11’), we know that
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Starting from this, show that
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which is the most familiar form in which Stirling’s formula appears.

Exercise 2: Starting from the second part of (4), show that

for n > 1.
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Exercise 3: Show that
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