TOPICS IN FOURIER ANALYSIS

DANIEL W. STROOCK

0. INTRODUCTION

This is a set of notes that I wrote for a course that I intended to but did not give
at MIT during the spring semester of 2024. It covers a number of topics related to
the theory and application of Fourier analysis.

I begin in §1 by proving the L2-convergence of Fourier followed by elementary
results about pointwise convergence for sufficiently smooth periodic functions. In
§2 I discuss what goes wrong in the absence of periodicity, and in §3 I apply Fourier
series to compute the Riemann (¢ at odd integers using the Bernoulli polynomials,
which I also use to develop the Euler-Maclauren series. After comparing summa-
bility methods in §4, I give a brief introduction in §5 to the summability results of
Dirichlet, Feijér, and Lebesgue.

In section §6 I introduce the L!-Fourier transform, followed in §7 by the compu-
tation of the Fourier transforms of the Gauss and Poisson kernels and the derivation
and application of the Poisson summation formula. The L' version of the Fourier
inversion formula is proved in §8. In §§9-11 I make preparations for my treatment
in §12 of the L2-Fourier transform via Hermite functions. By the end of §12, I have
covered the key results in that theory: Parseval’s identity and the Fourier inversion
formula.

In §13 I introduce the test function space on which Laurent Schwartz based his
theory of tempered distributions. As was the case in my treatment of the L2-Fourier
transform, Hermite functions play a central role here. In §14 I give the definition of
and do a few computations with tempered distributions, and in §15 I show how to
extend continuous operations on the test function space as continuous operations
on tempered distributions.

In §§1-15 I have restricted my results to the one dimensional setting, and it is only
in §16 that I describe what has to be done to extend those results to more than one
dimension. Once I have done so, in §17 I introduce the weak topology on the space
of Borel probability on RY, and in §18 I show that there is an intimate relationship
between that topology and Fourier analysis. The results in §18 are combined with
those in §14 to derive in §19 the Lévy—Khinchine formula for infinitely divisible
probability measures.

The rest of these notes is devoted to the theory of singular integral operators.
After a brief attempt in §20 to provide motivation, in §21 I derive the LP bound-
edness of the Hilbert transform when p is an even integer, and in §22 I prove the
Riesz—Thorin interpolation theory in order the extend that result to all p € (1, 00).
Finally, in §23 I use Calderon and Zygmund’s method of rotations to prove L?
boundedness of odd Calderon-Zygmund kernels.

In so far as possible, I have tried to avoid the use of unfamiliar results, but I
am well aware that what is familiar to some may be unfamiliar to others. At a
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minimum, the reader is expected to had a rigorous course in Lebesgue integration
theory. In addition, I have assumed some comfort with the ideas of elementary func-
tional analysis, especially Hilbert spaces. Other than that, the only prerequisites
are an interest in mathematics and a willingness to do computations.

1. BAsic THEORY OF FOURIER SERIES

Set ¢, (z) = €™ for m € Z and x € R, and observe that {e,, : m € Z} is an
orthonormal family in L2(>\[071); C).! Even though it involves an abuse of notation,
we will use (¢, em)r2(x.,);c) to denote f[0,1) @(y)e—m(y) dy for o € L'(Ap1); C).

Given a function ¢ : [0,1) — C, define its periodic extension ¢ : R — C
by ¢(z) = ¢(z — |z]), where |#] = max{n € Z : « > n}. Notice that if ¢ €
Ll()\[oﬁl);(C), then

/ o(x)de = / P(z) dx for all a € R.
[0,1) [a,a+1)

Similarly,

/ P(—x)dx = / () d.
[0,1) [0,1)

For bounded, continuous functions ¢ and % on [0, 1), define
pv) = [ oy i
and use the preceding to check that
v = [ )y =)

Finally, by the continuous version of Minkowski’s inequality,?

1% Yl Le(xg,1y10) < NellLr ()0 [Pl L (Ao 150) A NPl e (30,150 121 L1 (A0 150
for any p € [1,00). Hence, for each p € [1,00), (¢,%) ~» ¢ * ¢ has a unique
continuous extension as a map bilinear map from L*(Xjg 1); C) x LP(A[p1); C) into
LP(Ajo.19; ©), and
(1.1) [l * 1/’||LP(,\[0,1);C) < H‘PHLl(A[Oyl);C)||7/}||LP(/\[0‘1>;<C)

continues to hold.

Theorem 1.1. If p € LP (A[O,l];(C) for some p € [1,00), then

lim

1 Y — Z Tlm‘ (307 em)Lz()\[Oyl);C)em

mEeZ

and, if ¢ € C([0,1];C) satisfies p(0) = (1), then®

L (Xp,1];C)

=0.

lim

S e = Z T‘ml(% °M)L2(,\[0,1);<C)em

mEZ

u

LFor a measure space (E,F, u) and p € [1,00], LP(p; C) is the associated Lebesgue space. For
a Borel measurable subset S C RV, \g is the Lebesgue’s measure resticted to S.

2If ¢ € LP(y; C), then llell e (uscy is its LP-norm.

3|| - |l is the uniform (i.e., supremum norm).
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Proof. Define
pr(z) = Z rim™le,, (z) for r € [0,1) and z € [0,1).

meEZ

Clearly fol pr(x)dx =1, p.(—z) = pr(z), and P, is continuous. In addition,

1 re_1(z) 1—r? 11—

r = = = fi 0,1),
pr(2) l—rel(x)+1—re,1(x) [1—rei(x)]2  1—2rcos2mx+r? orre[0,1)
and so p, > 0.

Obviously,
D7 Prem) a0 (@) = Prox (@) = /[O y pr(y)@(z +y) dy
meZ »

since p, is even. Now suppose that ¢ € C([0,1] : C) with ¢(0) = ¢(1). Then, since
lim, ~ f; pr(y)dy = 0 for each 6 € (0,1), it is easy to check that

lim sup
/1 2€00,1)

1
/0 (p(z +y)dy — ()

< wy(9),

where w,, is the modulus of continuity of ¢. Thus the second part of the theorem
has been proved.
To prove the first part, let ¢ € LP()[g,1); C), and choose choose a sequence {y, :

k> 1} € C([0,1];C) which satisfy ¢5,(0) = ¢ (1) and [[¢ — @rllLe(ag.c) — 0 as
k — oo. Then, for each k,
[pr % — 90||LP(A[0,1];<C)
<lpr * (¢ = @)l Lr(rony0) + 1Pr * 0k — @kl Lr (3o 1y:0) + 19k — @llLr(roy:0)s
and so, by (1.1), for all k.
Ty [Pr * @ = @llLr(ro.1:0) < 2l — PllLe(rp.:0)-
Finally, let k£ — co. (I

Theorem 1.2. {e¢,, : m € Z} is an orthonormal basis in LQ()\[OJ);(C), and so, for
each ¢ € L2()\[071); C),

(1.2) > (@rem) L2 (A0 em = im. > (@rem) L (pa0) = ¢

mEZ |m|<n

where the convergence is in LQ()\[OJ); C). In addition, for all p,¢ € LQ()\[OJ);(C),

(1) 220001y0) = D (05 €m) 22(3p0.1,:0) (¥ €m) [2(A(0.1):C)"
MmeEZL

Proof. 1t suffices to check the first statement, and to do so all we need to know is
that (¢, em)Lg(,\[o)l);C) = 0 for all m € Z implies ¢ = 0 for a set of ¢’s which is dense
in L? (A0,1); C). But, by Theorem 1.1, we know this for continuous ¢’s satisfying
©(0) = ¢(1), and these are dense in L*(Ajg 1); C). O

Equation (1.2) is known as Parseval’s identity for Fourier series.
Define the partial sum S, p = Z\m|§n(% em)Lz(,\[O,l);c)em.
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Corollary 1.3. If ¢ € C([0,1];C) and

Z |(§07 em)LQ(k[o,1)§C)| < 00,
m#0

then the series
Z (@7 em)L2 ()\[0)1);@) Cm (‘r)
meZ

is uniformly absolutely convergent to ¢. In fact,

|| Sn () — <P||u < Z (e, em)LQ(A[O’l);C)|'

[m|>n

Proof. That the series if uniformly absolutely convergent is obvious. To see that
it must be converging to ¢, let ¥ be uniform limit of {S,¢ : n > 0}. Then ¥ is
continuous and, because ¢ is the Lz()\[071); C) limit of this series, ¥ = ¢ A[p,1j-almost
everywhere, which, since both are continues, means that they are equal everywhere.
Given these statements, the final estimate is trivial. O

Lemma 1.4. Let £ > 1 and assume that ¢ € C*([0,1]; C) satisfies o) (0) = o) (1)
for0<Ek<{—1. Then

7

¢
) (30(5), em)L2()\[0’1);C) for m #£ 0.

Proof. Clearly it suffices that prove the result when ¢ = 1. To do so, use integration
by parts and the condition ¢(0) = (1) to check that

/w(y)efm@)dy: ! /w’(y)efmw)dy.
0 0

—12mm

(<P, em)L2(A[0,1);C) = (27rm

O

As a consequence of Lemma 1.4, we see that if ¢ € C*(]0, 1]; C) satisfies ¢(0) =
(1), then

/
Z |(g0, em)L2(>\[0,l);C)| < Z }(‘P 7em)L2(A[0Y1);C)}

27t|m)|
[m|>n |m|>n
1 : " |2 701y ;)
<— 12 -2 ! o) < 2D
< 27r< mz;nm ) Ill2ovn 0 < =5 5
Hence, by Corollary 1.3,
% [lu
Sn - u S . 1-
[1Sne — ¢l w(2n)}

Exercise 1.1. Prove the Riemann—Lebesgue lemma, which is the statement that
hmn—wo((ﬁv en)L2(>\[0)1>;C) = 0 for all TS Ll()\[QJ);C).
Exercise 1.2. Let ¢ be a Lipschitz continuous function satisfying ¢(0) = ¢(1),

and show that
lllLip
—_

m(2n)2

Hint: Introduce the functions ¢y = pLxp.
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2. GIBBS PHENOMENON

Here we will examine what can be said for a ¢ € C([0, 1]; C) that is not periodic.
For example, consider the function ¢(z) = z for x € [0, 1]. Clearly

1
(@sem)L2(rg1y:0) = 5 for m #0,

2mm
and so
1 1 o~ sin2mwmz
Sn =5 - )
(x) 2 7 Z m
m=1
where S,, = S,p. Now set
D, () = Z sin 2wkx
k=1

Then ®,,(z) is the imaginary part of

i (o) = e1() L fm@) _ (e1(x) = empr () (1 — e_1(2))

1—e(z) 2(1 — cos2mx)

e1(z) — 1 — ey + e ()
2(1 — cos 2mx) ’

which is
sin 27rx — sin 27r(m + 1)z + sin 2rma
2(1 — cos 27x)

After using some of trigonometric identities, one sees that

cos Tz sin® Tmax

(2.1) D, (r) = ———— + sinTmax cosTma.
sinx
In particular, [®,,(z)] < 3(1 Vv ).
Summing by parts, one sees that
1 ®,(x) = Pu(x)
Sula) = 5 -~ N
(z) 2 ™ mzz:l am(m + 1)
which means that
6
(2.2) [Sul@) —a] < (2 v 125) -

In particular, S, (x) is converging to « uniformly on compact subsets of (0,1).
To see what happens for x near to 0, consider x = % for £ > 1, and observe

that
sin T 1 sin T sin mkx sin x
E n_o—_ E T — / dr — / dzx.
m n n 0,1 T [0,7k] T

m=1 m=1 n

Hence, since (cf. (7.11) in §7)

lim
R—o0 [0,R] T
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Sn(i) _ _l lim sinx

2n
T R—o0 [7k,R] T

(=Pt l/ cosz (—1)k+1 +E/ sinxd
B 7T2k5 ™ [rk,00) $2 v 7T2k [rk,00) (,C?’ v

as n — 0o. Therefore

where
sinx

—dr € (=1,1)

o= (-1F2(eb? [ k

and lim,,_, o €, (k) = O This shows that, for large n, S, (—n) is at least ﬁ if kis
odd and at most — 27,2 5 if £ is even. This sort of oscillatory behavior is known as
Gibbs’s phenomenon, although Gibbs seems not to have been the first to discover
it.

Exercise 2.1. By considering Sn(%) and using equations (2.1) and (2.2), show
that

=8y —F——.
; 40+1) 4£ +3)
Exercise 2.2. Show that if ¢ € C 1( ) then,

8¢l 2 n -
sup |Snp(x) — p(x)| < Blefllzzovn) )

1
2
r€n~ 3 1—n 2] n

3. BERNOULLI POLYNOMIALS
Theorem 3.1. Define {b; : £ > 0} C R inductively by

14

bo = 1 and b :Z%
0 041 2 TEDI
and set
¢
(3.1) :Z ‘ Rk for € > 0.

k=0
Then {By : £ > 0} are the one and only functions satisfying
(3.2) By =1, Bj,; = —By for { >0, and By(1) = By(0) for £ > 2.

Proof. To see that there is at most one set of functions satisfying (3.2), let {Dy :
£ > 0} be the set of differences between two solutions, and set ¢ = inf{¢: D, # 0}.
Then ¢ > 1, and, if ¢ < oo, then Dy is a constant a and there is a b € R such that
Dyyi(z) = —ax +b. But —a+b = Dyy1(1) = Dp41(0) = b, and therefore a = 0.
Since this would mean that Dy, = —Dj, = 0, no such £ can exist.
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By definition, By = 1, and it is easy to check that By, , = —B. To verify the
periodicity property, note that

£+2
(

—1)*bgyo
Beia(1) = Beya(0) = ) %
k=1 ’
e+2

b b
:—le—i—Z HQk——burf—Z: k+2€k:0

The functions {By : £ > 0} in (3.1) are known as Bernoulli polynomials.

Theorem 3.2. For ¢ > 2 and z € [0,1],

(3.3) Bia)= 5 Y n(r)

In particular, begr1 = 0 and

— 1
(34) Zmi €+122€ 1 2€be

for£>1.

Proof. First observe that, for £ > 1,

1
(Bg, eO)LQ(A[O,lﬁ(C) = —/O BE_H(Z‘) dr = B[+1(O) — Bg_;,_l(l) =0

and, for £ > 2 and n # 0,

2
(Be, eTL)LZ()\[o,l];C) = % (Beih e71)142@[0,1];((:)

and therefore

2mn\ 1 ! —?
(T) (Bé, en)Lz()\[o,l]Q(C) = (Bh e”)LQ(A[O,l];(C) = /0 (% - I)e_n(m) dx = %

Hence

—qf

(Bf’ e") L2(A\01,C) (2mn)?

for ¢ > 2 and n # 0, which completes the proof of (3.3). Finally, because by = B,(0),
it is clear from (3.3) that bysy1 = 0 and that (3.4) holds. O

Besides (3.4), the Bernoulli polynomials play a critical role in what is known as
the Fuler—Maclauren formula:

[ f@yda =3 fom)

(3.5) , m=l for £ > 1,
== (D) - £ 0) + [ Bl
k=1



8 DANIEL W. STROOCK

where By is the periodic extension of By, | [0,1) to R. To prove (3.5), first note that

[ s@rdn =S s =3 [ (fte) - s d

n

:—Z/ml(z—(m—l))f'(x)dx

m=1
= i (—bl(f(m) —f(m—1)) + /mm1 By(z — (m—1))f (x) dx)

m=1

= <bi(f(n) = FO) + [ Brla)f'(a) da.
0
Hence, (3.5) holds when ¢ = 1. Next observe that for any ¢ > 1,

/n Bz(flﬁ) = n/ Bg(.’b) d{,C = n(Bg+1(1) — BZ+1(O)) = 07
0 0

and therefore

Therefore, (3.5) for ¢ implies (3.5) for £ + 1.
Theorem 3.3. If £ > 1 and ¢ € C’Z([O, 1];C), then

Proof. Take f(x) = cp(%), apply (3.5) to f, and make a simple change of variables.
O

By Schwarz’s inequality,

1
/0 By(nz)Y (z) dx

1
1 2
§</ Be(nx)de) 16 22 x50
0

1 n
- 1 .
| Bt e = & [ B do = 1Bl ey

Further, by (1.2) and (3.3),

and

1 1
2 —
I1Bdli0ui0) = ger 2.
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Hence, by (3.6),

n

1 1 ‘o _
| et@rdr =137 o)+ 30 (W - 00)
m=1 k=1
_ VXD

(27n)t

(3.7)

‘|¢(€)|‘L2(>\01 C)-

From (3.7) one sees that if, for some n > 1,

(3.8) lim ||<P(€) ||L2(A[0,1];<C)

(=00 (27n)* =5

then

n

1 4
/O plz) dr — % D () =-Jim > %(w(’“’”(l) — o*1(0)).
m=1 k=1

In particular, if ¢ € C’OO([(), 1};(C) and ¥ is periodic for all k > 0, then (3.8)
implies that

a result that has a much simpler derivation (cf. Exercise 3.1 below).

More generally, because |cp(k’1)(1) — =10 )| < ||g0(k)||Lz(A[0’1];«;) and |bg| <
1
(27‘-)197

implies that

(3.9) /0 p(z)dx — % Z o) =~ Z %((p(kfl)(l) — ¢(k*1)(0))7

where the series is absolutely convergent.

Exercise 3.1. Suppose that ¢ and all its derivatives are periodic on [0, 1], and
show that

elggo @)t =0 < (o, em)L?(A[o,l];C) =0if jm| >n
= ¥= Z (90’ em)Lz()‘[o,ﬂ?C)em
Im|<n

Next, show that
1 n
- Z em () =
Jj=1

for 1 < |m| < n, and thereby arrive at the conclusion reached above.
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4. COMPARING SUMMABILITY METHODS

In preparation for the following section, we will review here basic definitions and
results for different notions of convergence of a series.
Given a sequence {a,, : m > 1} C C, set

n 1 n
S, = Zam andAn:ﬁmZ:lSm,

m=1

and when Tim, o0 |am|™ < 1, set
o0
A(r) = Z amr™ ! for r €[0,1).
m=1

The S,,’s are called the partial sums of the corresponding series, the A,’s are its
Césaro means, and r ~» A(r) is its Abel function. The series is said to be summable
to s € Cif s = lim,,_,o0 Sp, it is Césaro summable to s € C if lim,,_, o, A, = s, and
it is Abel summable to s € C if s = lim, ~ A(r)

Here we will show that

summable to s => Césaro summable to s —

lim G _ 0 and Abel summable to s.
m—oo M

The Exercise 4.1 below outlines a proof that neither implication can be reversed.
The first implication is trivial. To prove the second, assume Césaro summability,
and note that

a A,
A=A+ 0.
n n

Next, write

am = 243 — Ay ifm=2
mA, —2(m—1D)An_1+(m—2)A4,_2 ifm >3,

and therefore

A(r) = Z mrm A, — 2 Z (m—1)r™ A, 1+ Z (m—2)r™ 1A, 5
m=1 m=2 m=3
= Z (rm_l —2r’™ 4+ rm+1)mAm =(1- r)2 Z mrm A,
m=1 m=1

Now observe that

n

n 1 —pn 1— 9" — 1— n—1
S et =, 3 pm =g i ool o
m=1

1—7r (1-7r)2

m=0

Hence,

(1—r)2 Zmrmfl <1—7"and (1 —7)? Zmrmfl =1
1 1
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Assume that A, — s, and, given € > 0, choose n so that |A,, — s| < e for m > n.
Then

’A(r) — s‘ =(1—-r)? Z mr™ (A, —s)| < (1 —7)? Z mr™ A, — 8| + €
m=1 m=1

= U=, ooy n = sl +e

and therefore lim, 1 |A(r) — s| <.

Exercise 4.1. Show that
1

(i) the series for {(—1)"~!: m > 1} is Césaro summable to 5 but not summable,

(ii) the series for {(—=1)™'m : m > 1} is Abel summable to 1 but not Césaro

summable. In fact, show that A, =0 and Ag,11 = 27:1':11 — %

5. SOME REFINEMENTS

In this section we will apply the notions of summability discussed in the previous
section to Fourier series. Observe that we have already considered Abel summability
in §1.

To examine further when the series is summable, introduce the function

D,(z) = Z em () for x € R.
|m|<n

Then D,,, which is often called the Dirichlet kernel, is an even, periodic function
with period 1, fol D, (z)dzr =1, and S,» = D, * ¢. In addition

2n - -
1-— €2n+1(x) e—wr(2n+1)1 _ e”r(2n+1)l
Dn =t m = ¢t_n =
(z) =e_n(x) mZ:Oe (@) = e—n(2)—— 0 (2) —
sinw(2n + 1)x
N sin x ’

Hence,
Pty —wlx) .
Snp(x) — @z :/ T Zsinw(2n + 1)y dy.
p(r) — () on sy ( )
Now suppose that ¢ is an R-valued function for which ¢(0) = ¢(1), and assume
that ¢ € C*([0,1];C)* is H6lder continuous of order o € (0,1). Set

viy)=e sin my '

Then ¢ € L' (Ajg1); C) and Sp¢(z) — ¢(z) is the imaginary part of

[0,1] w(y)ei2n+1(y) it = (w7 eZnil)Lz()‘[o,l)%C)’

and so, by the Riemann-Lebesgue lemma (cf. Exercise 1.1), Spe(x) — ¢(z) as
n — co. The preceding shows that if ¢ € C*([0,1];C) satisfies ¢(0) = ¢(1), then
Sn —  pointwise, but it does not provide a rate of convergence or even say if
the convergence is uniform.

4C°‘(E; C) space of C-valued functions on a metric space E which are uniformly Holder con-
tinuous of order « € (0, 1).
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Césaro summability of Fourier series was initiated by Fejér. Obviously,

n—1

1
- Sm = Fn )
- mZ::O " %
where
B 1 n—1
EM@:5§:m@y
m=0

The function F,, is called the Fejér kernel, and it is clear that F), is a continuous,
even function of period 1 for which f[o 1y Fn(@) dz = 1. In addition, nF,(z)sinmz
is the imaginary part of

n—1 1m2nx 12TNnT
1T _ 1wm1_e _Z(l_e )
e eom(x) =€ S = -
1 — e¥7z 2sinx
m=0
and so
. 2
1 — cos2mnx 1 /sinmnzx
(5.1) F.(2) = ——— 5 = — - .
2nsin® Tx n \ sinmx

Proceeding as in the proof of Theorem 1.1, one sees that

Fy o+ p(z) — () = /[ B y) — o) e 0

uniformly if ¢ is continuous and satisfies ¢(1) = ¢(0). Equivalently,

1 n—1

E Z Sm(p - ¥
m=0

It turns out that one can do much better.

lim =0.

n—oo

u

Theorem 5.1. Let ¢ : [—%, %] — C be a measurable function, let x € [— , % ,
assume that there is a C € (0,00) and o € (0,1] such that |p(x+y) —p(x)] < Cly|®
forye [—%,%] Forn>5

4(n170¢_41704) 172_(1_*_(,)

2 N
an“‘+ ™ —a)n + 3= a)n ZfOéE(O,l)
(52) ‘Fn*%’(x) —(,0(3))‘ < C{(llg—;_ ) 4log & “(1=a) 2(1+e)

16n TF2TL(1—4Q) ZfOé =1
Hence
lim n®|F, * p(z) — ¢(z)| < 2 + 4 if o € (0,1)
n—o00 T 1+« 772(1—0()
and
T " |Fo () — p(@)] < = ifa=1
n—oc logn n*e v - w2 o

Proof. Without loss in generality, I will assume that C' = 1.
The proof turns on the estimates

3

for all y € [f%, %}
(5.3) F,(y) < 2 when [y| € (0, §]
when [y| € [§, 3]
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That F (y) < n is clear from the fact that || D,,||s < 1 and therefore that nF, (y) <

QZm 1m+n = n?. To see second inequality, note that cosmt > 2-% when
ly| € (0, %] and therefore that

my|
|siny| = / costdt > 2_%7r|y\.
0

As for F,,(y) < 2 when |y| € [, 1], simply remember that |sin7y| > 2% for such
y’s.
1
Assume that « € (0,1). Because [?, F,(y) =1
2

By () — ()] < / Fu(y)| (e +9) — o()| dy

1
2

« o— 2 (3
<n/ ly| dy+—/ ly|* 2 dy + = / ly|* dy
0 1<yl

3
2 4(ntme —4lmey 127 (0+e)
< + +
(1+ a)n> 7r2(1 —a)n 2¢(1+ a)n
If @ = 1, the top line in (5.2) holds for all a € (0,1), and therefore one need
only examine what happens as « 1. Clearly ﬁ N\ 1 and 122 0 N 16n

n 20 ( 1+a)n
as a ' 1. To handle the remaining term, note that it can be written as

2 () -
m2n 11—«

which decreases to 22 gn4 as a 1. O

One could of course have derived the estimate when a = 1 directly by the same
argument as was used when o < 1. However, the derivation given has the advantage
that it shows the estimates get stronger for all n > 5, not just asymptotically, as «
increases.

Obviously, results like those in Theorem 5.1 turn on the continuity properties of
©, properties that a generic element of Ll()\[o’l); C) will not possess. Nonetheless,
Lebesgue showed that every locally Ag-integrable ¢ does have a continuity property
at almost everywhere point. Namely, he showed that

h{r(l) / |p(x £ t) — p(x)|dt =0 for Ag-almost every z € R,
T T

and he used this fact to prove the following theorem.

Theorem 5.2. If ¢ € L' (/\[ (C) then

1
2

3
nlggo F, x p(x) = ¢(x) for Al-1 1y-almost every x € [0, 1].

Proof. Set . (y) = [p(x +y) — ()| and

[yl
D,(y) = m/o oz (sgn(y)t) dt.

By Lebesgue’s theorem, lim|,\ o ®,(y) = 0 for /\[_%,%]—almost every x € [—7, %]

=
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Let x be such a point. Then

0 bl
Furpla) = o@)| < [ Fuecwdy+ [ Flwes)dv
-3
We will show only that lim, . foé F.(y)p.(y)dy = 0 because the proof that
lim,, s o0 fi); F,(y)pz(y) dy = 0 is essentially the same.
2
Using our estimates for F,, in (5.3), one has

1 1 1
m 2

/ e dy = [ Fuly)paly) dy + / Fo(9) 00 () dy
0 0 =
" 2 (% 0.(y)
Sn/o Sﬁx(y)dy+n/711 Td?%

Since .
w

nA7 (pa:(y)dy:(bz(%%

the first term tends to 0. As for the second, use integration by parts to see that it
is dominated by

49, (1) . 4/%
1

n n

P4 (y)
Y2
Finally, given € > 0, choose § € (07 %) so that ®,(y) < e for 0 <y < 4. Then, for

n > %,

dy.

1

1 [23,(y) e (1 1 [% ®,(y) A
f/ dyg—/ fzdy—i—*/ 5 dy < 2+ )
1 nJjiry F) Yy

n 32 n on

and so

MBS

lim [ F,(y)e.(y) dy < 4de.

n—oo 0

O

Theorem 5.2 is a stark contrast to a famous example produced in 1926 by Kol-
mogorov® of a function in L! ()\[_%7%];((3) for which {S,¢(z) : n > 0} diverges
at every x. It is also interesting to compare it to more recent results by L. Car-
leson and R. Hunt. Namely, Carleson showed that S, — ¢ (a.e.,)\[_%é]) if
pelL? (A[—%é]? (C), and Hunt showed that the same is true for ¢ € LP ()\[_%7%]; C)
for p € (1,00).

Exercise 5.1. Show that
1
z
lim no‘/ F,(y)|y|* dy > 0 for a € (0,1)
n—o00 7%

and that

lim Fu(y)lyl dy > 0.
n—oo logn _%

5A.N. Kolmogorov, Une série de Fourier-Lebesgue divergente partout, C.R. 183 (1926),
pp. 1327-1328.
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Hence the rates given Theorem 5.1 are optimal.
Hint: If 0 < m < n — 1, show that
1 LAm+1 2m +1

F, > f <y < .
n(y) 2 2m2ny? BT Vs T,

6. THE L' FOURIER TRANSFORM

By an easy rescaling argument, one knows that, for any L € ZT and f €
C'([~L, L]; C) satistying f(~L) = f(L),

L

2rm(y—x)
oo | fly) da

m|<R

1 E ,2mm(y—2) .
f<w>=2L§ejZ/_Le 4 f(y)dy = Jim

1
R— o0 _L 2L |
Now suppose that f € C}(R;C). Then
T Zemyme) P
f@)=fim lm [ |37 d e f(y)dy.
Im|<R
Thus, if one can justify reversing the order in which the limits are taken, one would

have that

R— o

1 2T R g g
— L 7 —iéx &y
Jim 27T/%Re (/e f(y) dy) ds.

R
f(z) = lim ( /_ Re“fz”(’”—y) ds) fy)dy

In other words, there is reason to hope that, under suitable conditions on f,

(61) £o) = 5= [ @) de where (€)= [ @) dy.

The function f is called the Fourier transform of f, and our primary goal here
will be to find out in what sense (6.1) is true, first when f € L'(A\g;C) and then
when f € L?(Ag;C). However, we will begin with some computations involving f
that don’t require our knowing when (6.1) holds.

7. COMPUTATIONS AND APPLICATIONS OF L' FOURIER TRANSFORMS

If f € L'(\g;C), then it is clear that f is continuous and that

(7.1) I fll < IF1l £t (wsc) -
Lemma 7.1. If f € CY(R,C) N L*(\g;C) and f' € L*(\g;C), then
(7.2) F1(&) = —£f(©).

Proof. If f has compact support, then (7.2) is an easy application of integration by
parts. To prove it under the given conditions, choose a function n € C*° (R; [0, 1})
for which n(y) = 1 when y € [-1,1] and n(y) = 0 when y ¢ [—2,2], and set
fuw) =n(%)f(y). Then f, — f and f, — f" in L'(Ag;C) and so

F(&) = lim f(6) = =€ lim o (€) = —a&f ().
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As a consequence of Lemma 7.1, it is easy to prove the Riemann-Lebesgue lemma
in this context. Namely, (7.2) makes it clear for compactly support f € C*(R;C),
and (7.1) makes it clear that the set of f’s for which it is holds is closed in L!(Ag; C).

We next turn to the computation of f in two important cases.
2
Set gi(x) = (2mt)"2e~ T for (t,z) € (0,00) x R, and check that d,g,(z) =
192g,(x). Hence, for any ¢ € C, integration by parts leads to

2
at/ecrgt(x) dzr = %/ecz[)ﬁgt(w) dx = %/egxgt(z) dx.
Since
/eCIgt(x) dx = /eﬁ@gl(m) de — 1
as t \, 0,

In particular

—~ _g
(7.3) gi(§) =€ >
Equivalently, g; = (27”)% g1 and so
(74) (gt)/\ = 2’/Tgt.
Set py(x) = %ﬁ for (y,z) € (0,00) x R, and note that

/py(ac) dx = /pl(x) dx =1 for all y > 0.

In addition, because p,(z) is the real part of = with z = x 41y, (z,y) ~ py(z) is
harmonic. Thus, 92p, = — Epy, and so, by (7.2),

0y (6) = €5y ().
Thus, for each &,

—

py(€) = a(§)e" +b(g)e™,
where, since py(0) = 1, a(§) + b(§) = 1. Because |E(f\)| <1,&E>0 = a() =
0&b(6)=1and £ <0 = a(§) =1& b(&) = 0. Hence
(75) py(€) = e7VEl.
Here is an interesting application of equations (7.3) and (7.5). Since
ﬁ = /000 e HETY) gy — /000 efty2§2\t(§) dt
and (gfg\t)A = 27 qay,
™

o 2 1 o0 1 2 22
Zemvlel — 27r/ e gy (z) dt = 775/ tT2e W e wT (dt.
Yy 0 0

Thus, for z,y € (0, 00),

o 1 —oyx
(7.6) / e e T g =0 ,
0 Y

a computation which can also be done using a somewhat tricky change of variables.
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Theorem 7.2. (Poisson Sum) Let f € L*(\g;C) N C(R;C), and assume that
> ( sup. |f(z+n)| + |f<2m>|) <.
nez \z€[0,1]

Then

(7.7) > fn) =" f2mn).

nez ne”z

Proof. Define f(z) = > nez f(@ +mn). Then f is a continuous periodic function
with period 1, and

~ 1 A
(F0m) b2y 0 = 2o /0 €T 4 n) du = / e f (@) da = f(~2mm).

neL
Thus, Zmez\(ﬁ em)Lz(A[o,l];C)’ < 0o, and therefore
f2) =) f(=2mm)en(z) = Y f2rm)e (),
meZ mez
where the convergence of the series is absolute and uniform. By taking z = 0, (7.7)

follows. U

Equation (7.7) is known as the Poisson summation formula. Among its many
applications is the following.
When f = p,, (7.7) says that

y [ o A
Fr;ZyQ_FanZe fl_e_%yfcothwy,

nez
and so
1 mwcoth Ty
(7.8) Z 2 2
neZ Y- +n Y
for y > 0.

A famous application of (7.8) is Euler’s product formula:

(o9} I‘Q
(7.9) sinwr = 7x H <1 - W) .

To prove it, first observe that

1
2 4+ m?

1 5 5 1 z?
:%&Clog(x —l—m):ﬂ@gjlog(l—l—ﬁ) form #0

and that 7 coth 7y = 9, log(sinh 7y). Hence, by (7.8)
1 s z2 1 1 _
Ear 10g‘7£[1 (1 + ﬁ) + P = ;a/]‘ log(smhwx),

which means that

oo 2
0y log H (1 + %) = 0, log(z ™! sinh 7).

n=1
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Integrating both sides from 0 to x, one gets

sinh

o0 2
log x H (1 + %) = log(sinh 7z) — log 7™ = log —

which means that

72
(7.10) sinhma = 7z 1—[1 (1 + n2>
from which (7.9) follows by analytic continuation.
Another application of (7.5) is a proof® that

R sin éx

(7.11) lim

Am )= dx =sgn(§)m for £ #0.

We begin with the more or less trivial observation that

R R €IR
/ sinéx dx:sgn(f)/ sin €|z dx:sgn(f)/ sinz

—R X _R x —|¢|R xr

Thus, what we have to show is that

R .
. sinz
lim de =T. (*)
R—o0 R X

The first step in the proof (%), is to show that if

R .
9r(&y) = /_R ;51223; dz —s me ¥¢ for £ >0, ()
then (x) holds. Indeed,
R . .
sin & 9 | sin &z )
dr — <2 —————dx | <
[R ——dr—gr(§y)| <2y @ ™) S Emy,

and so (xx) implies (x).

The next step is to show that for each y > 0 there exists a continuous £ €
(0,00) — g(&,y) € C such that gr(§,y) — ¢(&,y) uniformly for £ compact
subsets of (0,00). To this end, note that

R . R (2 2
xsinéx 2 RcoséR / (y* — z%) cos&x
Jy) =2 ——dr==| ———>5 +2 P e
gR(E y) /(; x2+y2 -z 5( R2+y2 0 ($2+y2)2 z

2) cos £z
5/ w2+y) e

uniformly for £ in compacts subsets of (0, 00).
The final step is the identify g(&,y) as me~¥¢. For this purpose, observe that

B peie
a6 == [ o= ocfn(En)
where

R
fr(&y) = —I/ py(2)e® do — v
Y J-Rr Yy

6The most commonly given proof is based on contour integration and Cauchy’s theorem.
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Hence .
Frn) — fr(€) = / gr(t,y) dt,
£

and therefore
T n
- (67?/E - eiyn) = / g(ta y) dta
Yy 3

from which g(¢&,y) = me~¥¢ follows easily.

Exercise 7.1. Show that if f € L'(Ag;C) and fi(z) = ¢t~ f(t"'a), then fi(6) =
f(tg).

Exercise 7.2. S}lOW that if f € C?(R;C) N L'(\g;C) and both f’ and f” are in
L'(\g;C), then f € L'(\g;C).

Exercise 7.3. Using cosht =1+ % +O(t*) and sinht =t + % +O(t?), prove from
2

(7.8) that 30, L = =,

n1n2

Exercise 7.4. Show that

2 1 2
E efﬂytl =t2 E efﬂ'tﬂ7

neZ nez
a formula that plays an important role in the theory of Theta functions.
8. THE L' FOURIER INVERSION FORMULA

Here we will see to what extent (6.1) can be justified, and the idea is to use the
fact that we already know (cf. (7.4)) that it holds for g;. With this in mind, we
have, by Fubini’s theorem,

2mg 4 f(e) =2 [ 0)f (e = 9)dy =2 [ (o) f(a+ ) dy
- [@r i+ = 6@ ([eos@ryay)ac= [ 5 e fo

and so )
g f@) = 5= [ F e fe) ds
™
Let f € L'(Ag;C). If f is continuous at x, then lims g g¢ * f(z) = f(z), and so
1 t€2 s
4 —H et . . .
(8.1) f(z) = 5 }{1(1) e e T f(€)d¢ if f is continuous at x.
In particular
(8.2) =5 / §)de if f e L'(g; C).
More generally, for any f € L*(Ag;C), g; * f — f in L'(\g;C), and so
1 te A
(8.3) o e_Te_’fwf(f) d¢ — f(z) in L*(\g; C),
™

which can be thought of the Abel version of (6.1). As an immediate consequence,
we know that f =0 < f=0.
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Exercise 8.1. Show that if f € C?(R;C) N Ll(/\R,(C) and both f’ and f” are in
L'(\g; C), then f € L'(\g;C) and therefore f = L[ e e f(¢) de.

Exercise 8.2. Using Exercise 8.1, give another proof that p;(£) = el

Exercise 8.3. There is nothing sacrosanct about g; in producing formulas like
(8.1) and (8.3). Indeed, give a p € C(R,[0,00)) for which [ p(x)dz = 1, set
pi(x) = t71p(t~tx). Then it is well known that, as t \, 0, p; * f(z) — f(z)
if f € L'(\g;C) is continuous at z and that p; *x f — f in L'(\g;C) for any
f € L*(Ar;C). Now suppose that p € C*(R,[0,00)) and that p’ and p” are in
L'(\g;C), and show that

% /e*l&ﬁ(tg)f(f) d¢ — f(x) if f € L'(\g;C) is continuous at

and
1 R
7. e p(t€) f(€) d€ — f(x) in L*(Ag;C) for any f € L' (Ag;C).
Y8
9. THE ORNSTEIN-UHLENBECK SEMIGROUP
Set g,(z) = (2nt) "= IT and note that
00) [ 0o =00~ 1) = gurely — 2) and (o) = §0E0(o).

For (t,z,y) € (0,00) X R x R, define
p(t,x,y) = J1—e-t (y - 67%1')

= et =)o (GEET ) = e et

(9.2)

From the first part of (9.1) and the third equality in (9.2), we see that
[ots.emtcde =t [oroa(€- e t)gu(c— cha) de
= eéget,e—s (e%y - efgz) =p(s+t,x,y).
Hence p(t, z,y) satisfies the Chapman—Kolmogorov equation

93) oo+ tmy) = [ p(s,m,Op(t.E v) e,

In addition, using the second part of (9.1), one sees that

(9.4) Op(t, z,y) = Lop(t, x,y) where L, = %(8% — 20y,).
Next define

(9.5) Piplx) = / o(W)p(t, . ) dy

for ¢ € C(R;C) with at most exponential growth at oo, and use (9.3) to see that
{P; : t > 0} is a semigroup (i.e., Ps1y = Ps; o P;). In addition, use (9.4) to show
that
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After making the change of variable y — €2y, one sees that another expression for
P,y is

(9.7) th(x)=/w(e‘%y)get_1(y—x) dy:/gl(y)so((l—@_t)%yﬂ%) dy,

from which it is easy to see that P,pp — ¢ uniformly on compact subsets as ¢ ~\, 0.
Further, if p € [1,00), then, by Minkowski’s inequality,

1Pl < [onto) ( [17(@ = e+ )" d) dy = oo
and, as t \, 0,

[Pef — fllor(agso) < /m(y) (/|f((1 - €_t)%y+$) - f(ﬂﬁ)\pdy)E dr — 0

since )

2l fllurorer = ([17(0 = ety +a) - @) d) —o.
Therefore we know that

(9.8) 1P flle (i) < I flle(agsc) and tlg% | Pef = fllze(agsc) = 0

In particular, we have now shown that {P; : ¢ > 0} is a continuous contraction
semigroup, known as the Ornstein—Uhlenbeck semigroup, on LP(Ag;C) for each
p € [1,00).

Although {P;, : t > 0} is a continuous semigroup on the Lebesgue spaces
LP(\g; C), these are not the Lebesgue spaces on which it acts most naturally. In-
stead, one should consider its action on the spaces LP(-y; C), where ~y is the standard

Gauss measure y(dx) = (27‘(’)7%67§)\R(dm). The reason why is that

M)

¥
2

:r,2
e” Tp(t,z,y) =p(t,y,x)e” =,

which means that
(99) (307 Pt'I/J) L2(~;C) = (Pt907 ¢) L2(y;C)"

Hence, since P;1 =1,

/th dy = (¢, 1) o0y = /wdv-

At the same time, by Jensen’s inequality, | P[P < P;|p|”, and so,
/\th\p dy < /PtIsDIP dy = / o[ dry.
Thus,

(9.10) [PeellLe vy < [l@llpe(yic) for all p € [1,00).
In addition, if ¢ € Cb(R;C), then |[|Ppllu < [l¢llu and Py — ¢ pointwise as

t \, 0, and therefore, for each p € [1,00), || Pip — @[/ 1r(y;c) — 0 as t N\, 0. Finally,
if ¢ € LP(R;C), then there exists a sequence {¢, : n > 1} C Cp(R;C) such that
lim,, s o0 an - fHLT’("/;(C) =0, and
1Pee = @llLo(viey < 1Pl — on)llLr vy + 1 Pepn — @nllrr(yic) + llon — @llLe (o)
< 2llen — @llLe(vie) + 1Pepn — @nlle(ric)-
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Thus, after first letting ¢ \, 0 and then n — oo, we see that

(9.11) }1\% | Pip — @l Lr(yc) = 0 for all p € [1,00).

Summarizing, {P; : t > 0} is a continuous contraction semigroup on C,(R;C)
and on LP(vy; C) for each p € [1,00), and P, is self-adjoint on L?(vy; C).

Exercise 9.1. Show that

(912) ||90 - (90; 1)L2(7;C)||iz(,y;c) S H(PI”%%’W(C) for p e Cé (Rv C)
and that
(9.13) ||Pt¢ — (¥, I)LQ(’Y?C)HQL?(W;C) = €7t|}90 — (¢, l)LZ(v;C)H2L2(~,;<C)

for ¢ € L?(7y; C). The inequality in (9.12) is the Poincaré inequality for ~.

Hint: Note that if suffices to handle ¢ € CZ(R;C) for which (¢,1)r2(,,c) = 0.
Next, given such a ¢, show that

_t
(Pip) = e 2P’ and — 8/|Pipl|T2(ric) = 1(Pi0) 12 (:0) -
Use these to show that

2 _
_6‘5“Pt(‘0||%2(7;© = H(Pt‘p)/HLz('v;C) se tll(p/”%?(“/;(c)‘

10. HERMITE POLYNOMIALS
52 12 . . .
Define H,(z) = (—1)"e= d%e~z. Then H, is an nth order monic polynomial

known as the nth Hermite polynomial. Define the operator A, = x1 — 9, and note
that Ay H,, = H, 1, for which reason it is called the raising operator. Using this,
check that H,(—z) = (-1)"H, ().

Next note that if ¢, € C1(R;C) which together with their derivatives have at
most exponential growth, then

(10.1) (A+<'0’w)L2(7;C) - (¢’aw)L2(v;C)'
Hence, if 0 < m < n, then

m! in=m

(Hus Hn) a0y = (Ho 0" Hin) a0 = {0

Next, observe that if n > 1, then 0H,, € span{H,, : 0 < m < n}, and so

ifn>m.

n—l (6H H ) H,
OHn = z—:o m!
_ - (H"’Hm+1)L2(’Y;C)Hm _ (H"’H")LZ(W;C)H"’l
B ! B — 1)
= m! (n—1)!
Hence 0H,, = nH,,_1, and for this reason A_ = 9 is called the lowering operator.

Theorem 10.1. |[H,,| r2(vc) = (m))2 and {H,, : m > 0} is an orthogonal basis
in L?(y;C). Equivalently, if H,, = 5%, then {H,, : m > 0} is an orthonormal
basis in L*(vy; C).
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Proof. All that we need to show is that if ¢ € L?(v;C) and (¢, Hy)12(4,c) = 0 for

22
all m > 0, then ¢ = 0. To this end, use Taylor’s theorem for e~z to see that, for

all ¢ € C,
I e
(102) 6( 2 = ZO MHWL(I)?

where the series converges uniformly on compact subsets of C xR, and, by calulation
above, in L?(vy;C) uniformly for ¢ in compact subsets of C. Now suppose that

¢ € L*(v;C), and set ¥ (z) = e‘ﬁgo(x). Then

_22, _ 22 1
[l 2r (a 0) :/Re T (em T lp(@)]) ds < (2m) 2 [l¢ll L2 (i),

and

€T (e) = (277)%/6‘5””‘#@(36)7(&) —@emr Y (Zf)m(%szw)mw;cy

R

m=0

Hence 1) and therefore ¢ vanish if (¢, Hy)r2(y,c) = 0 for all m > 0. d

Observe that £ = 7A+2A* , and therefore, by (10.1)

('&p’w)Lr"(v;C) - _%(d’w/)m(vﬁc) - ((‘O’Ew)LQ(V;C)

for p,1 € C%(R;C) which together with their derivatives have at most exponential
growth. Thus, by (9.6) and (9.9),

(‘CPt(pa ¢) L2(4;C) =04 (Pt307 w) L2(v:C) =04 (‘pa th) L2(~;C)
= (90’ £Pt¢) L2(v;C) = (Ptﬁ% ¢) L2(y;C)’
and therefore LP;, = P,L. In particular, because —2LH,, = nA H,_1 =nH,,
8,P,H, = LP,H, = P,LH, — —gptHn,

and so, because limy\ o P H,, = Hy,
(10.3) PH, =e % H,.
Exercise 10.1. Using (10.3), give another proof of (9.13), and, using A, H,, =
H,, 1, give another proof of (9.12).

11. HERMITE FUNCTIONS

Define T : L%(y; C) — L%(\g;C) so that Ty(z) = w’%e*§¢(2%x), and check

that )
_ 1 z2 _1
ITel L2 resc) = 0l L2 (i) and T f(z) = wie™™ f(27 2 ).

Thus T is an isometric isomorphism from L?(+;C) onto LQ(/\R;}C).

Set h,, = TH,, and h,, = hm = THp,. Then, because {Hy, : m > 0} is an
orthonormal basis in L?(7; C), {hy, : m > 0} is an orthonormal bases in L?(Ag; C).

Assuming that ¢ € C*(R;C), it easy to show that

TAtrp = a+Tp where a4 = 2_%(.%‘1 FO:)

and therefore that

(11.1) ayhy = hpmy1 and a_hy, = mhy, 1.
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Theorem 11.1. For all m > 0, ﬁ; = (Qﬂ)%lmhm,

Proof. Certainly ho = (271')%/10. Assuming that ﬂ = (271')%2"””/1,”7 use integration
by parts to see that

—

Poms1(€) =272 /e@amm(x) do =272 /xelgzhm(x) A + 27218y (€)
=278 (<1(n) (€) + 16D (€)) = (2m) 3™y hyn (€) = (2m) 30 by 1 (€).
O
Corollary 11.2. For allm > 0,
|21 sy < (27)2 (M + D)2, [ lw < (m+1)* and

(11.2) N . 3
lxhmllu V |Ohm ||a < 2m + 7

Proof. Since ||ho| 11 (rp:c) = 2273, ||holly < 73, and

v -

x

ot o), = supre™ % = 72,

Nl

there is nothing to do when m = 0.
Now assume that m > 1. Using the facts that @k, (z) — k], = 22hp,41 and
xhy +hl, = 2%mhm,1, one sees that

Shmo1(2) + (M4 1) T hyp oy (2)

xizm(x) _m T
. 1 () % 1) hn g1 ()
~ mz2hy,—1(x) — (m+ 2 x
(hm)l(x) = - T +
23
Hence,
/xzﬁm(z)Q de=m+ 1,
and so

/(1 + ) o (2)? dz = m + %,

which, by Schwarz’s inequality, means that

[N

1Rl 21 (i) = /(1 + 2275 (1+2%) 2 by (2) da < 72 (m+3)% < (2m)2 (m+1)=.

Because (hy)” = (27) 20 Ay,

e la = 2) 72 || ()], < 27)7 2 Bl 2 (i) < (m+1)2.

To complete the proof, use the second part of (11.3) plus the preceding to see
that

1

[0hum ||, < (M2 |hm—t]lu + (m +1)% Ay |lu)
< (m+(m+1)3(m+2)%) §2m+;

The same argument, only this time using the first part of (11.3), proves the same
estimate for ||zhy, ||u. O
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The kernel which plays the role for the Hermite functions that the Ornstein—
Uhlenbeck kernel (cf. (9.2)) p(t, z,y) plays for the Hermite polynomial is

1?2 '2
q(t,z,y) = 2%6_%6_7p(2t, Z%x, Z%y)ey7

x? Ty y? )

 2tanht * sinht  2tanht
Observe that ¢(¢,z, -) € LP(Ag; C) for all p € [1, c0] and that

/q(t,x,y)f(y) dy=c% /p(Qt,Z%%y)e%f(T%y) dy = (TPyT~'f) ().
Hence, the operator Q; given by

Quf(@) = [ att.z.)f(0) dy
is well defined on L2(\g;C) and is equal to e~ 2T Py, T~1. In particular, by (9.10),

e2|Qufllr20mic) = I1P2T ™ fllrz¢rie) < 1T fllrzeyie) = 1112200y
and, by (9.11)

let@ur - 1]

(11.4)

= (27 sinh t)*% exp (

1o+

(&

= ||T(PuT " f =T 'f

)HL2()\R,C)
—>» 0 ast\/0.

LQ(AR;C)
= HP2tT_1f o T_lfHLQ('y;(C)

Hence

Qe fllz20nmsc) < € 2| fll L2 (rsc) and tlg% 1Qef — fll2(aesc) = 0.

In addition, by (10.3), Q¢hm = e~ 2T Py H,, = e~ (m+2)th, .
Theorem 11.3. If f € L*(\g; C) U L?(Ag; C), then

[atto )y =3 > e L ooy for t >0,
m=0

where the convergence of the series is absolute uniformly for x € R.

Proof. First observe that, by the estimates in Corollary 11.2, the series is absolutely
convergent uniformly in x € R and that both sides are continuous as functions of
f € LY(R;C) or of f € L?(\g;C). In particular, it suffices to prove the equality
when f € C.(R;C).

Given f € C.(R;C), set fr, => 1 _o(f, ﬁm)L2()\R;C)Bm~ Then

/q(t,%y)fn(y) dy=e"2 > e ™ (f, hm) 12 (agic) om (2).
m=0
Because q(t,x, -) € L>(A\g;C) and f, — f in L?(\g;C), the left hand side con-
verges to [ q(t,z,y)f(y) dy. O

Exercise 11.1. Define the Mehler kernel M (0, z,y) for (0,z,y) € (0,1) x R x R
by

6222 — 20xy + 92y2)

M(67xﬂ y) = (27T(1 - 92))_% exp <_ 2(1 _ 02)
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and show that

M(0,2,y) = (1—6%) i em%f[m(y)?
m=0 .

where the series converges uniformly for (x,y) in compact subsets. This famous
equation is known as Mehler’s formula.

12. THE FOURIER TRANSFORM FOR L?(\g;C)

The basic goal here is to extend the Fourier transform on L!(R;C) N L?(\g; C)
as a bounded operation on L?(Ag;C) into L?(Ag;C). We will then examine some
of the fundamental properties of this extension.

Lemma 12.1. If f € LY(R;C), then

_ ¢2tanht

1 22 tanh t
et ] I
(12.1) (2m coshi)z

oo

= 67% Z (leit)m(fv iLm)LQ(XR;C)ﬁm(f)

m=0
for (t,€) € (0,00) x R.

Proof. Since both sides of (12.1) are continuous functions of f € L}(R;C), we may
and will assume that f € C.(R;C).

Set D={¢eC: [¢|<1&(¢(-1,0]}, and define ar(¢) = %(% F() for ¢ € D.
Next, for fixed £ € R and all ¢ € D, define

1 o ('3)6 tx _a_(9) z2
8(0) = (2ra (@) Fe S [eniOe T pa) de

and

=3 Zcm Fo ) L2 () o (£),

and observe that both ® and ¥ are analytic functions on D. Furthermore, since
at (e ") =sinht and a_(e~") = cosht, Lemma 11.3 says that ® = ¥ on (0,1), and
therefore, by analytic continuation, ® = ¥ on D. In particular, @(ze*t) = \Il(ze*t).
Finally, because o (1e7) = <L and a_ (1e™) = S22 one sees that the left

hand and right sides of (12.1) equal, respectively Z%Q(ze_t) and z%\ll(ze_t). ([l

Theorem 12.2. If f € L}(R;C) N L?(R;C), then
(12.2) 2m)2 D" 0" (f Bun) 1200y o

almost everywhere.

Proof. Because f € L'(R;C), the left hand side of (12.1) tends pointwise to
(2m)~2f as t \, 0, and because f € L2(Ag;C), the right hand side tends in
L?(Ag; C) to the series on the right hand side of (12.2). O
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As a consequence of Theorem 12.2, we know that ||fHLz(,\R;C) = (2m)2 Il 22 (wsc)
for f € L*(Ag; C)NL2(Ag; C). Hence the map f € L' (\g; C)NL2(Ag; C) ~ f admits
a unique continuous extension as a linear map with norm (27)2 from L2(Ag; C) into
L?(Ag; C), and (12.2) continuous to hold for this extension.

Deﬁne f( ) = f(—z), and observe that hy, = (—=1)™hy,, (f, 9 20w:0) = (f>9) 12 (0e:0)5

and f . In addition, by Fubini’s theorem,
2 z = 1 m ~
(4)0; m LQ()\R o) // ¢ &) dxdé = / ) hm () dx = (27) 24 (@ahm)L2(AR;C)a
and so, for f,g € L?*(\g;C),
(f’g)L2()\]R;(C) = Z(f h )LQ(AR,C)( h )L2(AR,C)
m=0

=27 Z f7 L2(>\R,<C) (g7 h )LZ(AR:,(C) = 27r(f7g)L2()\R;C)7

which means that Parseval s identity

(123) (f g)LQ(/\R (C) - 27T(f’ )L2 AR C)
holds. Finally, set f = f, (f,9)12 Owse) = (f,9)2(a;c) and therefore, by (12.3),
that

((f) "g)L2()\R (C) (f g)LQ(/\R (C) (fag)L2()\R;(C)'
Similarly, ((f)/\,g) L20wC) = (f, )LQ(/\R,C), and so we have proved the Fourier
inwversion formula

Y .
(12.4) (f) =2nf ="
It is important to keep in mind that f is not given by a Lebesgue integral

for f € L?(\g;C) unless f € L*(Ag;C) as well. On the other hand, because
fR=1_grrf € L'(Ar;C) N L*(\g; C) and fR — fin L?(Ag; C),

f(§) = lim “fzf( ) da

R—oo J_p

where the convergence is in L?(Ag;C).

Exercise 12.1. Define Ff(£) = f(27€), and show that F is an orthogonal operator
on L?(Ag;C). Further, show that if F* is the adjoint of F, then equals F~!f =

Ff=FN’=Ff
13. SCHWARTZ TEST FUNCTIONS

In this section we will study a space of functions introduced by Laurent Schwartz”
and used by him to construct the class of distributions discussed in the next section.
The function space alluded to above is denoted by .#(R;C) and consists of
functions ¢ € C*(R;C) with the property that z ~ 2*9’¢(x) is bounded for all
k, ¢ € N. Obviously, .Z(R;C) is a vector space. In addition, it is closed under

"There are many books in which Schwartz’s theory is presented, but his own original treatment
in Théorie des distributions, I published in 1950 by Hermann, Paris remains one of the best
accounts.
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differentiation as well as products with smooth functions which, together with all
their derivatives, have at most polynomial growth (i.e., grow no faster than some
power of (1 + 22)). Thus the Hermite functions are all in .#(R;C). Finally, since,
for p € S (R; C),

/ o(@)[Pdr < ||(1+ 22| / (1+22)7 da,

S (R;C) € Npepn,o0) LF (Ar; C).
There is an obvious notion of convergence for sequences in . (R;C). Namely,
define the norms

lell &9 = lz* ol

for k, £ € N, and say that ¢; — ¢ in (R; C) if lim,, o ||; — 80”5119,4) =0 for all
k, £ € N. The corresponding topology is the one for which G is open if and only if
for each ¢ € G there an m € N and r > 0 such that

{v:v—o|™<r}Ca,

where
L[m) = 16D
IF- 1™ = masc {1+l
k+0<m

We will now develop a more convenient description of the topology on .#(R; C),
one that shows that #(R;C) shares many properties with Hilbert spaces. Define
the operator H on .#(R; C) into itself by

Ho = 2% — 0?¢.
Since (cf. (11.1)) H = (2ara_ + 1),

(13.1) Hhy, = pphy  where py, = 2k + 1,
and so we can define operators H® for any s € R by
e ~ ~
Hp = Z i (25 P ) 12 (2g0) o -
m=0

For each m > 0, set

S M(R; C) = {%0 € L*(\g; C) : Zum(% Bk)LQ(AR;C)yz < OO},
pr

and define

(QD, w)y(m)(R;C) = Z N;cn (907 ;Lk)LQ(A]R;C)(}NLka 'LZ})LZ()\R;(C) = (@7 Hmw)LQ(A]R;C)
k=0

||90||5’(m)(R;C) = (@790);(710(]&@) = (SDaHm(p)

1
2

Clearly .#(™)(R; C) is a vector space for which (¢, ¥) 50m) (ryc) 18 an inner prod-
uct. Below we will show below that it is a separable Hilbert space.

Lemma 13.1. For each m > 0,

2@l som @cy V10 wom @icy < 310l o mr1) (Rsc)-
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Proof. By the first part of (11.3),

HJ?SOH/W) R;C) Zﬂk It $<P7hk)L2 AR; (C)|
k=0

Z 12 (05 hie—1) L2 )2 +Z ke + 1) pi (0, Piet1) 12 (i) 2
=1 k=0

= pi"| (e, BO)LZ(AR;C)F + Z((k + D + ki) (e, Bk)LZ(AR;C)F
k=1

< 3m’u6n+1m|(80’ iLO)L2()\[0,1);(C)|2 + Z(Qm(k + 1) + k)ﬂ?‘(@v iLk)LQ(AR;C) ‘2
k=1
< 3™ell pomin (i)
Using the second part of (11.3) and the same argument, one can show that [|0¢]| ) (r;c)
< 3™l oman (mycy-

Theorem 13.2. For each m € N, .#(R;C) is a dense subset of .7 (R;C). In
addition, for each m > 0, there exists a K, € (0,00) such that

(13.2) el seem gy < Kl
and
(13.3) lell$™ < Konllp ]| o om o) micy-

for all p € Z(R;C). Thus @, — ¢ in L (R;C) if and only if
nh_{gc llon — <P|\y<m>(1R;<c) =0

for all m € N. In particular, for each p € Z(R;C),
n
Z(%hk)m(,\R;C)hk — ¢ in L (R;C) as n — oc.
k=0

Proof. Since H | (R;C) is a symmetric operator, (13.1) implies that

1 (0, ki) L2 wie) = (0, ™) 20wy = (™0, hi) 12 00gi0)
for all ¢ € .7(R;C) and m > 0, from which it is clear that .#(R;C) C .#(™)(R;C)
for all m > 0. Moreover, since, for each ¢ € . (R;C),
S (R;C) > Z(%Bk)m()\m;@)ﬁk — pin y(m)(R;(C) as n — 0o,
k=0
Z(R;C) is dense in .7 ™) (R; C).
Next observe that there exist constants cg-? € R such that

(m2—82)m<p: Z cg?;)xkaego,

k,leN
k+0<2m

and use integration by parts to see that

(2" ) 2w = (- 1)[(aw(xk/w)’xk_k/aé_e/‘%’)ﬁ(mc)’
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if ¢ is even
L if ¢ is odd.

2

Sl

g if k is even and £ —
b1 if ks odd a

2

where
W= {
Hence there exist constants bgkml),élx(kz,ﬁz) € R such that
(m) k1 o ks ot
Z ’b(kl,zl),(m,zz)(x 0,20 2‘P)LQ(,\R;C)‘

(k1,01),(j2,62)EN?
(k14+£1)V (j2+€2)<m

o ‘||xk182190“L2(AR;C)Hx

< Z |b(k1,e1),(k2,l2)

(k1,01),(k2,62)EN?
(k1+Z1)\/(k2+€2)§m

(0, H™p) L20iC) =

kQGZZ‘PH L2(Ap;C)°

Finally, observe that
_ 1
40 ol riey = [ (145 (1 + a2 k0 (o) o

< w(lla*o Il + "1 ¢ l3),

and combine this with the preceding to arrive at (13.2)
To prove (13.3), begin by making repeated application of Lemma 13.1 to show

that nensn
12500l o) ey < 3 [l ieters ey o +€<m
Thus, if we show that there is a K € (0,00) such that

(%)

el < Kol ric),

then
m(m41)
— 2 K¢l gms @) To prove

in which case we would know that ||<p\|$1m <3
(%), use the estimate in (11.2) to see that

lollu < Z (0, Bi) 2 (s |

> 1 > /k —|— 1 % .
Z(k + 1), ) JL2(s0) | = Z pp (@5 i) L2 (i) |
k=0 k=0
: 3
k41 > .
(25 (2 uzuw,hwmwe) Kol oo
k=0 Mk k=0
([l

1
k412
where K = (Ziio AZE )
As a consequence of Theorem 13.2, we know that
— 1 I — Yl som mic)

7 (p,0) = mz::() 2m+1 1 4 | — w|y(m>(R;c)

is a metric for the topology on . (R; C). In addition, . (R; C) = No-_, (™) (R; C),
and so we can learn about properties of .(R;C) by understanding those of the

S M(R; C)’s
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For each m > 0, let (™) (N; C) be the space of functions s : N — C such that

oo 3
llsllsem ;) = <Z u?IS(k)F) < 00,
k=0
and define

(8,)stm i) = Zuks t(k) for s, t € (™ (N; C),

Clearly each s(™ (N; C) is a vector space with inner product (s, t) sm(nc)- Finally,
set s(N; C) = N>r_, 5™ (N; C), and turn 5(N; C) into a metric space with metric

oo

1 It =sllsemave
ps(s,t) = Z s (EC)

— 2L L+ [t = sllsem vy

The following corollary is essentially a reformulation of the results in Theorem
13.2. Tt is the analogue for .7 (R; C) of the fact that every separable Hilbert space
is isomorphic to £2(N; C).

Corollary 13.3. Define the map S : L?(\g;C) — (?(N; C) by

[S(@)](k) = (, i) 12 (riC) -

Then, for eachm >0, S | ™) (R;C) is an isometric isomorphism from ™) (R; C)
onto 5™ (N;C), and so S | .Z(R;C) is isometric homeomorphism from .7 (R;C)
onto s(N; C).

Corollary 13.3 means that any topological property of 5(™)(N; C) or s(N;C) is a
property of . (™ (R;C) or .#(R;C), and the following lemma facilitates the study
of such properties.

Lemma 13.4. Let {a) : k > 0} C (0,00), and define the measure v on N by
v({k}) = agx. Then L?(v;C) is a separable Hilbert space. In addition, a set B C
L?(v; C) is relatively compact if and only if B is bounded and tight in the sense that

Jimsup 3 afa(h

X seB ES K
Proof. Since the L?-space for any measure on a countably generated o-algebra is a
separable Hilbert space, L?(v;C) is a separable Hilbert space.

Since L?(v;C) is complete, to prove that a bounded, tight subset B is relatively
compact it suffices to show that B is totally bounded (i.e., for every r > 0 there is
a finite cover of B by balls of radius r with centers in B). To that end, let r > 0
be given, and choose K so that

sup 3 sk

sEB ESK

Next, note that {(s(0),...,s(K)) : s € B} is a bounded subset of C¥*! and
therefore totally bounded there. Hence there exists a finite set {s; : 1 <j < J} C B
such that, for each s € B,
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which means that, for each s € B there exists a 1 < j < J such that

K
s = s;ll720u0) = Y akls(k) = s; (k) + > arls(k) — s;(k)|* <.
k=0 E>K
Finally, suppose that B is relatively compact. Certainly it is bounded. To see
that it must be tight, suppose it were not. Then there would exist an € > 0 such
that, for each K € N,
sup Z agls(k)]? > e
s€B Sk
Thus we could find a sequence {sx : K > 0} C B with the property that
sk Oklsi(k)|* > €, and, because B is relatively compact, we could choose it
to be a sequence which converges to some t € L?(v;C). But this would mean that
€

D arlt®) = D anlsic () = It = sxliae) > 5

k>K k>K

for sufficient large K, and that would mean the ¢ can’t be in L?(v; C). O
Say that B C ./(R;C) is bounded in . (R;C) if

sup [ s rycy < oo for each m > 0.
weB

Theorem 13.5. .#(™)(R;C) is a separable Hilbert space for each m > 0, and
S (R;C) is a complete separable metric space. Moreover, a subset B C .7 (R;C) is
relatively compact if and only if it is bounded in #(R;C).

Proof. By Lemma 13.4 applied with aj = pi*, we know that each of the spaces
s(")(N; C) is a separable Hilbert space, and therefore, by Corollary 13.3, so is each
M (R;C). Thus, since .#(R;C) is dense in every .#(™(R;C), we can use a
diagonalization argument to find a sequence {¢, : n > 1} C ¥(R;C) which is
dense in .7 (™) (R; C) for all m > 0. Since this means that

H;fl ¢ — nllom sy = 0 for all p € Z(R;C) and m > 0,

it follows that
inf 07 (r:0)(¢: on) = 0 for all p € Z(R; C).

That is, {¢n : n > 1} is dense in . (R; C), and so .(R; C) is separable.

To see that .#(R; C) is complete, first use Lemma 13.4 and Corollary 13.3 to see
that each .#(™(R;C) is complete. Now suppose that {p, : n > 1} C .Z(R;C)
is p.o®;c)-Cauchy convergent. Then it is | - || 5 (m) r,c)-Cauchy convergent for each
m > 0, and therefore it is convergent in each .#(™(R;C) to some element of
ZM(R; C). But if ¢, — ¢ in Z+H)(R; C), then ¢, — ¢ in ™ (R;C), and
so there is a unique ¢ € >o_, ™) (R;C) to which {p, : n > 1} converges in
(M) (R; C) for all m > 0. Therefore p € .7 (R;C) and lim,, 00 p.or (0, on) = 0.

Finally, suppose that B C .(R; C) is relatively compact in .#(R; C). Because
B is then relatively compact in each .7 ("™ (R; C) and therefore bounded there, it is
a bounded subset of .7 (R; C). Conversely, if B is bounded in . (R; C), in order to
show that it is relatively compact in .7(R; C) we need only show that it is totally
bounded there. To that end, first observe that it is bounded in each .7 (™) (R;C).
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Thus, by Lemma 13.4 and Corollary 13.3, we will know that it is relatively compact
in .7 (R;C) if

lim sup > u"|(@, ) 2 (i) |* = 0. (%)
K—oo (peBk>K
But
m ~ 1
Z M |(<P7hk)L2(>\R;<C)|2 < 7||‘P||2y(m+l>(]g;(c)a
S K HE+1

and so, since B is bounded in .+ (R; C), () holds. To complete the proof that
B po-totally bounded, let 7 > 0 be given, and choose m so that 27" < 3. Next,
using the fact that B is relatively compact in %™ (R;C), choose {p; : 1 < j <
J} C B so that

)

N3

su min — 1 m . <
EP 1<j<J||<P Pjll.c ) (R;C)
and conclude that

J
BC | J{¢: prmoyle @) <7}
=1

([
The assertion in the following is one of the many virtues possessed by .7 (R; C).

Theorem 13.6. The map ¢ ~ @ is an isomorphism from . (R;C) onto itself,
. 1
and, for each m >0, [|4]| om) (ricy = (27) 2 |0l rom) (i) -

Proof. We already know that the Fourier transform is an isomorphism of L?(\g; C)
onto L?(\g;C). In addition, by Theorem 12.2,

(@ hi) L2 (w0 = (QW)%(—Z)]“(%ilk)Lz(AR;C),
and so

||95||2y<m)(R;c) = QWZMm(% iLk)Lz()\R;C)|2 = 27T||80||2y<m)(R;(c)~

k=0

Exercise 13.1. Show that for each (m,n) € N? there is a C,, m, € (0,00) such that

1 kot kol
—— m 0 (RO < ntm) (k.0 < C, m 0 ) (R:C) -
Co k,é%}R(I [z 00| )(R;C) = ol st I(R;C) = Unm k,Z%}IiT 270" pl| ¢ ) (R;C)

T k4<m k+4<m

Hint: In proving the upper bound, consider using the equation

1
n 7 (k + ’I’L)‘ 2 7
(a% e, hk+n)L2(,\R;«:) = (T) (%hk)LZ(AR;C)'
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Exercise 13.2. Let {¢,, : n > 1} be a bounded sequence in . (R;
lim,, o ¢n(z) exists for each € R. Show that there is a p € S (R;
v, — @ in L (R; C).

Hint: Use Theorem 13.5.

) such that

C
C) such that

Exercise 13.3. This exercise deals with the relationship between various function
spaces.

(i) Show that C°(R; C) is a dense subset of .7 (R; C)
(ii) Set
Co(R;C) = {f e C(R;C): lim f(x)= 0} .

|z]—o00
Show that Cy(R;C) with the uniform norm is a Banach space in which both Cg®°
and . (R; C) are dense subsets.

Exercise 13.4. For z € R and ¢ € ¥ (R;C), define 7,0(y) = ¢(x + y). Show
that 7,0 € Z(R;C) and that \|T$<pH1(1m) < 2™(Jx| v 1)7”||gp||1(1m) for all m > 0. In
addition, show that

17220 = Tar @IS < 27 (J] V 2| V 1) @] D |2 — 24
Hint: To prove the first estimate, check that
2lz)™|(0°p) (@ + y)| if |y| < 2Jz|
27 |(z +y)* (0" p) (@ +y)| i |y| > 2lx].
To prove the second estimate, assume that x; < x5, note that

z2
Tua — Tay P = / T30’ dt,

Z1

[y rop(y)| < {

and therefore that

T2
s — Toroll ™ < / !4 dt.

Z1

Finally, apply the first estimate.

14. TEMPERED DISTRIBUTIONS

Schwartz developed the theory of distribution in order to provide a mathemati-
cally rigorous way to describe the sort of generalized functions that appear in the
work by Boole and Heaviside in connection with applications of the Laplace trans-
form to ordinary differential equations, and those that were somewhat later intro-
duced by Sobolev for applications to partial differential equations. What Schwartz
realized is that generalized functions should be thought of in terms of their action
(i.e., their L?(A\g;C) inner product with) on smooth functions rather than their
value (which won’t exist in general) at points.

To make that idea mathematically precise, he said a generalized function, which
he called a distribution, should be a continuous linear functional on a topologi-
cal vector space of smooth functions. One of the spaces Schwartz considered is
C*(R;C), but the appropriate topology on that space is rather cumbersome (for
instance, elements don’t have countable neighborhood bases). A second, and much
more tractable, choice is 7 (R; C). Because elements of . (R; C) need not have com-
pact support, an element of its dual space must satisfy restricted growth conditions
and is therefore called a tempered distribution.
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Recall that the dual space X* of a topological vector space X over C is the
space of continuous, C-valued linear functions on X. When, like .7(R;C), all the
elements of X have a countable neighborhood basis, a linear function A on X is
an element of X* if Ax,, — Ax whenever z,, — z in X. Because we want to
think of elements of .7 (R; C)" as generalized functions which act via their L2-inner
product with elements of .7 (R; C), we will use letters like u to denote elements of
Z(R;C)* and write their action on ¢ € .7(R;C) as (¢, u).

Lemma 14.1. For each u € ./ (R;C)" there is an m > 0 and a C € (0,00) such
that
(e, w)] < Cllellyom ey for all o € S (R;C).

Proof. Because sets of the form {||¢|l s ®.c) < 7} form a neighborhood basis
for 0 in .Z(R;C), there is an m > 0 and r > 0 such that |(p,u)| < 1 when
loll.som) micy < 7. Hence [{0,u)] < 7ol oom micy - U

Simple as it is, Lemma 14.1 has many consequences. For example, it allows us
to say that
(14.1) (p,u) = Z(W’Bk)Lz(/\m;C)<Bk7u>’

k=0

where the series is absolutely convergent. Indeed, if |[(p,u)| < Cl[¢|| 5m) (m,c), then
[(he, w)| < Cpg?, and so, since [(, hi) 2(aeio)| = s "[(H™ @, hie) L2 (i) | for all
n > 0, the series Y 7 (¢, hi)L2(ag;0) (k> ) is absolutely convergent. Hence, if
On = 2 po(@s hie) L2 (Ans0)» then ¢, — @ in .7(R; C) and therefore

n—oo

(pyu) = lim (pn,u) = lim Z(‘thk)LQ(AR;C)<}~lkau>
k=0

e ~
= Z(‘pv hk)L2(>\JR;C) <hk’ u>
k=0
Obviously, given a measurable function f : R — C with at most polynomial
growth, one can think of it as the element fAg of .%(R;C)" given by (p, fAr) =
[ of d\r, and in this way .#(R;C) can be thought of as a subset of .7 (R;C)".
Although the distribution corresponding to f is fAg, it is conventional to denote
it by f instead, and we will adopt this convention.
We will need to know that .#(R;C) is dense in . (R;C)". To see that it is, let
u € . (R;C)", and set
wn = Z<hk7u>hk'
k=0
Clearly v, € .Z(R;C), and, for each ¢ € .7(R;C),

n

(SO; wn)LQ()\R;(C) = Z(‘Pv Bk)LQ(AR;C)(wnv ﬁk)L2()\R;C)

k=0
= (@) L2 (i) (s 1) — > (0, ) 120y (o, 1) = (i0,0).
k=0 k=0

The importance of this density result is that it tells us how to extend contin-
uous operators like H*® as continuous operators on .#(R;C)". Namely, because
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(0. Ho ) 2oase) = (R0, 0) 12 (aei0) for 0,9 € F(R;C) and . (R; C) is dense in
Z(R;C)", the one and only continuous extension of H* to .7 (R;C)" is given by

(14.2) (p, Hou) = (H’p, u).

Since .#(R;C) can be written as the intersection of the spaces .#(™)(R;C),
#(R;C)* must be able to be written as the union of the spaces .&(™ (R;C)". Of
course, because .7 (™) (R; C) is a Hilbert space, Riesz’s theorem provides an isomor-
phism between .(™(R; C)" and .#(™)(R;C). However, in order to be consistent
with the idea that (p,u) is a generalization of the L? inner product, this is not the
way we will think about .#(™(R;C)". Instead, we want to identify .7(™)(R;C)"
as the Hilbert space

FEM(R;C) = {u €SB0 Y " ) < OO}
k=0

with inner product

(u v y( m) (R;C) Z,u hk> >
Recall that if X is a Banach space and A € X*, then ||A||x+ = sup{|A(z)] :
lz]lx = 1}. Thus
[ull m iy = sup{[{e, )| : ol wom ey = 1}

Theorem 14.2. For each m > 0, Y(’m)(R;(C) is a separable Hilbert space in
which . (R;C) is a dense subset, and

uwe STM(R;C) = H Tue L*e;C) & [H % ullrzpnc) = [l w-m e
= ue s R;C)".
Moreover, if u € #(~™(R; C), then 1wl 5em (mycy* = lull.so—m) sy and therefore
(14.3) (o, w) | < [l rom sy |2l 7=m) (msc) -

Proof. That .#(~"™)(R;C) is a seperable Hilbert space follows from Lemma 13.4.
Next, let u € .#(~™)(R;C) and set u, = > p_, <ﬁk,u>ﬁk Then u, € ¥(R;C) and

[lu— UnHiﬂ(—m)(R;C) Z pp™ hk, > o
k>n

Hence .7 (R; C) is dense in .~™)(R; C).
If u € .~™)(R; C), then

(¢, u)| = Zﬂk (1) 12 g0y (s )| < M1l 22 (g ul] o= (s

and so H™2u € L*(Ag;C) and |H™ % ul|12(aeic) < |lullo-m gic)- Conversely, if
H Zue L?(\g; C), then

e Zuk (e )P = (e, HF )P = 17 %]l 2 0s0)-
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To prove the second equivalence, first suppose that v € (™) (R; (C)*. Then,
since [|[H™ 2 ¢l wom @ic) = l@llL2(re:0)

(. H™Z )| = (H™ 2 p,u)|

<R 2@l wom @y 1ull 2 om mioys = lull om miey* el 2 (ags0)

and so H~2u € L*(Ag;C) and [Jull g-mrc) < |l pommcy<- Conversely, if
u e L™ (R;C), set f=H % u, then

|<90a ’LL>| = |(H%% f)Lz()\mz;(C)|

<M Z ol L2 sy 1l L2 sy = Il - sy ol (i) »

and s0 u € # T (R;€)" and ull rom ey < lull oz O

By combining Lemma 14.1 and Theorem 14.2, we know that

7 (R;C)* = G ZEM(R; C).

m=0

Theorem 14.3. If u € .7(~™)(R;C) is non-negative in the sense that (p,u) > 0
whenever p € (R;C) is non-negative, then there exists a Borel measure p on R
such that

/(1 +2?)7 "5 p(de) < oo and (g, p) = /wdu-

Conversely, if u is a Borel measure on R satisfying
/(1 +22)7 % p(dr) < oo

and u € S (R;C)" is defined by (p,u) = [ @du, then u € & —m3)(R;C).

Proof. Assume that u € .#(~™)(R;C) is non-negative. Choose n € C> (R; [0,1])
so that n = 1 on [-1,1] and n = 0 off [-2,2], set nr(z) = n(%) for R >
1, and define ug € Y (R;C)" by (p,ur) = (nrp,u). Given an R-valued ¢ €
L (R;C), |l¢llunr £ ¢nr > 0, and therefore |{p, ur)| < ||¢|lu(nr,w). Thus there is
a unique extension of ¢ ~ {p, ur) as a continuous, non-negative linear functional on
C ([—2R; 2R], R), which, by the Riesz representation theorem, means that there is a
finite Borel measure 1z on R such that (¢, ur) = [ ¢ dug. In particular, pr(R) =
<77Ra“> < ||nR||=7(m)(]R;(C)||u||<7(*’")(R;(C)' Since ||nR||2y('rrt)(R;C) = (nRvﬂmnR)LZ()\R;(C)

and H™ng is a linear combinations of terms of the form %n(f)(%), where 0 <

k + ¢ < 2m, there exists a C' < oo such that

1
2

(/ nr(x)H" " r(2) dx) < CR™%,

and 50 p1g(R) < Cllu] soc-m (ricy R™2.
Note that R < R' = ugr | [-R,R] = ur | [-R, R], and therefore there
is a Borel measure p on R such that p [ [-R,R] = pr | [-R,R] for all R > 1.
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Furthermore

Jaray # un) = Y /[ (U )55 ()
n,n+

n=—oo

n+1 mty m+2 = _3
) =22 Cllull s-my ey (L +n)72 < co.

n=0

— (
<20 |ul| o —m (msc) E —— a1z
n=o (1+n2)™2

Finally,
(p,u) = lim (nre,u) = lim /nRso dp = /cpdu~
R—o0 R—o0
Conversely, suppose that u is a Borel measure on R and that
C= /(1 +22)7 % du(dx) < oco.
Clearly ¢ ~~ [ ¢ du determines a distribution u. In fact, by (13.3),
(o, u) < Ol (L +2%)F llu < CIIAL+ [2)™ el < CKmllll pimsn iy
and therefore u € .7(="=3)(R; C). O

As a consequence of Theorem 14.3, we know that for any measurable f : R — C
for which there exists an m € Z such that

Jasa) Hi@lde < o
there is a distribution f € .#(~™=3)(R;C) such that
(w.) = [ ela)(o) o

The following generalizes the preceding observation.

Theorem 14.4. Let i be a Borel measure on R, and assume that
M, = /(1 +22)7% p(de) < oo.

If f € LP(u; C), then there is a distribution fu given by
¢ € .7 (R;C) n—>/gpfd,u€(C.

Moreover, if m, = min{n :m < 2p'n}, where p' is the Hélder conjugate of p, then
fu e s =3)(R;C) and

£l o =mp=9 oy < Komy M || F Il Lo sy -
Proof. By Hélder’s inequality,

[ o an| <1 el

At the same time,

1
'Y

Il ey < ([ 140372 (00 Flola) i)

S el
< My (1+ :172)217’ go”u < Kmlef ||<p||5,;(m,,+3)(R;(C).
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Hence,

1
(s F1) | < Ko, Mg ([ 1] Lo (i) 12| sompsn iy -
(I

Loosely related to the preceding is the following theorem of Schwartz. Given
au € S (R;C)", its support is the smallest closed set F such that (¢, u) = 0 for
all ¢ that are 0 on FC. Equivalently, (p1,u) = {(pa,u) if 1 = Y2 on an open set
containing F'.

Theorem 14.5. If u € .7(~"tD(R;C), then u is supported on {0} if and only if
there exist {ag,...,an} C C for which

(pu) =Y amd™p(0)

for all p € Z(R;C). .

Proof. The sufficiency statement is trivial. To prove the necessity assertion, first
note that, by Theorem 13.2, there is a C' € [0,00) such that [{p,u)] < C||<p||g").
Next, choose 7 € C*(R; [0, 1]) so that n = 1 on [—1,1] and n = 0 off of [-2, 2], and
define 7,(z) = n(2) for r € (0,1]. Because 0 is the support of u, (p,u) = (¢, u)
for all » € (0,1]. In particular, this means that

o ) <3 e
=0
for some other C < oo.

We will now show that (p,u) = 0 if p(z) = 2" n(x)Y(x) for some ¢ €
C*(R;C). To this end, set p.(z) = 2" n.(z)y(x), and note (p,u) = (@, u)
for all r € (0,1]. Next observe that d‘¢, is a linear combination of terms of the
form

zn+1—ir—jn(j)(£)¢(k)(x) — pntl—i—j (f)J n(i)(zﬂ,(@ ()
where 7 + j + k = £. Since
grtl—ieg (E)J 7 () ()

< @) Dl ®
;

lim, o [lot? s = 0 for £ < n, and so

(o, u) {or,u) = 0.

= lim
N0
Now let ¢ € .Z(R;C) and use Taylor’s theorem to write

n

o(z) = Z o™ (0) e g™t /01(1 _ t)"tp("""l)(tx) dt.

m)! n!

m=0
Set (z) = L fol(l—t)"go(”+1)(tx) dt, and apply the preceding to see that (x" "1, u) =
0 and therefore that

0™ (0)
m!

(p,u) = (ne,uy = > (@™, u).

Hence we can take a,, = &% O
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The next result characterizes distributions u € .(R; C)" which satisfy the min-
imum principle

(14.4) (p,uy > 0if p € S(R;R) and »(0) = min{p(z) : = € R}
and are quasi-local in the sense that

(14.5) Rhm (pr,u) =0 for all p € L(R;C),

where ¢r(z) = ¢(%).
In preparation for the proof of the characterization, I have to introduce the
following partition of unity for R\ {0}. Choose ¢ € C° (R; [0, 1]) so that 1 has

compact support in (0,2)\ (0, ) and ¥(y) =1 when 1 < |y| < 1, and set ¢, (y) =
¥ (2My) for m € Z. Then, ify € Rand 271 < |y| < 27" ¢, (y) = 1 and ¥, (y) =
0 unless —m —2 < n < —m + 1. Hence, if U(y) = > ., ¥m(y) for y € R\ {0},

then W is a smooth function with values in [1,4]; and therefore, for each m € Z, the

function x.,, given by x,(0) = 0 and xm(y) = d’\y(éy for y € R\ {0} is a smooth,

[0, 1]-valued function that vanishes off of (0,27™%1)\ (0,2-~2). In addition, for
each y € R\ {0}, 3°,.cz xm(y) =1 and xpm(y) = 0 unless 27™72 < |y < 27m+HL

Lemma 14.6. Ifu € .7 (R;R) satisfies (14.4) and (14.5), then there exists a unique
2
Borel measure M on R such that M({0}) =0, [ Tz M(dy) < oo, and

(o) = [ otu) M(ay)
if o, ¢, and ©" vanish at 0.

Proof. Referring to the partition of unity described above, define A, = (xm¢, u)
for p € C°°((0,2=™+1)\ (0,27™2); R), where

Xm(W)p(y) if 2772 <y <27t
Xm@(y) = .
0 otherwise.

Clearly A,, is linear. In addition, if ¢ > 0, then y.,,¢ > 0 = xme(0), and so, by
(14.4), App > 0. Similarly, for any ¢ € C*((0,2-™+1)\ (0,277 2);R), [l¢/luxm £
Xme > 0 = (||g0||uxm + Xmgo)(O), and therefore [An,¢| < Kp|l@llu, where K, =
(Xm,u). Hence, A,, admits a unique extension as a continuous linear functional
on C((0,2=m+1)\ (0,27™72);R) that is non-negativity preserving and has norm
K,,; and so, by the Riesz representation theorem, we know that there is a unique
non-negative Borel measure M,, on R such that Mm is supported on (0,2—™m+1)\
(0,27m72), Kp, = My, (R), and (X, u) = [5 ©(y) M (dy) for all ¢ € #(R;R).

Now define the Borel measure M on R by M = ZmEZ M,,. Clearly, M({0}) = 0.
In addition, if ¢ € C° (R\ {O};R), then there is an n € Z such that x,,¢ = 0
unless |m| < n. Thus,

oy = 3 Alumg) = Z/

m=—n m=—n

/RN < > xm(y)w(y)> M(dy) = /RN ¢(y) M(dy),

m=—n
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and therefore
(14:6) (o) = [ ol My
for p € C°(R\ {0};R).
Before taking the next step, observe that, as an application of (14.4), if ¢1, 2 €
7 (R;R), then

1 < @2 and 1(0) = 2(0) = (p1,u) < (p2,u). (%)

Indeed, this reduces to the observation that w2 — 1 > 0 = (2 — ¢1)(0).
With these preparations, we can show that, for any ¢ € .7 (R;C),

0> 0=p(0) = / () M(dy) < (). (s5)

n

To check this, apply (*) to ¢, = > __ xm¢ and ¢, and use (14.6) together with
the monotone convergence theorem to conclude that

n—oo n—o0

/R o(y) M(dy) = lim an(y) M(dy) = lim (p,,u) < (p,u).

Now let n € C*(R; [0, 1]) satisfy n = 0 on [—1,1] and 1 = 0 off (—2,2), and set
nr(y) = n(R™1y) for R > 0. By (xx) with ¢(y) = |y|*n(y) we know that

/Rlyl%(y)M(dy) < g, u) < 0.

At the same time, by (14.6), for R > 2,

[ (s) = n(0)) M) = (G = ). ) = (o) = (.0

and therefore, by (14.5) and Fatou’s Lemma,

/]R(l —n(y)) M(dy) < —(n,u) < oo.

Hence, we have proved that

2
Y

14.7 M(dy) < oo.
(14.7) | 7 vty

We are now in a position to show that (14.6) continues to hold for any ¢ €
Z(R;R) that vanishes along with its first and second order derivatives at 0. To
this end, first suppose that ¢ vanishes in a neighborhood of 0. Then, for each
R >0, (14.6) applies to gy, and so

/R nr()e(y) M(dy) = (nrp,u) = (o, u) + (1 - 1r)e, ).

Since ¢ is M-integrable and (1 — ng)y — 0 in S (R;R) as R — oo, Lebesgue’s
dominated convergence theorem implies that,

(o) = Tim [ nr(y)ely) M(dy) = / () M(dy).

R—o0 R
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We still have to replace the assumption that ¢ vanishes in a neighborhood of 0
by the assumption that it vanishes to second order there. For this purpose, first
note that, by (14.7), ¢ is certainly M-integrable, and therefore

[ o) M) = lim (1 = )p0) = (g0 = Ym0

By our assumptions about ¢ at 0, we can find a C' < oo such that |n.o(y)| <
Cry*n(y) for all r € (0,1]. Hence, by () and the M-integrability of y?n(y), there
is a €’ < oo such that (n,.p,u) < C’r for small r > 0, and therefore (n,¢,u) — 0
as r \, 0. O

Theorem 14.7. If u € L (R;R) satisfies (14.4) and (14.5), then there exist an
a >0, abeR, and Borel measure M on R such that M({0}) = 0, (14.7) holds,
and

(1) = $6"(0) +56(0) + [ (6(0) = #(0) = Loy ()¢ (0)9) M ().
In fact, M is determined by
/w M(dy) if ¢ € CZ (R\ {0}),
and, for any n € C*(R;[0,1]) which is 1 on [-1,1] and 0 off (—2,2)
a={y*n’ u) ~ /y2n(y)2M(dy)

and

b=t~ [ yn(w) ~ Lo ) M(ds).
Proof. Let 1 be as in the statement, set ng(z) = 7(%) for R > 0, and define

Vr(Y) = ¢(y) — 2(0)nr(y) — ¢'0)yn(y) — 32" (0)y*n(y)*.
Then ¢ e (R <C) and vanishes to second order at 0, and so, by Lemma 14.6,
(R u) = [(y) . Hence,

(p,u) = 90(0)<773,U> +¢'(0)(yn,u) + 52" (0)(¥*n*, u)
+ / (e(¥) — e(0)nr(y) — ¢ 0)yn(y) — 2" (0)y*n(y)*) M (dy),
and so

(g1 = 9(0) ({nm )+ [ (1= nn(w) M(a)
+ ¢’ (0){yn, u) — 5¢"(0) <<y2n27U> - /y277(y)2 M(dy)>
+ / (6(v) — 9(0) — & (O)yn(y)) M(dy).

By (14.5) and the Lebesgue dominated convergence theorem, as R — oo both
(nr,u) and [(1 —ng)dM tend to 0. Finally, because y(n(y) — 1_1.1j(y)) vanishes
on [—1,1] and is therefore M-integrable, we can replace ¢'(0)(yn,u) by

@’(0)<<yn7u> —/y(n(y) - 1[_1,1](y)))M(dy)
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and [ (p(y) — »(0) — ¢’ (0)yn(y)) M (dy) by

/(so(y) —©(0) — " (0)y1 =11y (y)) M (dy).
0

Exercise 14.1. Let f € C}(R;C), set u = f(|z|), and show that v’ = sgn(z) f'(|x|).
Next assume that f € CZ(R;C), and show that u” = f'(0)do + f"(|z]).

15. EXTENDING CONTINUOUS OPERATORS ON .7 (R;C) To . (R;C)"

The extension that we made of the operators H* to .7 (R;C)* is a special case
of the fact that many continuous linear maps of .#(R; C) into .#(R; C)* determine
a unique continuous extension as a continuous map from .#(R; C)" itself. The key
to making such an extension is contained in the following theorem.

Theorem 15.1. Let A be a continuous map of . (R; C) into . (R; C)", and assume
that there is a continuous operator A* on #(R;C) such that

(A%, ¢)L2(AR;C) = (p, AY) L2 (miC) for all p,v € L (R;C).
If Au is defined for u € . (R;C)" by
(15.1) (o, Au) = (A%p, u) for ¢ € S(R;C),
then u ~ Au is the unique extension of A as a continuous operator on . (R;C)".
Proof. Because A* maps #(R;C) continuously into itself, for each m > 0 there
exists an n > 0 and C < oo such that [[A*¢| g rc) < Clloll oo @), and
therefore, if u € .#(~™)(R; C), then
[(p, Au)| = [(A%p, u)| < [|A* @] 5o (micy Ul o=m) (i) < Cllellsom sy |2l 5o =m) iy -
Hence [[Aul| g-m @,c)y < Cllull#-m m;c), and so A maps Z(=m)(R;C) continu-
ously into .#(~™(R;C). Furthermore, since .#(R;C) is dense in .#(R;C)" and
(p, AY) = (A*%z/))Lz(AmC) for ¢ € S (R;C), A is the one and only continuous
extension to .7 (R; C)" of A | Z(R;C). O

If A: 7 (R;C) — .Z(R;C)" is a continuous map, we will say that a continuous
operator A* on . (R;C) is its adjoint if (A*p,vV)r2(ae0) = (@0, At) for all @, ¢ €
7 (R; C).

Given a continuous operator A on .(R;C)* and m,n € Z

Al 5o (®Ri0)— 5 ®:C) (m) = SUP{ AUl ) iy * Ul i iy = 1}
The argument given in the proof of Theorem 15.1 shows that, for m,n € N,
(15.2) Al -m) R0y 7 -m Rs0) = A" |2 (Rs )57 0m) (Rs) -

Among the simplest maps to which Theorem 15.1 applies are ¢ ~» 2¥¢ and
¢ ~ 0%. Indeed, the first of these is its own adjoint, and the adjoint of 8¢ is (—0)*.
By Lemma 13.1, the extensions of these maps take, respectively, .5(~) (R; C) into
S (=m=k)(R; C) and .7~ (R;C) into .7~ (R; C).

The Fourier transform is a particularly important operator on . (R; C)*, and its
adjoint is given by ¢ € S (R;C) — ¢ € .(R;C). Hence

(pu) = (P, u),
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and, since @] o ric)y = (2#)%||<p||y(m)(R;C) for all m > 0, (15.2) says that
4] 5 (—m) (i) = (2m)= ] 5(~m) m;cy for all m > 0. In addition, since both sides of

the equation (p,4) = 2m(p,u) are continuous functions of u € .%(R;C)* and, by
(12.3), the equation holds when u € . (R;C),

(@,a) = (2m){p, u).
The same continuity argument shows that
du = —ith, Tu =190
and that the Fourier inversion formula
(0)Y = 2ru = (u)"

holds.

Computing most Fourier transforms of functions is hard, and computing them
of distributions can be even harder. Among those that are easy are those of z*d,,
0%, and f € L'(\g;C) U L?(\g; C) when thought of as a tempered distribution.
Indeed,

(¢,04) = @la) = /eﬂ‘”gp(z) dx = {(p,eq), where e,(x) = e"*",

Hence, 96, = (—1&)%e,. To compute fwhen f is thought of as a distribution, note
that

.0)= [ 1@ ([ eotwdn) de = [ @)@ o= (o.1),

and therefore, when f € L!(\g;C) is thought of as a distribution, its Fourier
transform is the distribution determined by the function f € Cu(R;C). When
f € L%*(\g; C), one uses the fact that, as R — oo, 1_gprf— fin Z(R;C)* and
therefore f: f where f =limg_ o J/‘}; is the L?-Fourier transform of f. Similarly,
when p is a finite Borel measure on R, i as a distribution is equal to the function
[ given by

(15.3) (e = [ e uda).

Trickier is the computation of the Fourier transform of distributions like log |z|.
One way to do so is to observe that dlog|z| = 1 and first compute 2~!. For that
purpose, set f,(r) = w"’zTyZ for y > 0, and observe that, as y \, 0, f, — z~! and

therefore j/"; —zlin Z(R;C)". Next observe that observe that, by (7.11),

R wx R .
" ze rsinx
fy(g) = lim R dx =1 lim -5 dxr = msgn(g)e—ylél_
R—oco J_px°+Yy R—oo J_px°+y

Hence

(15.4) a1 = LTSI,
Knowing (15.4) one might expect that one can use du = —1&4 to compute log |z|.

However to do so it is necessary to confront a technical difficulty. Namely, msgn(é) —

716
and |£|7! is not a distribution. On the other hand,

[ 9®) — e
o [

T
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is a distribution. Thus, to overcome the problem, set u = log || and write

(0, 0) = (¢ = 0(0)g1, @) + ©(0)(g1, %)
and note that (g1,d) = 27 [ g1(x)log|z|dz. At the same time,

(¢ — @(0)7, ) = <9“"(§) —z§ﬁ>

_ p—p(0)e % ~ _ o —p(0)e T
< E ,8u>7r< €] ,)\R>-

(ploglal) = - [ 2(8) - ;‘go)e” i€+ 2m5(0) [ g1(0) ogl o] di
J

Next, consider a differential operator L = ijo a;07 where {ag,...,a;} C
C*>(R;C) and all the a;’s and their derivatives have at most polynomial growth. If

Lo = Z ]a]

then it is clear that (L*@,%)r2(xpc) = (9, L) L2(xesc)- To see that L* is a contin-
uous operator on . (R; C), we need the following lemma.

Hence

Lemma 15.2. Let f € C°(R;R), and assume that for each m > 0 there exists an
k. > 0 such that

J
F,, = max sup 107 /()] < 00.

1<G<m e |o|Pm V1
Then, for each m > 0, there is a Cy, < 0o such that
[ fll.rom iy < CmEmll@ll soomtrm wic)-

Proof. By Exercise 13.1 with n = 0, it is sufficient for us to show that for each
k,¢ € N with k£ + ¢ < m, there is a ¢ ¢ such that

20 (@) L2 sy < CtFmlloll imsrm @ic) -
To this end, remember that
L[
)= ( ) &7 0" f,
j=o \J
and
Hfﬁkaﬂpaﬁj]‘?”L?(AR;C) < Fm||(1 + \$|km)xk3j¢||L2(>\R;C)
<2 3m+kmFm||80||y’<m+km>(R;C)||-
U

Using Lemma 15.2, it easy to check that L* is a continuous operator on . (R; C),
and therefore L extends as a continuous operator on . (R; C)™.
Another important operation is convolution. That is, given ¢ € . (R;C), con-

sider the operator Cy, on #(R;C) given by Cyn = 1 * 1. Because n*¢ = 771[),
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Lemma 15.2 guarantees that Cy maps .# (™) (R;C) continuously into itself for all
m > 0. In addition,

(p,hxm) = // p(x)P(x — y)n(y) dedy = // o(x 4+ y)(x)n(y) dedy = (Cj e, n)

where
Ciolw) = [ pla+ i) de

Since C* (&) = ¢(1)V, Lemma 15.2 again guarantees that, for all m > 0, C,, maps
5 (m)(R C) continuously into itself, and so Cy has a unique continuous extensmn
to .7(R;C)", and this extention is a continuous map of .#(")(R;C) into itself for
all m € Z.

In order to gain a better understanding of Cy;, we need to use the translation maps
T+ L (R;C) — Z(R; C) defined in Exercise 13.4, and define ¢ xu(z) = (7_z¢, u)
for u € S (R;C)" and z € R.

Theorem 15.3. Foriy € .7 (R;C) andu € . (R;C)", v*u is a continuous function
with at most polynomial growth, and Cyu = 9 * u. In addition, ¥ *xu = 1[)12, and
b u = (2m) " (a)"

Proof. By Exercise 13.4, x ~ 7_,% is a continuous map of .(R; C) into itself and
therefore that ¥ * u € C(R;C). Also, the estimates given in that Exercise and
Lemma 13.1 show that

¢ * u(@)] < 27 K (|2 V 1)™ [¢[]sronro iy lull so-m-2) mic)
and therefore ¢ * u has at most polynomial growth.

Turing to the proof that Cyu = 1 * u, suppose that u € =™ (R; C) and set
Up = Y o (hi,u)hy. Then u, € #(R;C) and u, — u in .#")(R;C). Since
Cyy, = Y*uy, we will know that Cyu = 1*u once we show that that ¢xu, — Yxu
in .(R;C)". To that end, note that, by Theorem 13.2 and that Exercise 13.4,

1 (un — w)(2)] < [T—2ll5om mo)lltn — ulls-m @)
< Km”szl/’”\Sm—i_l)Hun - u“ﬂ’(*’")(R;C)
< 20K (2] v )T g — ull e @iy

and so ¥ * uy, —>z/1>ku1n Y(R C)".

Finally, since ﬂ; xu = ¥t and ¢ xu = (27r)*1(¢3f&)v when u € Z(R;C), the
7 (R; C)*-continuity of u ~» 1 * u guarantees that these continue to hold for all
ue S (R;C)". O

A simple, but typical, application of these results is to the ordinary differential
equation Au — u” = u, where A > 0 and p is a finite Borel measure on R. The
solution u to this equation describes the electric potential along a wire produced by
a charge distribution p when the wire has resistance that is a linear function of the
potential. To solve this equation, assume that v € .#(R; (C)* and take the Fourier
transform of both sides. Then \i + 24 = ji, and so @ = Next observe (cf.

(7.5)) that & = G, where

e
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Even though Gy ¢ (R; C), it and the function x ~» G\ xpu(z) = [ Gr(z—y) p(dy)
are elements of L'(\g;C) and therefore of .(R;C)". In addition, by Fubini’s

theorem, G * u = @g, and so

1
o)

u(z) / el ().

It is an instructive exercise to check that this u is a solution. To this end, first
use Exercise 14.1 to see that v’ is the function

A2 3
o' (z) = 5 /sgn(y —x)e Ml gy,

Thus
o) = ~e'u) = [ @) (5 [ smnle— e ) alay) ) do

=/<%/sgn(fr—y)e‘*%"“‘y'w’(w) dm) p(dy).

Next note that
1 o1
/sgn(x —y)e MY (z) do = / T () da — /

Yy — 00

1 o1 1 Y 3w
= —p(y) + Az / ) dy — p(y) + A2 / M) dr = —20(y) + 2Xu(y),
Yy

— 00

Y 1
N @Y (2) da

and therefore (o, u”) = — (¢, u) + A{p, u), which means that Au — u” = p.

Exercise 15.1. This exercise deals with the special case when an element of
Z(R;C)" is given by a Borel measure .

(i) Show that 9 * u equals the function

J:ER»—)/z/)(m—y)u(dy) e C.
(ii) If p is finite, show that i equals the function
EeRri(e) = [ uldn) e
and that i € Cy(R; C) with norm |4y = p(R).
(iii) If [(1 +2%)% p(dr) < oo for some m > 0, show that i € C"(R;C) and that

0% i)l < /|x\ku(dx) for 0 < k <m.

(iv) Assume that [ |z|¥ p(dz) < oo for all k € N, and show that ¢ = u is an element
of Z(R;C) for all ¥ € .Z(R;C).

Hint: Show that m is an element of .7 (R; C).
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16. Moving To RY

With essentially no new ideas and the introduction of only slightly uglier nota-
tion, we will transfer most of the contents of §§7-15 to R.
If f € LY(RY;C), its Fourier transform is the function

f(e) = / &R f(x) dx,

and, using exactly the same arguments as we did when N = 1, one can easily show
that || fllu < [|fllz(x,n:c)s f is continuous and that, if f € CHRN;C)N LY (\gn;C)
and f' € L'(Ag~; C), then 8, f(£) = —1&; f(£) for 1 < j < N, from which it follows
that f(£) — 0 as |€] = oo.

To develop an inversion formula, one introduces the functions

N x|
2 2t
€ )

gt(x) = (27t)~

uses Fubini’s theorem to check that g;(&) = e~
first that

tlg|?
2, and proceeds as before to see

tlg|?

/ g(x—y)f(y)dy = (2m)~V / em 3 e EXa f(g) de,

and then that, as t N\ 0,

f in Ll ()\RN; (C)
f(x) if f is continuous at x.

¢ 2 ~
(QW)_N/e_ £l e~ H&x)pN f(g) dx converges to {

The normalized Hermite functions on RY are indexed by m = (my,...,my) €
N and defined by

ilm(x) = hny (1) By (TN).
By standard results about products of Hilbert spaces, one knows that they form an
orthonormal basis in L?(Ag~;C). In addition, if

N
M= - A=Y (e 02,
j=1
then
. B N
Hhm = tmhm where g, = Z o
j=1
and

N
(hen)" = ™01 (271) 5 By where [lm|[; = " m;.
j=1

Finally, the estimates in (11.2) can be used to show that

N

N % N
[l opnse) < | TT@7m; +1) | (Bl < | [J(m;+1) | and
(16.1) 7=1 7=1
N
”xjﬁm”u \ ||a:rjilm||u <2V H(mJ +1).
j=1
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The Schwartz test function space . (RY;C) for RY is defined as the space of
¢ € C(RY;C) with the property that ||xf8£jcp|\u <ooforalll<i,j<N and
k,?¢ € N. Again one introduces the operators

Hip = Z 1(0, Pac) L2 (3, 50) e

keNN
and defines the norms
lillg™) = | max i, ¢l
k+L<m

and ~
||80||y(R;(c)<m>(RN;(c) = Z Mm(%hk)L?(ARN;C)F,
keNN
and the spaces

LMRN;C) = {p € C®RY;C) : |||l y(ucyem < 0}

Clearly, if ¢ € .7 (R;C), then 11l Ry om) = IHZ 0| 2(a, 50) -
Using the estimates in (16.1) and the reasoning in Lemma 13.1 and Theorem
13.2, one sees that, for each m there is a K, € (0, 00) such that

lllsom @ icy < Kmllll "

and

™ < Kmlloll somssm @ icy-
Hence, .7 (RV;C) = N>_, 7™ (RN;C) and . (RY;C)" can be identified as the
union |J7_, . "™ (RY;C) where .#(=™)(RY;C) is the analog for N > 2 of
S =m)(R;C) for N = 1. Further, the obvious analogs of Theorems 14.3 and 14.5

hold. In proving the analogs of Theorems 14.5 and 14.7, one needs to use the RV
version of Taylor’s theorem which says that

p(x) = Z Z 9 l(f!(o)xk—F% Z ( :{_1>xk/0 (1 —t)"*p(tx) dt,

m=0 |[k|j,=m llk[l1=n+1

where k! = Hj\;l kj, x¥ = H;\le xfj, o = H;\Ll 85?, and (”Il) is the multinomial
coefficient W

Once one has the preceding, it should be clear how to extend a continuous map
A: S RY:C) — S (RY;C)" to continuous operators on . (RV;C)" if A admits
an adjoint A* which is a continuous operator on .# (R~ ; C). In particular, both the
Fourier transform and convolution have such extensions.

The extension of the Fourier transform to L?(Ag~;C) can be done as follows.

First note that if ¢ € .7(R™;C), then

(4107 hm)LZ()\RN;(C) = ’ut_nn (/Hmpa Bm)Lz(/\RN;C)’

and therefore, using the first estimate in (16.1), one see that

on= > (& hm)20g0 ) im — ¢

[mll1<n

in L(Agn;C) as well as L2(Agn; C). Thus, ||4, — @llu — 0, and so

a N = ~ ~
p = (27‘(‘) 2 Z Z”mHl(Qﬂvhm)L2(>\RN ;(C)hm

m=0
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for ¢ € .7(R;C). Next suppose that f € L'(A\gn;C) N L2 (Agn; C), and set
On = Z (f, Bm)LQ()\RN;C)iLm € 5/(RN7(C)

lmlli<n
Then ¢,, — fin L?(Ag~; C), and so, by Fatou’s lemma, one sees that Hf”LQ()\]RN ) <
(2m)% [ fll 22 (A n:c)- Hence the Fourier transform on L'(Agw; C) N L*(Agn; C) ad-

mits a unique extension as a continuous operator on L?(Ag~;C). In particular, for
all f € L?(\gn;C),

f(¢&) = lim e! (&) f(x) dx,

R—o0 ‘XlSR

where the convergence is in L?(Ag~; C). Also
. I~ . ~ -
f: (27'(') 2 Z 71“ Hl(f? hm)L2(AKN;C)hm’
meNN
and so the Parseval identity
(f, 9 r2oun ) = CON(f,9) L200n0)
holds for all f,g € L?(A\gw~; C), from which the Fourier inversion formula (f)Y =
(2m)Nf = (f)V follows in the same way that it did when N = 1. Finally, by
the same argument used when N = 1, one can show that 0., f = —ijil if f e
L?(Agn; C)NCHRY;C) and 9, f € L*(Agn; C).
To demonstrate the use these considerations, consider again the example dis-
cussed at the end of §15, only now its analog Au — Au = u in RY, where A > 0

and p is a finite Borel measure on RY. Just as before, the Fourier transform of this
equation lead to the conclusion that @ = ﬁlﬁ\z To find the function G of which

(A +1€]?)~1 is the Fourier transform, note that
1 T O el i
= [ e - [ e Mg ar
e o O
from which it follows that

o0 oo ) ,
Ga(x) = / e Mgy (x)dt = (47r)7% / ¥ e M g,
0 0

The function G is a Bessel function, and a more explicit expression for it is easy
to obtain only when N is odd. For example, when N = 1, we already knew that

1
Ga(z) = 2;_; e 2?12l and when N = 3, after differentiating (7.6) with respect to
2

x, one sees that

1
~aF|x|
e
G =—.
"X = S5
In any case, Gy € L'(Ag;C), and it is clear that if a solution u € . (RN ;C)” exists,

then it is the function
x o Gru(x) = [ Gabx—y)u(dy) (+)
Also, if the function G * p is an element of .%(RN;C)", for instance if

Jas )2 ([ Gabe—yyntay) ) ax < o,
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then the function in (%) determines the u € . (R™;C)" which is the one and only
solution in . (RN;C)".

The Poisson problem Au = —p is a closely related to the preceding, but are two
reasons why this problem is more difficult than the preceding one. The first reason
is that, if one exists, then there is more than one solution. Indeed, if u is a solution
and Av = 0, then u + v is again a solution. A v satisfying Av = 0 is said to be
harmonic, and there are lots of them. To see this, observe that Av = 0 <= [£|%0 =
and that |£]?9 = 0 implies that {0} is the support of ©, which by Theorem 14.5
means that it is a linear combination of dg and its derivatives and therefore that v
must be a polynomial. 14.5 means that ¢ is a linear combination of derivatives of dg
and therefore that v is a polynomial. Thus, v € .%(R;C)* is harmonic harmonic if
and only if v = ax +b. When N > 2, there are harmonic polynomials of all orders.
For example, the real part of any complex polynomial will be a harmonic element
of .7 (R?;C).

The second difficulty is that when N € {1,2}, Ié\"’ ¢ S (RN;C)", and there-
fore # is not the Fourier transform of the convolution of w with an element of
L'(A\g;C). Nonetheless, when N =1 and [ |y| u(dy) < oo, one can check by hand
that if G(()l)(x) =z, then u = G(()l) * p1 is an element of .%(R; C)" which satisfies
Au = —pu. When N = 2, one can use Green’s formula and the divergence theorem
to show that

/A@(X) log [x — y|dx = 27mp(y)

for p € .Z(R;C), and therefore, if G( (y) = —5=log |y| and there is an m > 0 for

which
[y (1626 vl ntay)) dx < .
then the function
X~ / G (x —y) p(dy)

determines a solution u € .7 (R; C)(
When N > 3, one should look for the tempered distribution of which [£|72 is
the Fourier transform. To that end, observe that

1 2 < __
|£|2/ e tIel dt:/ 92¢(€) dt,
0 0

and so |€|~2 is the Fourier transform of

e} 2 1 0 T N—=2
Go(x):(4w)*¥/ e G dt= — / t%*%*tdt:iﬁ( 7 ) ,
0 0

where I' is Euler’s gamma function. Because F(%) = —F(—) and

the area wx_1 of the unit sphere SV=1 in RY, we have that
1

(N) _
Go (%) = (N — 2wy [x|V-2

Thus, if the function
x o [ G40 y) uldy)
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determines a u € . (RV;C)", then u is a solution.
The function GSN) is called the Green’s function for the Laplacian in RY.

Exercise 16.1. Show that if f is an entire function on C (i.e., an analytic function
there), then, as a function on R? it is tempered distribution if and only if it is a
polynomial. Conclude that if an entire function is not a polynomial, then it grows
at infinity faster that any power of z.

17. CONVERGENCE OF PROBABILITY MEASURES

Define M;(RY) to be the set of Borel probability measures on RY. Clearly
M; (RY) is a convex subset of .#(R";C)*, but it is a subset that possesses prop-
erties that are not shared by most other elements of .7 (R"; (C)*, and the topology
of .7 (RN ;(C)* does not take full advantage of those properties. There are three
stronger topologies that recommend themselves. Namely: the uniform topology,
which is the one for which®

|1 = vllvar = sup{|{¢, u — v)| : ¢ a Borel measurable function with [|¢[l, = 1}

is the metric; the strong for which sets of the form
S(pyri01, - on) = {v: [{m, v —p)| <7 for 1 <m <n},

where ©,,’s are bounded Borel measurable R-valued functions on R, are a neigh-
borhood basis for p; and the weak for which sets of the S(u,7;p1,...,0,) are a
neighborhood basis for p, only now with the restriction that ¢,,’s must be contin-
uous as well as bounded.

Obviously, the strength of the uniform topology is greater than that of the strong
topology, which is stronger than the weak topology, which, at first sight (cf. Exercise
17.1), looks stronger than the one which M, (RY) inherits as a subset of . (R"; C)".
Each of them has its virtues and flaws. The uniform topology admits a metric and
is the strong topology on the dual space of the Banach space Co(R™;R) with
the uniform topology; the strong topology is not separable and points don’t have
countable neighborhood bases; as we will show below, the weak topology is both
separable and admits a metric. In addition, convergence of measures in the weak
topology is intimately related to the convergence of their Fourier transforms.

In what follows, we will study some of the properties and applications of the
weak topology.

Lemma 17.1. The sets S(p, 7501, ., pn) With p1,...,¢0, € C2(RY;R) are a
neighborhood basis at p for the weak topology.

Proof. We begin by showing if that ¢ € C2°(R; C) with |||y = 1 and r > 0, then
there exist 1, g2 € C°(RY;C) such that

{v:lerv—mlV ez, —ml <5} S{v: lp,v—m| <r}.
To this end, choose R > 0 so that M(B(O,R)) > 1— 7, and take 1 € C>(RY;R)
so that n = 1 on B(0, R) and n = 0 off B(0, R+ 1). Then

(o, v — )| < [(ng, v — )] + [{((1 = n)p, v — )]

8We will continue to use (¢, 1) to denote the integral with respect to p of a function ¢, even
if p ¢ S([RN;C). Also, (¢, v — ) = (p,v) — (o, ).
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and
(A =me,v—w| <X =npw+1-nv)
<20 —np) + [ =nv—p)] =200 —n,p) + [(n,v—p).
Thus
(L= n)g, v — )] < (g, v — w)] +2u(B(0, R)®) + [(n, v — )],
and so

{velmev—mlIvitmy—ml <3} S{v: Ke.v—ml <r}

In view of the preceding, it suffices to show that if ¢ € C.(RY;C) with o[, =1
and 7 > 0, then there exists a 1 € C°(RY;C) such

(v =l <5 = [ov—p|<r

To this end, simply choose ¢ € C2°(RY;C) so that ||¢ — ||, < %, and check that
this v will serve. O

As Lemma 17.1 makes clear, what we are calling the weak topology on M;(RY)
is what a functional analyst would call the weak* topology on the dual space
Co(RY;R)* of the Banach space Cy(R™;R) (the space of continuous functions that
tend to 0 at infinity) with the uniform norm. Indeed, the Riesz representation theo-
rem allows one to identify Cy(R”Y;R) with the space of finite signed Borel measures
on RY and so M;(R") can be thought of as a convex subset of the unit ball in
Co(RY;R)*, in which case Lemma 17.1 shows that the weak topology on M (R¥) is
the topology M1 (R”) inherits as a subset from the weak* topology on Co(RY;R)*.

Theorem 17.2. The weak topology on M1 (RYN) is a separable, metric topology.
Proof. Let {¢) : k> 1} be a dense subset of C.(R";R), and define

oo

- (o, v — p)|
p(p,v) = kZ:l 281+ [(pr,v — w)|)

Using Lemma 17.1, it is easy to check that ¢ is a metric for the weak topology on
M, (RY).

To prove separability, define D to be the set of measures > _, a,,0x,,, where
n > 1, the a,,’s are non-negative rational numbers whose sum is 1, and the x,,’s
are elements of RV with rational coordinates. Clearly D is countable. Therefore
it suffices to show that, for each u € M;(RY), each cellection {p1,...,0} C
Co(RM;R), and € > 0, there is a ¥ € D such that maxj<k</ |{¢r, v — p)| < e
Further, we need do so only for ¢p’s and a p which are supported on a ball B(0, R).

€

Given such ¢’s and p, choose r > 0 so that maxi<ip<¢ |pr(y) — or(x)] < § if

ly — x| < r. Next, cover B(0, R) with balls B(x,,r), where 1 < m < n, each
Xm € B(0,R) and has rational coordinates, and define A; = B(xy,r) and A,, =
B(x, r)\UZ:ll Ay for 2 < m < n. Finally, choose non-negative, rational numbers
ai,...,a, SO that

n

€
u m T Am 5
ax [k ;Ia n(Am)| < 3



54 DANIEL W. STROOCK

and "' _ an =1, and take v = Y _| a0y, . Then, for 1 <k </,

ks 1t — V)] < Z/A k() — orGom) dit + il S 1 Am) — am| < e
m=1 m

m=1

(]

We will use the notation i, —s s to mean that j,, — in the weak topology on
M, (RY).
Theorem 17.3. Given {j, : n > 1}U{u} € M;(RY), the following are equivalent:

(i) pn—rpt.

(if) [{p, pin — p)| — 0 for all € CE(RY;R).

(iii) For all closed sets F C RN, lim,, o0 p1n (F) < p(F).

(iv) For all open sets G C RN lim,, , _ un(G) > p(G).

(v) For all upper continuous functions f : RN — R that are bounded above,
Timy, o0 (f, i) < (f, 1)

(vi) For all lower continuous functions f : RN — R that are bounded below,
Lim,, o (fs pn) = (fs 1)

Finally, if T € B and its boundary OT has p-measure 0, then pin,—sp =
() = limy,— 00 pn (I).

Proof. We already proved in Lemma 17.1 the equivalence of (i) and (ii), and the
equivalence of (iii) and (iv) as well as that of (v) and (vi) is obvious. In addition,
it is clear that (v) together with (vi) implies (i). Thus, we need only check that (i)
implies (iii) and that (iv) implies (vi).

Assume that g, —pu. Given a closed set F, define ¢p(z) = 1 — (
Then ¢y, € C(RN; [0, 1]) and ¢ \(1r as k — oco. Hence, for all k,

— . > I
(Pr, ) = Tim (o, pn) > lim pin (F),

and 50 pu(F) = limg 00 (0k, ) > limy, o0 pn (F). Thus (i) = (iii).
In proving that (iv) implies (vi), it suffices to handle f’s which are positive as
well as lower semicontinuous. Given such an f, define

L j A4k 1
J%:ZT,C llj’kof:2—k21‘]j‘kof,
j=1
where
j Jj+1 j
o= (g5 | and o= (Goo0).

Then 0 < f ' f as k — oo. In addition, because f is lower semicontinuous, the
sets G = {x: f(x) € Jj 1} are open. Hence, if (iv) holds, then, for all k,
(fo, ) < M (fi, pn) < lim (f, o),
n—o0 n—oo

and so
(fou) = lim (fr,p) < L (f, pp).

n—oo
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To prove the concluding assertion, assume i, —p and that u(0I) = 0. Set
G =T and F =T. Then
() = pu(G) < lim pn(G) < lim g (T)

n—o0 n—oo
and
p(T) = p(F) > Tim g1, (F) > lim g, (T),
n—oQ n—oo
and so u(I") = limy, o0 pin (T). O

Another useful fact about weak convergence is the following.

Theorem 17.4. Assume that pi,—spu, let ¢ € C(RY;[0,00)) be an element of
LY(;R) as well as of (o—y L' (113 R). Then (¢, ) < lim,, (1, ). In addition,

if {on: n 21} C C(RY;R), || <o for alln > 1, and (), pn) — (1, 1), then
(ny tin) — (@, ) if ©n —> © uniformly on compact subsets.

Proof. Clearly,
(W AR p) = Tm (AR, pp) < Lim (@, o)

n—r oo

for all R > 0, and so (¢, ) <lim, . (¥, ).
Now suppose that (¥, p,) — (¥, u), that |p,| < ¢, and that ¢, — ¢ uni-
formly on compact subsets. Clearly

[(ns tin) = (s )| < [{on — @, i) | + (o 0 = fin)]-

For each R > 0, choose nr € C*°(R";[0,1]) so that ng = 1 on B(0, R) and ng =0
off B(0, R+ 1). Then, for each R > 0,

Im (g, — @, fin)]
n—oo

< Im o sup on(@) = o(@)[(nr, ) + Tm_ [((1 = n8)(n = ©), in)|

<2 lim (1= np)Y, pn) = 2((1 = nr)¥), 1),

and, by Lebesgue’s dominated convergence theorem, the last expression tends to 0
as R — oo. Similarly, for all R > 0,

Lim [{p, ftn — )|

n—oo
< Tim [(nre, pn — p)| + T (1 = ng)¢, pn) + (1 = nr)t, 1) < 2((A = nr), 1),
and so lim,, s |(p, ptn, — p)| = 0. O

We will next investigate when a subset of My (R”) is relatively compact. Because
the unit ball in the dual space of a Banach is compact in the weak™ topology, a
careless functional analyst might think that M;j(R”) is itself compact. However,
although M (R¥) is closed in the strong topology on Co(RM;R)*, it is not closed
in the weak* topology. Indeed, the sequence {6, : n > 1} C M;(R) is weak*
convergent to the measure whose total mass is 0, which is not an element of M, (R).
As this example indicates, in order for the weak* limit of a sequence {u, : n > 1}
C M;(RY) to be in M;(RY), one needs to know that the mass of the j,’s is not
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escaping to infinity. With that in mind, we will say that a subset A of M;(RY) is
tight if, for each € € (0,1), there exists an R € [0,00) such that

,}Iel,fa"u(B(O’R)) >1-—e

Theorem 17.5. A subset A C M;(RY) is relatively compact in the weak topology
if and only if it is tight.

Proof. Assume that A is tight, and let {u, : n > 1} C A. As pointed out above,
there is a subsequence of {u, : n > 1} which is weak* convergent in Co(RY;R)*
to a v € Co(RM;R)* which is a non-negative measure with total mass less than or
equal to 1, and so, without loss in generality, we will assume that {p, : n > 1} is
weak™* convergent to v. In order to check that v(RY) = 1, for any € € (0,1) choose

R so that inf,>q pp, (B(O, R)) > 1—¢, and choose 7 € C(RN; [0, 1]) so that n =1
on B(0, R) and n =0 off B(0, R+ 1). Then

v(RY) > v(B(0,R+1)) > {n,v) = lim (5, ) > lim i, (B(0,R)) >1—¢,

and so v(R") must be 1.

Conversely, suppose that A C M1 (R") is relatively compact in the weak topol-
ogy. If A were not tight, then there would exist a 6 € [0,1) and, for each n > 1, a
Wn € A such that p, (B(()7 n)) < 0, and, because A is relatively compact, we could
assume that i, —p for some p € My(RY). But if 7, € C(RY;0,1]) equals 1 on
B(0,m) and 0 off of B(0,m + 1), that would mean that, for all m > 1,

#(B(O0,m)) < (tlm, ) = W0 (tn, pin) < L p1n (B(0,1)) <6,

and so u(RY) would have to be less than or equal to § < 1. O

Exercise 17.1. Show that p,, —u if and only if p,, — g in #(RN;C)".

18. THE FOURIER TRANSFORM FOR M (R™)

In many applications, it is important to know the relationship between the weak
convergence of measures and convergence of their Fourier transforms, which are
often called characteristic functions in the probability literature.

Theorem 18.1. Given {u, : n > 1} U {u} € M;(RY), u,——pu if and only if
fin (&) — (&) for each &€ € RN. In fact, if pn——u, then fi, — fi uniformly on
compact subsets.

Proof. Suppose that ji,, — ji pointwise. Then, by Parseval’s identity and Lebesgue’s
dominated convergence theorem, for each ¢ € . (RN ;C),

(2m) ™, pn) = /@(E)ﬂn(—ﬁ) dg — /@(é)ﬂ(—ﬁ) d¢ = (2m)" (o, 1),

and so, by Theorem 17.3, fty, — .

Now suppose that ji,, —p and that &, — £ in RY. Then the functions ¢, (x) =
e"&n XN converge uniformly on compact subsets to the function p(x) = e*(€>),
and therefore, by Theorem 17.4, fi,(&,) — [(€). Hence fi,, — p uniformly on
compact subsets. ([
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Undoubtedly the most famous application of Theorem 18.1 is to the derivation
of the Central Limit Theorem in probability theory. The C.L.T. states that if
{X,, : n > 1} is a sequence of R¥-valued, mutually independent, uniformly square
integrable random variables on some probability space (2, F,P) have the properties
that their expected value is 0 and

nli_)rr;o% D E[(&Xm)2n] = 1€
m=1

for all £ € R, then the distribution o,, of
ZZL:l Xm

1
nz
132 . .
converges weakly to vV, where y(dz) = (27r)_%e_7 dz is the standard Gaussian

measure on R. To phrase this in analytic terms, let u,, be the distribution of X,,.
Then the distribution of > _| X,, is the measure pq * - - - * p,,, and so

on(€) = [] im (%)

is the Fourier transform of the distribution o,, of - "
n2

m=1

X,. Next note that,
by Taylor’s theorem,
() = 14 25 [(€ 00w i) = 2 [ (€% ) + 0 (1),

where, because the X,,,’s are uniformly square integrable,

lim n sup om(%) =0.
n—o0  m>1

Hence, because the X,,, have expected value 0 and

tim > [ (€302 () = €]
=1

n—oo N

one can use |log(1 —¢) —¢| < ¢? for |t| < L to check that

n b
‘5‘2 —

5u©) = TL (1= 55 [ (€025 i) +om(2)) — % =7¥(e).
m=1
In spite of Theorem 18.1, it is not true that a sequence of probability measures
converges weakly just because their Fourier transform converge pointwise. The
reason why is that if the sequence converges weakly, then it is relatively compact
and therefore must be tight. The following theorem of P. Lévy shows how one can
use Fourier transforms to test for tightness.

Theorem 18.2. (Lévy’s Continuity Theorem) If A C M;(RY), then A is tight
if and only if for each € > 0 there exists an r > 0 such that
(18.1) sup |1—ag)] <e

ne
|g1<r

Hence, {pin, : n > 1} C My (RY) is weakly convergent in My (RY) if and only if i,
converges uniformly in a neighborhood of 0, in which case there is a pu € My (RY)
to which {uy, : n > 1} is converging weakly.
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Proof. Assume that A is tight and therefore relatively compact. To see that (18.1)
hold, suppose it did not. Then there would be an ¢ > 0 such that, for each
n > 1, ’1 — [Ln(én)| > ¢ for some u, € A and &, € B(Q%). Because A is
relatively compact, we could choose these ., so that they converge weakly to some
p € My (RY), in which case there would exist an m > 1 for which

1= O]V [a(&) = €)] < 5

when n > m and [£| < £, which would mean that € < |1 — /i, (&n)] < €.
Now assume that (18.1) holds. To show that A must be tight, begin by observing
that

1= A€ = [ (1 cos(g,y)as) ulay).

Therefore, if? e € S¥~1, for all 7 > 0,

1 /" . sin(r(e,y)r~)
;/o |1 - ,u(te)| dt > /IRN\{O} (1 - —r(e,y)RN ) w(dy).

sinT

Now set

:th} for ¢ > 0.

s(t) = inf {1 -
Then s(t) > 0 for all t > 0, and, for all R > 0 and e € SV~
. 1" .
sup (1= jicte)] 2 1 [ |1 () b 2 srRu((y Ve v)a] 2 R))
te(0,r 0

Since )
p({y:ly|=R}) <N sup n({y: |(e,y)rn| > N"2R}),
ecSN—-1

we have the estimate

(18.2) p({y: lyl > R}) < sup |1 — fu(€).

N
s(rN"?R) jgI<r
Now let € > 0 be given, choose r > 0 so that sup¢|<, [1 — (§)] < % for p € A,
and take R = NT% Then

sup u({y : |yl > R}) <e
neEA

O

Bochner found an interesting characterization of characteristic functions, one
which is intimately related to Lévy’s continuity theorem. To describe his result,
say that a function f : RN — C is non-negative definite if the matrix

((F(& =€) 1<jren

is non-negative definite for all n > 2 and &;,...,&, € RV, which is equivalent to

saying
n

> F(& —&)ayar >0
Jik=1
for all aq,...,a, € C.

9SN-1 is the unit sphere in RV,
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Theorem 18.3. A function f : RN — C is a characteristic function if and only
if [ is continuous, f(0) =1, and f is non-negative definite.

Proof. Assume that f = fi for some u € M;(RY). Then it is obvious that f is
continuous and that f(0) = 1. To see that it is non-negative definite, observe that

n n

Z f(éj —£k)achk:/ Z el(ﬁjfﬁk,x)mzvajafk u(dx)
jk=1 G.k=1
2
/ Z %%y p(dx) > 0.
J,k=1

Now assume that f is a continuous, non-negative definite function with f(0) = 1.

Because
1=(rle 'Y)

is non-negative definite, Jm(f(&) + f(—€)) and Im(if (&) — if(—&)) are both 0,

and therefore f(&) = f(—€). Thus A is Hermitian, and because it is non-negative
definite, 1 — |f(€)|?> > 0. Therefore |f(£)| < 1. Next, let ¢ € . (RV;R), and use
Riemann approximations to see that

/ F(€ — )b (€)d(n) dedn > 0.

Assume for the moment that f is in L'(Agx; C), and set
o) = (2m) "~ [ &€ p(g) de.
By Parseval’s identity, Fubini’s Theorem and the fact that 1(£) = (=€),
(2 [ 102 dx = / £ (-€yde = [ £ ) (~€) de
— [[ 1©iE+mim dgan = [[ 16 - myi(€)itn) dgn = o,

Hence, since h is continuous, it follows that A > 0. In addition, by the Fourier
inversion formula for L!(Agn;C),

L= £0) =t g+ S0) = [ e (@) do = [ hdra,

and so f is the Fourier transform of the probability measure du = h dAg~.

x|2
To remove the assumption that f is integrable, set g;(x) = (27rt)’%e*% and

+ 2
define v;(dx) = g;(x) dx. Then 7;(£) = e~ 5= and therefore ft =7 f is a continu-

ous, Agrn-integrable function that is 1 at 0. To see that f; is non-negative definite,
note that

Z fe(§ ajar = Y f(& - Sk)ajaik/ei(grﬁk’x)w Ve (dx)
jk=1

7,k=1

N / D F (& — &) (azel €N ) (agel@an ) ) 5y (dx) > 0
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Thus f; = j1; for some pu; € M;(RY), and so, since f; — f uniformly on compact
subsets, Lévy’s continuity theorem implies that u; tends weakly to a u € M;(RN)
for which f = fi. O

Because it is difficult to check whether a function is non-negative definite, it
is the more or less trivial necessity part of Bochner’s Theorem that turns out in
practice to be more useful than the sufficiency conditions.

Exercise 18.1. Given f € Cy,(RY;C) with f(0) = 1, define the quadratic form

ol = [, o€~ nyimydean

for ¢, € #(RY;C). Show that this quadratic form is non-negative (i.e., (¢, ) >
0) if and only if f is a characteristic function. Further, if f = [, show that
(0,%); = (¢,9¥) L2 (uc) and therefore that (-, -)s is non-degenerate (i.e., (@, 0); =
0 = ¢ =0) if and only if x(G) > 0 for all non-empty open sets G.
Exercise 18.2. Here are some interesting facts about characteristic functions.

(i) It is easy to check that if y € My (RY), then

() — @(€)|* < 2Re(1 — fi(n — §)),
and so, by Theorem 18.3, one sees that if f is a continuous, non-negative definite

function for which f(0) = 1, then |f(£)| < 1 and |f(n)—f(&)]* < 2(1—-Ref(n—£)).
Show that these inequalities hold even if one drops the continuity assumption.

Hint: Use the non-negative definiteness of the matrices

1 f(=¢  f(=m)
LoTCOY wa (10 1 fe-m)

<ﬂ@ ) fon) fm—€ 1
to see that f(—&) = f(€) and that

2> — 22| (n) — f(€)| +2(1 — Ref(n —€)) >0
(ii) Without using Bochner’s theorem, show that if f; and f are non-negative
definite functions, then so are fifo and, for any a,b > 0, af; + bfs is also.

Hint: Show that if A and B are non-negative definite, Hermitian N x N matrices,
then ((AkveBk’g)>1<k <N 18 also. One way to see this is to use the fact that B
admits a square root.

(iii) Suppose that f : RY — C is a non-constant function for which f(0) = 1.
Show that if lim)yx\ o %‘(QX) = 0, then f cannot be a characteristic function. In

particular, if o > 2, then e~1él” is not a characteristic function.

(iv) Given a finite signed Borel measure p on RY | define

&) = [ 1€ uia)

and show that o = 0 if and only if = 0.

Hint: Use the Hahn Decomposition Theorem to write p as the difference of two,
mutually singular, non-negative Borel measures on RY.
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(v) Suppose that f : R — C is a non-constant, twice continuously differentiable
characteristic function. Show that f”(0) < 0 and that f”(O) is again a characteristic
function. In addition, show that ||f/||2 V ||f”|l. < |f”(0)] and that |f(n) — f(&)] <
£ O] — €.

(vi) Suppose that {u, : n > 1} € M;(R) and that f(&) = lim,— o0 fin (&) exists
for each € € R. Show that f is a characteristic function if and only if it is continuous
at 0, and notice that this provides an alternative proof of Theorem 18.2.

(vii) Let p, € M1(R) be the measure for which d“" = (2n)_11[,n7n]. Show
that @, — 140y pointwise, and conclude that {u, : n 2 1} has no weak limits.
This example demonstrates the essential role that continuity plays in Bochner’s and
Lévy’s theorems.

19. INFINITELY DIVISIBLE PROBABILITY MEASURES

The convolution product turns M; (RY) into a commutative ring in which &g is
the identity. A p € M;(RY) is said to be infinitely divisible in this ring if, for each
n > 1, there exists a p1 € My (R”) such that

n times

and the set Z(R?) of infinitely divisible measures is an important source of building
blocks for constructions in probability theory.

For probabililists, an element of Z(R") is the distribution of a random variable
which, for each n > 1, can be written as the sum of n identically distributed random
variables. Using commutativity, it is easy to check that set Z(RY) of infinitely
divisible measures is a subring of M; (R™).

A famous theorem of Lévy and A. Khinchine describes the characteristic function
of every element of Z(RY). Namely, u € Z(RY) if and only if

(€)= exp(i(, e — 5 (€, 4€)
(19.1)

+ /(ei(&’y)Hg —1—ilpe,nw)(E, y)lRN) M(dy)),

for some b € RY, non-negative definite, symmetric A € Hom(R";R"), and Borel

measure M on RY such that M({0}) =0 and [ 1_‘:";42 M (dy) < oco. The expression

in (19.1) is called the Lévy—Khinchine formula, a measure M satisfying the stated
conditions is called a Lévy measure, and the triple (b, A, M) is called a Lévy system.
It is clear that if the right hand side of (19.1) is a characteristic function for every
Lévy system, then these are characteristic functions of infinitely divisible laws.

Indeed, if p corresponds to (b, A, M) and I3 corresponds to (f 4 —) then g =

n’n’n
(po)"™.

Proving that the function fb,4,0r) on the right hand side of (19.1) is a charac-
teristic function is a relatively easy. To wit, f(o1,0) = 9, where v is the standard
Gaussian measure on R, and so it is easy to check that /b, 4,0 is the characteristic
function of the distribution of x ~» b+ Azx under ~. Also, if the Lévy measure M
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is finite and 7 is the Poisson measure given by

= M
(19.2) ma = e MED ;
n:

)

n=0

then

() = e MEY) 3 M = e MEHIIE) Z oxp (/(ez@,y)w _ 1) M{(dy),
ne0 n.

and 5o Tar = f(by,,0,0m), Where by = fB(O,l)yM(dy)' Hence, when M is finite,
fb,4,0r) is the characteristic function of yp_1,,,4 * mas. Finally, for general Lévy
measures M, set My (dy) = 11 oy (ly[)M(dy). Then M, is finite, and so fip,a,n1,)
is a characteristic function. Therefore, since f, 4,a1,) — f(b,a,n) uniformly on
compact subsets, Theorem 18.2 says that fp 4 ) is a characteristic function.

There are no easy proofs that the characteristic function of any pu € Z(RY) is
given by (19.1). The first step is to show that if u € Z(RY), then there is a unique
¢ € C(RY;C) such that £(0) = 0, {58 is bounded, and fu(€) = ¢“€). Showing
that £ exists and is unique comes down to showing that i never vanishes. To do
that, choose r > 0 so that |1 — i(€)| < 3 when |¢| < 7. Then there is an ¢ for which
00) =0, |€(&)| < 2, and (&) = €“®) if [¢] < r. Using logz = —> o7 | (17;)” when
|1 — z| < 1, one sees that |£(&)] < 2 for [€] < 7.

Since ﬁ%(f)" = a(§), @(5) # 0 when |€] < r, and so, by uniqueness, it must be

that 1 (€) = e for |€| < r, and therefore |1 — 11 (€)| < 2 when [€| < r. Hence,

by (18.2), for any R > 0,

2N
1 : > R}) < ————,
pi({y: [yl = R}) ms NI R
and so
— = 2N
i (€ = 1=y (ay) < lel 20y (i Iyl 2 ) < JelRr— 2
B " " ns(rN-2R)

Given £ # 0, take R = -, choose n so that —2Y_—— < 1 and conclude that
4/¢] ns(rN~ 2 R) 4
|1 — 7 ()] < % and therefore |1(€)| > 27™. This proves that {i never vanishes

and therefore that 1 = ‘. In addition, by using the fact that limg % =1 the
preceding line of reasoning shows that there is a C' < co such that [1 —e™n | < £

when n > C|€|?, and therefore 1‘5\3'2 is bounded.

Knowing that iz = e, one knows that

(&) = lim n(I(€) - 1).

n—oo n

Thinking of £ as a tempered distribution, the challenge is to describe the distribution
of which it is the Fourier transform. Thus, set u = £. Then, since ¢ has at most
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quadratic growth,

(20" (g = (208) =t n [ 0() ([ (@0 — 1)y () g

- nhﬁrrgon/ (/(eil(s’x)“w - 1)@(5))‘%) M%(dx)
= (2m)¥ nlLH;o”/(W(X) - <P(0))u%(dx),

and so
{pyu) = nligr;on/(so(X) = ¢(0)) 1 (dx).

In particular, u satisfies the obvious RY analog of the minimum principle in (14.4).
In addition, because £(0) = 0 and = l,

(o, u) = / or(€)i(€) de = (2n) R / H(REN(E) dé
= 20" [ p((r ey dg — 0

as R — oo. Thus u satisfies the R¥-analog of (14.5), and therefore, by the R¥-
analog of Theorem 14.7, we know that

N
1
(o, u) = 3 Z A; j0,05;0(0) + Zb@‘@zﬁ@@)
i,j=1 i=1
+ [ (60 = (0 = a0 ) (5 Vo(0)) g ) M),
where (b, A, M) is a Lévy system.
To compute the Fourier transform of u, introduce the operator
1 N
Lo anmpx) =5 D A0 0e,0(x) + Y bide, ()
i,j=1 i=1

+ /(so(x +¥) = () = (b, Ve(x)) g ) M(dy):

What we have shown is that (p,u) = L, a,a)9(0). Using G/I]\go(.ﬁ) = —1&;¢(€) and
Fubini’s theorem, one sees that

ﬁ(b,A,M)SO(f) = @(f)f(b,A,M)(*S)a

where
Liw,a,01)(§) = 10g fib, 4,00
= _%(éa AS)RN + Z(bvg)]RN + /(ez(&y) -1- Z]-B(O,l) (y) (évy)RN)M(dy)

Hence, by Parseval’s indentity,

(@,0) = 2m)N(p,u) = 2m)N Liv,a,00)(0) = (@, Lb a0 (€)),

and so £ = é(b,A,M)~
We will now use (19.1) to prove some properties of the associated measures
based on properties of the Lévy system. Use pp a,n) € Y(RN;(C)* to denote
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the probability measure of which fy a,ar) is the Fourier transform, and set i, =
Htb,tA,en) for > 0. Then

@m)NOu(, 1) = (B L ann) v eainn) = )N (Lo a vy, 1ht)-

That is, we have shown that

(19.3) O0u(p, b, an)) = (Lo, A, M)Ps (bt AtM))-

Theorem 19.1. If either A is non-degenerate or M(G) > 0 for all non-empty open
sets G C RN\ {0}, then pw ) (G) > 0 for all non-empty open sets G C RN,

Proof. First observe that pp, a,n) = 0b * f4(0,4,0), and therefore we can assume
that b = 0. Next note that p1o,4,0) = 7a * f4(0,0,m) Where 4 is the distribution
of z ~ A2z under v, and so, if A is non-degenerate and therefore v4 has a strictly
positive density, f1(0,4,17) does also.

Now assume that b =0, A =0, and M(G) > 0 for all open ) # G C RV \ {0}.
Given an open G # (), choose an n € C*°(RY; [0, 1]) which is strictly positive on G
and vanishes off of G. Then

Looann() = [ (n6x+3) = 16) = Lp(o.(3) (T160). ) ) M)

=/n(X+.V)M(dy) >0

if x ¢ G. Hence, if f(t) = (1, f1(0,0,ta1)), then f >0 and, by (19.3), 0,040 (G) =
0 = f'(t) > 0. But po,0n)(G) = 0 also implies that f(t) = 0, which, by the
first derivative test, is possible only if f'(t) = 0. Hence f(¢) > 0 for all ¢t > 0, and
80 f1(0,0,01)(G) > 0. O

Theorem 19.2. If N =1, then u(b,AM)((foo,O)) =0 if and only if

(19.4) A=0, M((-00,0)) =0, and /|| 1yM(dy) <b.

Proof. Observe that, for n > 1,

{xeR":z;<0for1<j<n|}C{xecR": ij<0 ,
=1
and therefore 111 ((—00,0))" < p*((—00,0)) for any p € M (R).

Now assume that p(bﬁA,M)((foo,O)) = 0. Since fyb,a,m) = YA * Hp0,M) and
v4(G) > 0 for all open G # () unless A = 0, it follows that A = 0. Next observe
that f(,0,0) has a bounded analytic extension to {¢ € C: fRe¢ < 0}, and there-
fore M((foo,())) must be 0. Finally, to prove the inequality in (19.4), set pi =
H(b 0,0 ). Since p1 = pi", the observation above shows that fh1 ((—oo, 0)) =0, and

thgrefore7 if > 0on [On, o0) and ¢(0) = 0, then, by (19.3),
=1 1) — >
L.o.an$(0) = lim n({p,p1) —(0)) 20,
and so

be'(0) + / (0(y) — 1119y (0)) M(dy) > 0.
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Now choose 17 € C*°(R; [0, 1]) so that n = 1 on [—%, 3] and n =0 off (—1,1), and,
for r € (0,1), set ¢, (x) = yn,(y) where n,.(y) = n(¥%). By the preceding applied to
(p"’7

/1<u) - (y))y M(dy) > 0
and so

yM(dy) < b for all r € (0,1).
(r1)
Finally, assume that (19.4) holds, and set M, (dy) = 1} o) (y) M (dy) and b, =
b— [y M, (dy) for r > 0. Then (19.4) holds for (b, 0, M,.) and (cf. (19.2)) p(s,0,nm,)
O, * Ta1,, from which it is clear that jug 0 ar,)((—00,0)) = 0. Therefore, since

L4(6,0,M,) — K (b,0,00)» 1(b,0,01) ((—00,0)) = 0. U

Exercise 19.1. If M is symmetric, show that the integral in (19.1) can be replaced
by

/ (cos(€,y)mx — 1) M(dy).

If M(y) = |y|=1=2 for some «a € (0,2), show that

/ (cos(&, y)gv — 1) M(dy) = [¢[* / (cos(e, y)w — 1) dy,
SN—l

for every e € S¥~1. In particular, by combining this with part (iii) of Exercise

18.2, conclude that e~ l¢I” is a characteristic function if and only if « € [0,2].

20. SINGULAR INTEGRAL OPERATORS

The classic Poisson problem is that of finding, for a given a function ¢, a solution
u to the equation Au = —¢ in RY, and one of the questions that arises is determin-
ing how properties of the function ¢ are reflected by the solution u. In particular,
one wants to know whether second order derivatives of u can be estimated in terms
of ¢. When N = 1, this problem doesn’t arise because —¢ is the second derivative
of u. However, when IV > 2, it is not at all clear to what extent the entire Hessian
matrix of u is controlled by its trace.

To address this question, it is best to begin by giving an integral representation
of the solution u. Depending on dimension, u is given by

x) = [ 686 y)ely) dy,

where G(()N) is the (cf. §16) Green’s function for the Laplacian in RY:

G§V ) = {i log x| itV =2
o= EN 23
Thus
dute) = [ G o)y
where
! LT
( ) i,j (%) wy_1|x[V . x|
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Because GEZ;Z) is not an integrable function, one has take care when interpreting

convolution with it. On the other hand, since GéN) € S(RN;C)", sois is GE j ), and
therefore ¢ * Gl(-f;[) makes perfectly good sense when ¢ € .%(RY;C). The question
then is whether, using this interpretation, one can derive estimates.

Before getting into the details, it is important to know what sort of estimates are
possible. In particular, because Ggg) is neither integrable nor bounded, one should

not expect that convolution with it will map either L!(Ag~; C) or L™ (Agn~; C) into
itself. Even so, it turns out (cf. (24.2) below) that it maps LP(Ag~;C) boundedly
into itself when p € (1, 00), and what follows is one way to prove that.

21. THE HILBERT TRANSFORM

A key fact about Ggg) is that it is a Borel measurable, homogeneous function of
order N whose integral over S¥~! is 0. That is, it is a function of the form

_2x)
HO =
where Q | SV=1 € L' (Agnv-1; C) satisfies Q(rx) = Q(x) for all » > 0 and
/ Q(w) Agx 1 (dw) = 0.
SN—-1

A Calderon—Zygmund kernel k determines a tempered distribution by the prescrip-
tion

(p, k) = }1{5 . o(y)k(y) dy
= lim . (e(y) — 0(0)1_1 1 (¥))k(y) dy = /(@(y) —@(0)1_1 1 (y))k(y) dy.

Such functions k are called Calderon—Zygmund kernels because Calderon and
Zygmund were able to prove a large number of deep results about convolution
with respect to them. In particular (cf. (23.2) below), they showed that, in great
generality, for each p € (1, 00) there is a constant C,, depending on N and , such
that [l * klzo(x,vi0) < CpllellLr o 0)-

When N = 1 there is, up to a multiple constant, only one C-K kernel, namely, the
function h(z) = % Convolution with respect to h was studied originally by Hilbert
and has been known as the Hilbert transform ever since. A seminal observation
made by Hilbert is that, even though h ¢ L!'(\g;C), this transform is a bounded
mapping of L?(Ag; C) into itself. Indeed, thinking of h as a tempered distribution,
we showed in (6.2) that h(€) = wsgn(¢). Thus, we know that [¢ * hll2(aesc) <
ol 22 ;) -

In order to prove the estimate for p # 2, I will use an beautiful approach that
I think was introduced by M. Riesz and is closely related to the ideas we used
to compute h. Recall the functions py(x) = 71m2+y2 and ¢, = }m Trg which
are, respectively, the real and imaginary parts of * when z = = + 1y. Next, set
hy(x) = 1py oc)(z)h(z), and observe that |h, — quLl()\R;(c) = th — a1l ey <
2 and therefore || * hy — ¢ * gyl Lo (ap:c) < 2@l Lr(aesc)- Thus, showing that
sup, s 19 * @yl Lr (resc) < Cpll@llLr (agsc) for some Cp < oo will show that

sip llo * hyll e (apsc) < Cpll@ll L (rg;cy for some other Cp < oo.
y
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The advantage that g, has over h, is its connection to analytic functions. Namely,

since * = p,(z) + 1qy(z) when z = 2 + 1y,

f(Z)_QD*py(x)Jrup*qy(x);/x—fz(j)_gdg'

Further, because [|py|lzr(ap:0) = 15 [0 * 2yl e psc) < @l Le (arsc)» and Riesz’s idea
was to use these observations to control ||@*qy || r(re;c) in terms of |[@*py || Le(ag;c)-
To do so he needed the fact that, for each n > 1 there exist finite constants A,, and
B,, such that

(Tm¢)*™ < A, ReC* + B, (Re¢)?" for ¢ € C. (%)
Proving () comes down to showing that cos®™# < A, cos2nf + B, sin®" @ for
0 € [-m,m|. Clearly, if § € [—%, %] U [%”, %T], A,, can be chosen so the A,, cos 2né
dominates cos?”#; and for  not in those intervals, B, can be chosen so that
B, sin®”  dominates cos®™ 0 — A,, cos 2n6.

With the preceding at hand, we know that

/ (¢ % gy(2)*" dv < A, FRe ( / fl@+ay)™ dx) dz + B, / (0% py(2))*" da.

What Riesz saw is that he could use Cauchy’s theorem to prove that the integral
of z ~ f(x +1y)?" is independent of y > 0. Indeed, consider the rectangle {z =
x4 |z] < R& y1 <y <y} Cauchy’s theorem says that the contour integral
of f2" around the boundary is 0. In addition, since ¢ € .#(R?;C), as R — oo
the contribution to the integral from the vertical parts of the boundary tends to
0, and so the integrals over the horizontal parts are equal. Finally, as y * oo,
[ f(x +w)*" dz — 0, and so we now know that

1
lle * qyllL2n sy < Ba™ 1@l L2 (agsc) -

Hence, we have proved that, for each n > 1 there is a C5,, < 0o such that

(21.1) sup [l % hyllL2n (rpse) < Conll@llL2n (rpsc)-
y>

22. INTERPOLATION

Although (21.1) is already significant, one should suspect that a similar estimate
holds for all p € (0,00), not just even integers. However, because Riesz needed fP
to be an analytic function, he needed p to be an integer; and because he needed
(Ref)P to be non-negative, he needed it to be an even integer. It was to overcome
this problem that he proved a powerful general result, known as an interpolation
theorem, that can be viewed as an operator theoretic analog of Holder’s equality.
The following version and proof of his result is due to G. Thorin.

Theorem 22.1. (Riesz—Thorin) Given a o-finite measure space (E,F,u) and
numbers

1 < po, p1, 90, q1 < 00 with po A p1 < o0,
assume that T is a linear operator on LPO(u; C)NLP (u; C) into L% (u; C)NLI (u; C)
satisfying
1T fll 9s (uscy < Ml fllzes uscy for j € {0, 1},
where MoV My < co. Then, for each 6 € [0, 1]

||TfHng (p;C) < M11_9M20||f||Lp9 (p;C)»
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where L = 1=¢
Po

Thorin’s proof of Theorem 22.1 requires to following simple version, due to
Hadamard and known as the three lines theorem, of the Phragmen—Lindel6f theo-
rem.

Lemma 22.2. Suppose that F' is a bounded continuous function on the closed strip
S ={z € C: Rez € [0,1]} which is analytic on the interior of S. If |F(wy)| < mg
and |F(1 + )| < my for all y € R, then |F(2)] < mg *mi for z =2+ € S.

Proof. By replacing F' w1th F( )

, one can reduce to the case when mg = m; =1,

in which case one needs to show that |F(2)] <1 for z € S. Thus we will assume
that mo = my = 1 and will prove that |F| < 1.

If limyy| s 00 SUPLefo,1] [£/(% + )| = 0, then the maximum principle for analytic
functions says that

2161.15') |F(2)| = sup{|F(ac—|—zy)| t(z,y) € ({071} x [-R, RD U ((071) x{-R, R})}
[Jmz|<R
— ZE%HF(W) VIFQ+w)l} <1

Even if F(x + wy) doesn’t tend to 0 as |y| — oo, for each n > 1, the function

F.(z)=¢ R F(z) does. In addition, |F}, (sy)|V|F,(1+w)| < 1, and so |F,,(2)] < 1.
Now let n — oo. (]

Proof of Theorem 22.1. Without loss in generality, we will assume that py < p;.
Also, ¢’ will be used to denote the Holder conjugate of ¢ € [1, o0].
The first step is to check that it suffices to prove that

/ 9(ETF(€) p(de)| < MI~001? ()

for simple functions f and g satisfying || f||rre(uc) = 1 and [|g]|, 4 (O = 1. In-
deed, [|T f||Lao (u:c) equals the supremum of |ngf du| over simple functions g with
||g||Lqé(M,C) =1, and, if p; < oo, then, for any f € LPo(u;C) N LP*(u; C), we can
choose simple function f,, such that f, — f both in LP?(u;C) and in LP*(u;C).
Hence, if (x) holds for simple functions, then, by Holder’s inequality,

||TfHLq9(u, < HT(fn - f)”ng (1;C) + HTanLq@(u;(C)
<NT(fn = Ol (e 1T G = PN s sy + Mo~ ME || fall oo sy
< M0170M1 (2||fn f”LPo #C)an - f“ipl(#;(ﬁ) + ||f||Lp9(,u;(C))a

from which the required estimate follows when n — oco. When p; = oo, one can
choose the f,’s so that they converge to f in LP*(u;C) and are uniformly bounded
and thereby use the preceding argument to get the desired result.

Turning to the proof of (x), let # € (0, 1) and determine p and g by % = 17_09 +4£

and = 1 2 Next define p(z) and ¢(z) for (cf. Lemma 22.2) z € S so that
L= 1= = and =122 4 2 Given simple functions
p(2) p P ( ) 0 @’

n

= Z amlr, and g = Z bmla,, with |[fllLeuc) =1 and [|g]| Lo (0) = 1

m=1 m=1
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define f, = |f|1><pz>‘-—]’§| and g, = |g|7® (& |q|, where % is taken to be equal 0 if
h(€) = 0. Then

Z || p<z)

n
_d b
]'Fm, a‘nd 9 = Z |bm|q’q(z) - 1Anz'
m=1 ‘bm|
Now define

F(z) Z/gz(E)sz Z ‘ak‘p(Z) |b€|q(z) b

k=1 [bel J s

T1r, (&) p(dg).

Then F is a bounded continuous function on S that is analytic function on the
interior of S, and so, by Lemma 22.2,

|F(0)] <mi~"mf where mg = sup |F(uy)| and m; = sup |F(1 + )|
yeER yER

Thus, what remains is to check that mg < My and m; < M;. But, by Holder’s
inequality,

|F(Zy)‘ < ”gw”Lq(’)(u;C)”Tfly”LqO(u;(C) < MO”QZZ/”LQ()(MC)”fly”LpO(u;(C)v

and
n
eyl 7b0 ey = ZH@ ki = lam[Pu(Tn) =1
m=1
Similarly
el ey = 1 Nl =1, and lgnall T =1

[l

By combining (21.1) and Theorem 22.1, we know that there is a C), < oo such
sup,~o ¢ * hyllLr ey < Cpll@llLr(aasc) for each p € [2,00). To extend this result
to p € (1,2), observe that if p € (1,2), then p’ € (2,00). Hence, since

(W, 0% hy)r200p0) = —(¥ * by, @) 12 (Ass0)
we have that
[(¥, ¢ % hy) L20p0) | < Cpr Yl Lo (s 101 22 (50

and therefore that, for all p € (1, 00),

(22.1) sup [0 % By ll Lo (rzse) < Cpllell e (agic) s
Yy

where C, = Cy when p € (1,2).

Exercise 22.1. Note that [|@[lz2, vic) = (27) % [0l L2 aeic) and (@]l e a,n0) <

N
ol L1 (2, c)» and use Theorem 22.1 to prove that ||| ;. g €) < < (2m) ¥ ||@ll Lo (agwi0)
for p € [1 2]. Next, let ¢ € LP(Agw; C) for some p € [1,00), and define T'p = ¢ x1).
Remember that ||T<P||LP(ARN;<C) < el gm0 1Yl L1 ogn 0y and |79l Lo (anic) <
Iellze (om0 191l L (1, s> and use Theorem 22.1 to prove Young’s inequality

1 1 1

1Y %Yl Lroapn:c) S Nellzron oYl Laog e if i + i 1>0.
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23. THE METHOD OF ROTATIONS

Calderon and Zygmund noticed that the Hilbert transform, and especially (22.1),
can be used to prove the LP boundedness of their kernels when Q € L!(A\gn-1;C) is
odd (i.e., Q(—w) = —Q(w) for w € SN~1). For example, set ky (x) = L, o) (|x])k(x)
for (x,y) € RY x (0,00). Then because

k(&) = lim e EX) k(x) dx

R=oo Jy<ix|<Rr

1
= lim Q(w) / e E&@) Z dr ) Agv—rdw,
Rmroo Jgn—1 (v, R r

if Q is odd, one has that

— 1 1
- lim L wr(ew) L »
ky(§) Rh—%o 5 /SN?1 Qw) <~/y<|r|§Re . dr) Agv-1(dw)

- /SIH Qw)hy (€. w)) Agw-1 (dw).

Hence,
(23.1) ky(€) = %T /§M1 QUw)hy (€, w)) Agn -1 (dw),
and so

Bl < T2z oo lyll

2
In particular, we already know that

7r||Q||L1(>\~ -1;C)
lo*klzonmo < ——5——lelezowo:

The same trick as we just used allows us to prove estimates for general p € (1, 00).
Namely, again using the oddness of k, one can first write

ey =5 [ 0 ( / plxe rw)‘ff") Av - (dw),

and then, after applying Minkowski’s inequality,

1 dr
||S0*k€HLP()\RN;(C) S 5/ |Q((.U)| (/ / gp(x_rw)i
SN-1 RN |J|r|>y r

Finally, for fixed e € S¥~!, choose Euclidean coordinates for RY so that e points
in the direction of the first coordinate. Then

/RN /T>y<p(x—re)ir
:ﬂp/"‘/(/RHSO*hy(-7m2,...,xN)](x1)|pdx1>dx2-~-de

RN-1

<G [+ ot aae s an ) picy dnz - day = (TCP el i

RN-1

1
p P
dX) )\SN—I (dw)

dx
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which, together with the preceding, leads immediately to
(23.2) [l Ell Lo (3w i) < Fpllollzea,n o) for p € (1,00),
where K, = mCy ||| L1

sN—1;C)*
24. THE RiESz KERNELS

In a sense which can be made very precise, the basic C-Z kernels for RY are the
Riesz kernels r;(x) = chx‘wTiH, 1 <4< N, where

-1
cN = (%/ |w1|)\SN_1(dw)> .
SN—-1

Obviously, the preceding applies to each of these. To get a feeling for how
convolution with respect to r; acts, apply (23.1) to see that

1TCN

(&) = 5 /SN?1 wisgn (&, w)) Agv—1 (dw).

Certainly, 7; is homogeneous of degree 0, and so we need only worry about & € SN 1.
Given &€ € SVN1, write w = (w, £)€ + w'¢. Then

/SAFlwisgn((S7 w)) Agn—1(dw)
=¢ k/SNil \(w,{)\ )\SN—l(dw) + /SN?1 (wLﬁ)l_sgD«ﬁ,w)) AsN—l(dW).

Because the integrand in the second term is an odd function of w ~ (&, w), the
second term vanishes. Hence,

—~ 1§
(24.1) ri(§) = Gk ¢ e RV \ {0}.

To evaluate cp, observe that ¢y = L g trivial. When N > 2, use

™

/ w1 Agx—1 (dw) = UJN—Q/ pl(1—p%) = dp
SN—1 (—1,1)

N-3 2&)1\7_2
ZUJN,Q/ (1—t) 2 dt = ZQQNfl,
(0,1) N -1

where Qy_; is the volume to the unit ball in R¥ 1 and so ¢y = e

From the Riesz transforms one can build other kernels. For instance, recall the

kernels in (20.1). Because 0p,0,;0 = —(Agp) * G —&&p = |£|2Ggg)¢7, and so

4J

G 6) = it = —ROT(E)

—(¢*7;) *r;j, and so

(V)
1]

N
(24.2) lo* G rrn o) < Kol o) for p € (1,00).
Equivalently, we now know that

102,00, 01| Lo (apn10) < KFIIA@ Lo (ax 0y for p € (1,00).

Hence, ¢ * G



