
TOPICS IN FOURIER ANALYSIS

DANIEL W. STROOCK

0. Introduction

This is a set of notes that I wrote for a course that I intended to but did not give
at MIT during the spring semester of 2024. It covers a number of topics related to
the theory and application of Fourier analysis.

I begin in §1 by proving the L2-convergence of Fourier followed by elementary
results about pointwise convergence for sufficiently smooth periodic functions. In
§2 I discuss what goes wrong in the absence of periodicity, and in §3 I apply Fourier
series to compute the Riemann ζ at odd integers using the Bernoulli polynomials,
which I also use to develop the Euler–Maclauren series. After comparing summa-
bility methods in §4, I give a brief introduction in §5 to the summability results of
Dirichlet, Feijér, and Lebesgue.

In section §6 I introduce the L1-Fourier transform, followed in §7 by the compu-
tation of the Fourier transforms of the Gauss and Poisson kernels and the derivation
and application of the Poisson summation formula. The L1 version of the Fourier
inversion formula is proved in §8. In §§9–11 I make preparations for my treatment
in §12 of the L2-Fourier transform via Hermite functions. By the end of §12, I have
covered the key results in that theory: Parseval’s identity and the Fourier inversion
formula.

In §13 I introduce the test function space on which Laurent Schwartz based his
theory of tempered distributions. As was the case in my treatment of the L2-Fourier
transform, Hermite functions play a central role here. In §14 I give the definition of
and do a few computations with tempered distributions, and in §15 I show how to
extend continuous operations on the test function space as continuous operations
on tempered distributions.

In §§1–15 I have restricted my results to the one dimensional setting, and it is only
in §16 that I describe what has to be done to extend those results to more than one
dimension. Once I have done so, in §17 I introduce the weak topology on the space
of Borel probability on RN , and in §18 I show that there is an intimate relationship
between that topology and Fourier analysis. The results in §18 are combined with
those in §14 to derive in §19 the Lévy–Khinchine formula for infinitely divisible
probability measures.

The rest of these notes is devoted to the theory of singular integral operators.
After a brief attempt in §20 to provide motivation, in §21 I derive the Lp bound-
edness of the Hilbert transform when p is an even integer, and in §22 I prove the
Riesz–Thorin interpolation theory in order the extend that result to all p ∈ (1,∞).
Finally, in §23 I use Calderòn and Zygmund’s method of rotations to prove Lp

boundedness of odd Calderòn–Zygmund kernels.
In so far as possible, I have tried to avoid the use of unfamiliar results, but I

am well aware that what is familiar to some may be unfamiliar to others. At a
1
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minimum, the reader is expected to had a rigorous course in Lebesgue integration
theory. In addition, I have assumed some comfort with the ideas of elementary func-
tional analysis, especially Hilbert spaces. Other than that, the only prerequisites
are an interest in mathematics and a willingness to do computations.

1. Basic Theory of Fourier Series

Set em(x) = eı2πmx for m ∈ Z and x ∈ R, and observe that {em : m ∈ Z} is an
orthonormal family in L2(λ[0,1);C).1 Even though it involves an abuse of notation,

we will use (φ, em)L2(λ[0,1);C) to denote
∫
[0,1)

φ(y)e−m(y) dy for φ ∈ L1(λ[0,1);C).
Given a function φ : [0, 1) −→ C, define its periodic extension φ̃ : R −→ C

by φ̃(x) = φ
(
x − ⌊x⌋

)
, where ⌊x⌋ = max{n ∈ Z : x ≥ n}. Notice that if φ ∈

L1(λ[0,1);C), then ∫
[0,1)

φ(x) dx =

∫
[a,a+1)

φ̃(x) dx for all a ∈ R.

Similarly, ∫
[0,1)

φ̃(−x) dx =

∫
[0,1)

φ(x) dx.

For bounded, continuous functions φ and ψ on [0, 1), define

φ ∗ ψ(x) =
∫
[0,1)

φ(x− y)ψ(y) dy,

and use the preceding to check that

φ ∗ ψ(x) =
∫
[−x,−x+1]

φ̃(y)ψ̃(x− y) dy = ψ ∗ φ(x).

Finally, by the continuous version of Minkowski’s inequality,2

∥φ ∗ ψ∥Lp(λ[0,1);C) ≤ ∥φ∥Lp(λ[0,1);C)∥ψ∥L1(λ[0,1);C) ∧ ∥ψ∥Lp(λ[0,1);C)∥φ∥L1(λ[0,1);C)

for any p ∈ [1,∞). Hence, for each p ∈ [1,∞), (φ,ψ) ⇝ φ ∗ ψ has a unique
continuous extension as a map bilinear map from L1(λ[0,1);C) × Lp(λ[0,1);C) into
Lp(λ[0,1);C), and
(1.1) ∥φ ∗ ψ∥Lp(λ[0,1);C) ≤ ∥φ∥L1(λ[0,1);C)∥ψ∥Lp(λ[0,1);C)

continues to hold.

Theorem 1.1. If φ ∈ Lp
(
λ[0,1];C

)
for some p ∈ [1,∞), then

lim
r↗1

∥∥∥∥∥φ−
∑
m∈Z

r|m|(φ, em)L2(λ[0,1);C)
em

∥∥∥∥∥
Lp(λ[0,1];C)

= 0,

and, if φ ∈ C
(
[0, 1];C

)
satisfies φ(0) = φ(1), then3

lim
r↗1

∥∥∥∥∥φ−
∑
m∈Z

r|m|(φ, em)L2(λ[0,1);C)
em

∥∥∥∥∥
u

= 0.

1For a measure space (E,F , µ) and p ∈ [1,∞], Lp(µ;C) is the associated Lebesgue space. For

a Borel measurable subset S ⊆ RN , λS is the Lebesgue’s measure resticted to S.
2If φ ∈ Lp(µ;C), then ∥φ∥Lp(µ;C) is its Lp-norm.
3∥ · ∥u is the uniform (i.e., supremum norm).
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Proof. Define

pr(x) =
∑
m∈Z

r|m|em(x) for r ∈ [0, 1) and x ∈ [0, 1).

Clearly
∫ 1

0
pr(x) dx = 1, pr(−x) = pr(x), and p̃r is continuous. In addition,

pr(x) =
1

1− re1(x)
+

re−1(x)

1− re−1(x)
=

1− r2

|1− re1(x)|2
=

1− r2

1− 2r cos 2πx+ r2
for r ∈ [0, 1),

and so pr ≥ 0.
Obviously,∑

m∈Z
r|m|(φ, em)L2(λ[0,1);C)

em(x) = pr ∗ φ(x) =
∫
[0,1)

pr(y)φ̃(x+ y) dy

since pr is even. Now suppose that φ ∈ C
(
[0, 1] : C

)
with φ(0) = φ(1). Then, since

limr↗1

∫ 1

δ
pr(y) dy = 0 for each δ ∈ (0, 1), it is easy to check that

lim
r↗1

sup
x∈[0,1]

∣∣∣∣∣
∫ 1

0

(
φ(x+ y) dy − f(x)

)∣∣∣∣∣ ≤ ωφ(δ),

where ωφ is the modulus of continuity of φ. Thus the second part of the theorem
has been proved.

To prove the first part, let φ ∈ Lp(λ[0,1);C), and choose choose a sequence {φk :

k ≥ 1} ⊆ C
(
[0, 1];C

)
which satisfy φk(0) = φk(1) and ∥φ− φk∥Lp(λ[0,1];C) −→ 0 as

k → ∞. Then, for each k,

∥pr ∗ φ− φ∥Lp(λ[0,1];C)

≤ ∥pr ∗ (φ− φk)∥Lp(λ[0,1];C) + ∥pr ∗ φk − φk∥Lp(λ[0,1];C) + ∥φk − φ∥Lp(λ[0,1];C),

and so, by (1.1), for all k.

lim
r↗1

∥pr ∗ φ− φ∥Lp(λ[0,1];C) ≤ 2∥φk − φ∥Lp(λ[0,1];C).

Finally, let k → ∞. □

Theorem 1.2. {em : m ∈ Z} is an orthonormal basis in L2(λ[0,1);C), and so, for

each φ ∈ L2(λ[0,1);C),

(1.2)
∑
m∈Z

(φ, em)L2(λ[0,1);C)em ≡ lim
n→∞

∑
|m|≤n

(φ, em)L2(λ[0,1);C) = φ,

where the convergence is in L2(λ[0,1);C). In addition, for all φ,ψ ∈ L2(λ[0,1);C),

(φ,ψ)L2(λ[0,1);C) =
∑
m∈Z

(φ, em)L2(λ[0,1);C)(ψ, em)L2(λ[0,1);C).

Proof. It suffices to check the first statement, and to do so all we need to know is
that (φ, em)L2(λ[0,1);C) = 0 for all m ∈ Z implies φ = 0 for a set of φ’s which is dense

in L2(λ[0,1);C). But, by Theorem 1.1, we know this for continuous φ’s satisfying

φ(0) = φ(1), and these are dense in L2(λ[0,1);C). □

Equation (1.2) is known as Parseval’s identity for Fourier series.
Define the partial sum Snφ =

∑
|m|≤n(φ, em)L2(λ[0,1);C)em.
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Corollary 1.3. If φ ∈ C([0, 1];C) and∑
m ̸=0

∣∣(φ, em)L2(λ[0,1);C)
∣∣ <∞,

then the series ∑
m∈Z

(φ, em)L2(λ[0,1);C)em(x)

is uniformly absolutely convergent to φ. In fact,∥∥Sn(φ)− φ
∥∥
u
≤
∑

|m|>n

∣∣(φ, em)L2(λ[0,1);C)
∣∣.

Proof. That the series if uniformly absolutely convergent is obvious. To see that
it must be converging to φ, let ψ be uniform limit of {Snφ : n ≥ 0}. Then ψ is
continuous and, because φ is the L2(λ[0,1);C) limit of this series, ψ = φ λ[0,1]-almost
everywhere, which, since both are continues, means that they are equal everywhere.
Given these statements, the final estimate is trivial. □

Lemma 1.4. Let ℓ ≥ 1 and assume that φ ∈ Cℓ([0, 1];C) satisfies φ(k)(0) = φ(k)(1)
for 0 ≤ k ≤ ℓ− 1. Then

(φ, em)L2(λ[0,1);C) =
( ı

2πm

)ℓ (
φ(ℓ), em

)
L2(λ[0,1);C)

for m ̸= 0.

Proof. Clearly it suffices that prove the result when ℓ = 1. To do so, use integration
by parts and the condition φ(0) = φ(1) to check that∫ 1

0

φ(y)e−m(y) dy =
1

−ı2πm

∫ 1

0

φ′(y)e−m(y) dy.

□

As a consequence of Lemma 1.4, we see that if φ ∈ C1([0, 1];C) satisfies φ(0) =
φ(1), then ∑

|m|>n

∣∣(φ, em)L2(λ[0,1);C)
∣∣ ≤ ∑

|m|>n

∣∣(φ′, em)L2(λ[0,1);C)
∣∣

2π|m|

≤ 1

2π

(
2
∑
m>n

m−2

) 1
2

∥φ′∥L2(λ[0,1);C) ≤
∥φ′∥L2(λ[0,1);C)

π(2n)
1
2

.

Hence, by Corollary 1.3,

∥Snφ− φ∥u ≤ ∥φ′∥u
π(2n)

1
2

.

Exercise 1.1. Prove the Riemann–Lebesgue lemma, which is the statement that
limn→∞(φ, en)L2(λ[0,1);C) = 0 for all φ ∈ L1(λ[0,1);C).

Exercise 1.2. Let φ be a Lipschitz continuous function satisfying φ(0) = φ(1),
and show that ∥∥Snφ− φ∥u ≤ ∥φ∥Lip

π(2n)
1
2

.

Hint: Introduce the functions φk = p 1
k
∗ φ.
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2. Gibbs Phenomenon

Here we will examine what can be said for a φ ∈ C([0, 1];C) that is not periodic.
For example, consider the function φ(x) = x for x ∈ [0, 1]. Clearly

(φ, em)L2(λ[0,1);C) =
ı

2πm
for m ̸= 0,

and so

Sn(x) =
1

2
− 1

π

n∑
m=1

sin 2πmx

m
,

where Sn ≡ Snφ. Now set

Φm(x) =

m∑
k=1

sin 2πkx.

Then Φm(x) is the imaginary part of

m∑
k=1

ek(x) = e1(x)
1− em(x)

1− e1(x)
=

(
e1(x)− em+1(x)

)(
1− e−1(x)

)
2(1− cos 2πx)

=
e1(x)− 1− em+1 + em(x)

2(1− cos 2πx)
,

which is
sin 2πx− sin 2π(m+ 1)x+ sin 2πmx

2(1− cos 2πx)
.

After using some of trigonometric identities, one sees that

(2.1) Φm(x) =
cosπx sin2 πmx

sinπx
+ sinπmx cosπmx.

In particular, |Φm(x)| ≤ 3
(
1
x ∨ 1

1−x
)
.

Summing by parts, one sees that

Sn(x) =
1

2
− Φn(x)

πn
−

n−1∑
m=1

Φm(x)

πm(m+ 1)
,

which means that

(2.2)
∣∣Sn(x)− x

∣∣ ≤ ( 1x ∨ 1
1−x

) 6

πn
.

In particular, Sn(x) is converging to x uniformly on compact subsets of (0, 1).
To see what happens for x near to 0, consider x = k

2n for k ≥ 1, and observe
that

n∑
m=1

sin πkm
n

m
=

1

n

n∑
m=1

sin πkm
n

m
n

−→
∫
[0,1]

sinπkx

x
dx −→

∫
[0,πk]

sinx

x
dx.

Hence, since (cf. (7.11) in §7)

lim
R→∞

∫
[0,R]

sinx

x
dx =

π

2
,
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Sn
(
k
2n

)
= − 1

π
lim
R→∞

∫
[πk,R]

sinx

x
dx

=
(−1)k+1

π2k
− 1

π

∫
[πk,∞)

cosx

x2
dx =

(−1)k+1

π2k
+

2

π

∫
[πk,∞)

sinx

x3
dx

as n→ ∞. Therefore

Sn
(
k
2n

)
=

(−1)k+1

π2k

(
1− ak

πk

)
+ ϵn(k),

where

ak = (−1)k2(πk)2
∫ ∞

πk

sinx

x3
dx ∈ (−1, 1)

and limn→∞ ϵn(k) = 0. This shows that, for large n, Sn
(
k
2n

)
is at least 1

2π2k if k is

odd and at most − 1
2π2k if k is even. This sort of oscillatory behavior is known as

Gibbs’s phenomenon, although Gibbs seems not to have been the first to discover
it.

Exercise 2.1. By considering Sn
(
1
4

)
and using equations (2.1) and (2.2), show

that

π = 8

∞∑
ℓ=0

1

(4ℓ+ 1)(4ℓ+ 3)
.

Exercise 2.2. Show that if φ ∈ C1
(
[0, 1];C

)
then,

sup
x∈[n− 1

2 ,1−n− 1
2 ]

∣∣Snφ(x)− φ(x)
∣∣ ≤ 8∥φ′∥L2(λ[0,1);C)

πn
1
2

.

3. Bernoulli Polynomials

Theorem 3.1. Define {bℓ : ℓ ≥ 0} ⊆ R inductively by

b0 = 1 and bℓ+1 =

ℓ∑
k=0

(−1)kbℓ−k
(k + 2)!

,

and set

(3.1) Bℓ(x) =

ℓ∑
k=0

(−1)kbℓ−k
k!

xk for ℓ ≥ 0.

Then {Bℓ : ℓ ≥ 0} are the one and only functions satisfying

(3.2) B0 = 1, B′
ℓ+1 = −Bℓ for ℓ ≥ 0, and Bℓ(1) = Bℓ(0) for ℓ ≥ 2.

Proof. To see that there is at most one set of functions satisfying (3.2), let {Dℓ :
ℓ ≥ 0} be the set of differences between two solutions, and set ℓ = inf{ℓ : Dℓ ̸= 0}.
Then ℓ ≥ 1, and, if ℓ < ∞, then Dℓ is a constant a and there is a b ∈ R such that
Dℓ+1(x) = −ax + b. But −a + b = Dℓ+1(1) = Dℓ+1(0) = b, and therefore a = 0.
Since this would mean that Dℓ = −D′

ℓ+1 = 0, no such ℓ can exist.
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By definition, B0 = 1, and it is easy to check that B′
ℓ+1 = −Bℓ. To verify the

periodicity property, note that

Bℓ+2(1)−Bℓ+2(0) =

ℓ+2∑
k=1

(−1)kbℓ+2−k

k!

= −bℓ+1 +

ℓ+2∑
k=2

(−1)kbℓ+2−k

k!
= −bℓ+1 +

ℓ∑
k=0

(−1)kbℓ−k
(k + 2)!

= 0.

□

The functions {Bℓ : ℓ ≥ 0} in (3.1) are known as Bernoulli polynomials.

Theorem 3.2. For ℓ ≥ 2 and x ∈ [0, 1],

(3.3) Bℓ(x) =
−ıℓ

(2π)ℓ

∑
n ̸=0

en(x)

nℓ
.

In particular, b2ℓ+1 = 0 and

(3.4) ζ(2ℓ) ≡
∞∑
m=1

1

m2ℓ
= (−1)ℓ+122ℓ−1π2ℓb2ℓ

for ℓ ≥ 1.

Proof. First observe that, for ℓ ≥ 1,(
Bℓ, e0

)
L2(λ[0,1];C)

= −
∫ 1

0

B′
ℓ+1(x) dx = Bℓ+1(0)−Bℓ+1(1) = 0

and, for ℓ ≥ 2 and n ̸= 0,(
Bℓ, en

)
L2(λ[0,1];C)

=
ı

2πn

(
Bℓ−1, en

)
L2(λ[0,1];C)

and thereforeÅ
2πn

ı

ãℓ−1 (
Bℓ, en

)
L2(λ[0,1];C)

=
(
B1, en

)
L2(λ[0,1];C)

=

∫ 1

0

(
1
2 − x

)
e−n(x) dx =

−ı
2πn

.

Hence (
Bℓ, en

)
L2(λ[0,1];C)

=
−ıℓ

(2πn)ℓ

for ℓ ≥ 2 and n ̸= 0, which completes the proof of (3.3). Finally, because bℓ = Bℓ(0),
it is clear from (3.3) that b2ℓ+1 = 0 and that (3.4) holds. □

Besides (3.4), the Bernoulli polynomials play a critical role in what is known as
the Euler–Maclauren formula:

(3.5)

∫ n

0

f(x) dx−
n∑

m=1

f(m)

= −
ℓ∑

k=1

bk
(
f (k−1)(n)− fk−1(0)

)
+

∫ n

0

B̃ℓ(x)f
(ℓ)(x) dx

for ℓ ≥ 1,
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where B̃ℓ is the periodic extension of Bℓ ↾ [0, 1) to R. To prove (3.5), first note that∫ n

0

f(x) dx−
n∑

m=1

f(m) =

n∑
m=1

∫ m

m−1

(
f(x)− f(m)

)
dx

= −
n∑

m=1

∫ m

m−1

(
x− (m− 1)

)
f ′(x) dx

=

n∑
m=1

Å
−b1

(
f(m)− f(m− 1)

)
+

∫ m

m−1

B1

(
x− (m− 1)

)
f ′(x) dx

ã
= −b1

(
f(n)− f(0)

)
+

∫ n

0

B̃1(x)f
′(x) dx.

Hence, (3.5) holds when ℓ = 1. Next observe that for any ℓ ≥ 1,∫ n

0

B̃ℓ(x) = n

∫ 1

0

Bℓ(x) dx = n
(
Bℓ+1(1)−Bℓ+1(0)

)
= 0,

and therefore∫ n

0

B̃ℓ(x)f
(ℓ)(x) dx =

n∑
m=1

∫ m

m−1

Bℓ
(
x− (m− 1)

)(
f (ℓ)(x)− f (ℓ)(m)

)
dx

=

n∑
m=1

Å
−bℓ+1

(
f (ℓ)(m)− f (ℓ)(m− 1)

)
+

∫ m

m−1

Bℓ+1

(
x− (m− 1)

)
f (ℓ+1)(x) dx

ã
= −bℓ+1

(
f (ℓ)(n)− f(0)

)
+

∫ n

0

B̃ℓ+1(x)f
(ℓ+1)(x) dx.

Therefore, (3.5) for ℓ implies (3.5) for ℓ+ 1.

Theorem 3.3. If ℓ ≥ 1 and φ ∈ Cℓ
(
[0, 1];C

)
, then

(3.6)

∫ 1

0

φ(x)− 1

n

n∑
m=1

φ
(
m
n

)
= −

ℓ∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)
+

1

nℓ

∫ 1

0

B̃ℓ(nx)φ
(ℓ)(x) dx,

.

Proof. Take f(x) = φ
(
x
n

)
, apply (3.5) to f , and make a simple change of variables.

□

By Schwarz’s inequality,∣∣∣∣∣
∫ 1

0

B̃ℓ(nx)φ
(ℓ)(x) dx

∣∣∣∣∣ ≤
Ç∫ 1

0

B̃ℓ(nx)
2 dx

å 1
2

∥φ(ℓ)∥L2(λ[0,1];C),

and ∫ 1

0

B̃ℓ(nx)
2 dx =

1

n

∫ n

0

B̃ℓ(x)
2 dx = ∥Bℓ∥2L2(λR;C).

Further, by (1.2) and (3.3),

∥Bℓ∥2L2(λR;C) =
1

(2π)2ℓ

∑
n ̸=0

1

n2ℓ
.
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Hence, by (3.6),

(3.7)

∣∣∣∣∣
∫ 1

0

φ(x) dx− 1

n

n∑
m=1

φ
(
m
n

)
+

ℓ∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)∣∣∣∣∣
≤
√
2ζ(2ℓ)

(2πn)ℓ
∥φ(ℓ)∥L2(λ[0,1];C).

From (3.7) one sees that if, for some n ≥ 1,

(3.8) lim
ℓ→∞

∥φ(ℓ)∥L2(λ[0,1];C)

(2πn)ℓ
= 0,

then ∫ 1

0

φ(x) dx− 1

n

n∑
m=1

φ
(
m
n

)
= − lim

ℓ→∞

ℓ∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)
.

In particular, if φ ∈ C∞([0, 1];C) and φ(k) is periodic for all k ≥ 0, then (3.8)
implies that ∫ 1

0

φ(x) dx =
1

n

n∑
m=1

φ
(
m
n

)
,

a result that has a much simpler derivation (cf. Exercise 3.1 below).
More generally, because

∣∣φ(k−1)(1) − φ(k−1)(0)
∣∣ ≤ ∥φ(k)∥L2(λ[0,1];C) and |bk| ≤

1
(2π)k

,

∞∑
k=1

∥φ(k)∥L2(λ[0,1];C)

(2πn)k
<∞

implies that

(3.9)

∫ 1

0

φ(x) dx− 1

n

n∑
m=1

φ
(
m
n

)
= −

∞∑
k=1

bk
nk
(
φ(k−1)(1)− φ(k−1)(0)

)
,

where the series is absolutely convergent.

Exercise 3.1. Suppose that φ and all its derivatives are periodic on [0, 1], and
show that

lim
ℓ→∞

∥φ(ℓ)∥L2(λ[0,1];C)

(2πn)ℓ
= 0 ⇐⇒

(
φ, em

)
L2(λ[0,1];C)

= 0 if |m| ≥ n

⇐⇒ φ =
∑

|m|<n

(
φ, em

)
L2(λ[0,1];C)

em.

Next, show that

1

n

n∑
j=1

em
(
j
n

)
= 0

for 1 ≤ |m| < n, and thereby arrive at the conclusion reached above.
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4. Comparing Summability Methods

In preparation for the following section, we will review here basic definitions and
results for different notions of convergence of a series.

Given a sequence {am : m ≥ 1} ⊆ C, set

Sn =

n∑
m=1

am and An =
1

n

n∑
m=1

Sm,

and when limn→∞ |am| 1
m ≤ 1, set

A(r) =

∞∑
m=1

amr
m−1 for r ∈ [0, 1).

The Sn’s are called the partial sums of the corresponding series, the An’s are its
Césaro means, and r ⇝ A(r) is its Abel function. The series is said to be summable
to s ∈ C if s = limn→∞ Sn, it is Césaro summable to s ∈ C if limn→∞An = s, and
it is Abel summable to s ∈ C if s = limr↗1A(r)

Here we will show that

summable to s =⇒ Césaro summable to s =⇒

lim
m→∞

am
m

= 0 and Abel summable to s.

The Exercise 4.1 below outlines a proof that neither implication can be reversed.
The first implication is trivial. To prove the second, assume Césaro summability,

and note that
an
n

= An −An−1 +
An−1

n
−→ 0.

Next, write

am =


A1 if m = 1

2A2 −A1 if m = 2

mAm − 2(m− 1)Am−1 + (m− 2)Am−2 if m ≥ 3,

and therefore

A(r) =

∞∑
m=1

mrm−1Am − 2

∞∑
m=2

(m− 1)rm−1Am−1 +

∞∑
m=3

(m− 2)rm−1Am−2

=

∞∑
m=1

(rm−1 − 2rm + rm+1)mAm = (1− r)2
∞∑
m=1

mrm−1Am.

Now observe that

n∑
m=1

mrm−1 = ∂r

n∑
m=0

rm = ∂r
1− rn

1− r
=

1− rn − n(1− r)rn−1

(1− r)2
.

Hence,

(1− r)2
n∑
1

mrm−1 ≤ 1− rn and (1− r)2
∞∑
1

mrm−1 = 1.
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Assume that An −→ s, and, given ϵ > 0, choose n so that |Am − s| ≤ ϵ for m > n.
Then∣∣A(r)− s

∣∣ = (1− r)2

∣∣∣∣∣
∞∑
m=1

mrm−1(Am − s)

∣∣∣∣∣ ≤ (1− r)2
n∑

m=1

mrm−1|Am − s|+ ϵ

≤ (1− rn) max
1≤m≤n

|Am − s|+ ϵ,

and therefore limr↗1 |A(r)− s| ≤ ϵ.

Exercise 4.1. Show that

(i) the series for {(−1)m−1 : m ≥ 1} is Césaro summable to 1
2 but not summable,

(ii) the series for {(−1)m−1m : m ≥ 1} is Abel summable to 1
4 but not Césaro

summable. In fact, show that A2n = 0 and A2n+1 = n+1
2n+1 −→ 1

2 .

5. Some Refinements

In this section we will apply the notions of summability discussed in the previous
section to Fourier series. Observe that we have already considered Abel summability
in §1.

To examine further when the series is summable, introduce the function

Dn(x) =
∑

|m|≤n

em(x) for x ∈ R.

Then Dn, which is often called the Dirichlet kernel, is an even, periodic function

with period 1,
∫ 1

0
Dn(x) dx = 1, and Snφ = Dn ∗ φ. In addition

Dn(x) = e−n(x)

2n∑
m=0

em(x) = e−n(x)
1− e2n+1(x)

1− e1(x)
=
e−ıπ(2n+1)x − eıπ(2n+1)x

e−ıπx − eıπx

=
sinπ(2n+ 1)x

sinπx
.

Hence,

Snφ(x)− φ(x) =

∫
[0,1]

φ̃(x+ y)− φ(x)

sinπy
sinπ(2n+ 1)y dy.

Now suppose that φ is an R-valued function for which φ(0) = φ(1), and assume
that φ ∈ Cα

(
[0, 1];C) 4 is Hölder continuous of order α ∈ (0, 1). Set

ψ(y) = eıπy
φ̃(x+ y)− φ(x)

sinπy
.

Then ψ ∈ L1(λ[0,1);C) and Snφ(x)− φ(x) is the imaginary part of∫
[0,1]

ψ(y)e−2n+1(y) dt =
(
ψ, e2n−1

)
L2(λ[0,1);C)

,

and so, by the Riemann–Lebesgue lemma (cf. Exercise 1.1), Snφ(x) −→ φ(x) as
n → ∞. The preceding shows that if φ ∈ Cα

(
[0, 1];C

)
satisfies φ(0) = φ(1), then

Snφ −→ φ pointwise, but it does not provide a rate of convergence or even say if
the convergence is uniform.

4Cα(E;C) space of C-valued functions on a metric space E which are uniformly Hölder con-
tinuous of order α ∈ (0, 1).
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Césaro summability of Fourier series was initiated by Fejér. Obviously,

1

n

n−1∑
m=0

Smφ = Fn ∗ φ,

where

Fn(x) ≡
1

n

n−1∑
m=0

Dn(x).

The function Fn is called the Fejér kernel, and it is clear that Fn is a continuous,
even function of period 1 for which

∫
[0,1]

Fn(x) dx = 1. In addition, nFn(x) sinπx

is the imaginary part of

eıπx
n−1∑
m=0

e2m(x) = eıπx
1− eıπ2nx

1− eı2πx
=
ı(1− eı2πnx)

2 sinπx
,

and so

(5.1) Fn(x) =
1− cos 2πnx

2n sin2 πx
=

1

n

Å
sinπnx

sinπx

ã2

.

Proceeding as in the proof of Theorem 1.1, one sees that

Fn ∗ φ(x)− φ(x) =

∫
[0,1]

Fn(y)
(
φ̃(x+ y)− φ(x)

)
dx −→ 0

uniformly if φ is continuous and satisfies φ(1) = φ(0). Equivalently,

lim
n→∞

∥∥∥∥∥ 1n
n−1∑
m=0

Smφ− φ

∥∥∥∥∥
u

= 0.

It turns out that one can do much better.

Theorem 5.1. Let φ : [− 1
2 ,

1
2 ] −→ C be a measurable function, let x ∈

[
− 1

2 ,
1
2

]
, and

assume that there is a C ∈ (0,∞) and α ∈ (0, 1] such that |φ̃(x+y)−φ(x)| ≤ C|y|α
for y ∈

[
− 1

2 ,
1
2

]
. For n ≥ 5

(5.2)
∣∣Fn ∗ φ(x)− φ(x)

∣∣ ≤ C

{
2

(1+α)nα + 4(n1−α−41−α)
π2(1−α)n + 1−2−(1+α)

2α(1+α)n if α ∈ (0, 1)
19
16n +

4 log n
4

π2n(1−α) if α = 1.

Hence

lim
n→∞

nα|Fn ∗ φ(x)− φ(x)
∣∣ ≤ 2

1 + α
+

4

π2(1− α)
if α ∈ (0, 1)

and

lim
n→∞

n

log n
|Fn ∗ φ(x)− φ(x)

∣∣ ≤ 4

π2
if α = 1.

Proof. Without loss in generality, I will assume that C = 1.
The proof turns on the estimates

(5.3) Fn(y) ≤


n for all y ∈

[
− 1

2 ,
1
2

]
2

π2ny2 when |y| ∈
(
0, 14

]
2
n when |y| ∈

[
1
4 ,

1
2

]
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That Fn(y) ≤ n is clear from the fact that ∥Dm∥u ≤ 1 and therefore that nFn(y) ≤
2
∑n−1
m=1m + n = n2. To see second inequality, note that cosπt ≥ 2−

1
2 when

|y| ∈
(
0, 14

]
and therefore that

| sinπy| =
∫ π|y|

0

cos t dt ≥ 2−
1
2π|y|.

As for Fn(y) ≤ 2
n when |y| ∈

[
1
4 ,

1
2

]
, simply remember that | sinπy| ≥ 2−

1
2 for such

y’s.

Assume that α ∈ (0, 1). Because
∫ 1

2

− 1
2

Fn(y) = 1

∣∣Fn ∗ φ(x)− φ(x)
∣∣ ≤ ∫ 1

2

− 1
2

Fn(y)
∣∣φ̃(x+ y)− φ(x)

∣∣ dy
≤ n

∫ 1
n

0

|y|α dy + 2

π2n

∫ 1
4

1
n

|y|α−2 dy +
2

n

∫
1
4≤|y|≤ 1

2

|y|α dy

≤ 2

(1 + α)nα
+

4(n1−α − 41−α)

π2(1− α)n
+

1− 2−(1+α)

2α(1 + α)n
.

If α = 1, the top line in (5.2) holds for all α ∈ (0, 1), and therefore one need

only examine what happens as α ↗ 1. Clearly 2
(1+α)nα ↘ 1

n and 1−2−(1+α)

2α(1+α)n ↘ 3
16n

as α↗ 1. To handle the remaining term, note that it can be written as

42−α

π2n

(
n
4

)1−α − 1

1− α

which decreases to
4 log n

4

π2n as α↗ 1. □

One could of course have derived the estimate when α = 1 directly by the same
argument as was used when α < 1. However, the derivation given has the advantage
that it shows the estimates get stronger for all n ≥ 5, not just asymptotically, as α
increases.

Obviously, results like those in Theorem 5.1 turn on the continuity properties of
φ, properties that a generic element of L1(λ[0,1);C) will not possess. Nonetheless,
Lebesgue showed that every locally λR-integrable φ does have a continuity property
at almost everywhere point. Namely, he showed that

lim
r↘0

1

r

∫ r

0

|φ̃(x± t)− φ(x)| dt = 0 for λR-almost every x ∈ R,

and he used this fact to prove the following theorem.

Theorem 5.2. If φ ∈  L1
(
λ[− 1

2 ,
1
2 ]
;C
)
, then

lim
n→∞

Fn ∗ φ(x) = φ(x) for λ[− 1
2 ,

1
2 ]

-almost every x ∈ [0, 1].

Proof. Set φx(y) = |φ̃(x+ y)− φ(x)| and

Φx(y) =
1

|y|

∫ |y|

0

φx(sgn(y)t) dt.

By Lebesgue’s theorem, lim|y|↘0 Φx(y) = 0 for λ[− 1
2 ,

1
2 ]
-almost every x ∈

[
− 1

2 ,
1
2

]
.
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Let x be such a point. Then∣∣Fn ∗ φ(x)− φ(x)
∣∣ ≤ ∫ 0

− 1
2

Fn(y)φx(y) dy +

∫ 1
2

0

Fn(y)φx(y) dy.

We will show only that limn→∞
∫ 1

2

0
Fn(y)φx(y) dy = 0 because the proof that

limn→∞
∫ 0

− 1
2
Fn(y)φx(y) dy = 0 is essentially the same.

Using our estimates for Fn in (5.3), one has∫ 1
2

0

Fn(y)φx(y) dy =

∫ 1
n

0

Fn(y)φx(y) dy +

∫ 1
2

1
n

Fn(y)φx(y) dy

≤ n

∫ 1
n

0

φx(y) dy +
2

n

∫ 1
2

1
n

φx(y)

y2
dy.

Since

n

∫ 1
n

0

φx(y) dy = Φx
(
1
n

)
,

the first term tends to 0. As for the second, use integration by parts to see that it
is dominated by

4Φx
(
1
2

)
n

+
4

n

∫ 1
2

1
n

Φx(y)

y2
dy.

Finally, given ϵ > 0, choose δ ∈
(
0, 12

)
so that Φx(y) ≤ ϵ for 0 ≤ y ≤ δ. Then, for

n > 1
δ ,

1

n

∫ 1
2

1
n

Φx(y)

y2
dy ≤ ϵ

n

∫ δ

1
n

1

y2
dy +

1

n

∫ 1
2

δ

Φx(y)

y2
dy ≤ 2ϵ+

∥Φx∥u
δn

,

and so

lim
n→∞

∫ 1
2

0

Fn(y)φx(y) dy ≤ 4ϵ.

□

Theorem 5.2 is a stark contrast to a famous example produced in 1926 by Kol-
mogorov5 of a function in L1

(
λ[− 1

2 ,
1
2 ]
;C
)
for which {Snφ(x) : n ≥ 0} diverges

at every x. It is also interesting to compare it to more recent results by L. Car-
leson and R. Hunt. Namely, Carleson showed that Snφ −→ φ (a.e.,λ[− 1

2 ,
1
2 ]
) if

φ ∈ L2
(
λ[− 1

2 ,
1
2 ]
;C
)
, and Hunt showed that the same is true for φ ∈ Lp

(
λ[− 1

2 ,
1
2 ]
;C
)

for p ∈ (1,∞).

Exercise 5.1. Show that

lim
n→∞

nα
∫ 1

2

− 1
2

Fn(y)|y|α dy > 0 for α ∈ (0, 1)

and that

lim
n→∞

n

log n

∫ 1
2

− 1
2

Fn(y)|y| dy > 0.

5A.N.Kolmogorov, Une série de Fourier-Lebesgue divergente partout, C.R. 183 (1926),
pp. 1327-1328.
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Hence the rates given Theorem 5.1 are optimal.

Hint: If 0 ≤ m ≤ n− 1, show that

Fn(y) ≥
1

2π2ny2
if

4m+ 1

n4
≤ y ≤ 2m+ 1

2n
.

6. The L1 Fourier Transform

By an easy rescaling argument, one knows that, for any L ∈ Z+ and f ∈
C1([−L,L];C) satisfying f(−L) = f(L),

f(x) =
1

2L

∑
m∈Z

∫ L

−L
eı

2πm(y−x)
2L f(y) dy = lim

R→∞

∫ L

−L

Ñ
1

2L

∑
|m|≤R

eı
2πm(y−x)

2L

é
f(y) dx.

Now suppose that f ∈ C1
c (R;C). Then

f(x) = lim
L→∞

lim
R→∞

∫ L

−L

Ñ
1

2L

∑
|m|≤R

eı
2πm(y−x)

2L

é
f(y) dy.

Thus, if one can justify reversing the order in which the limits are taken, one would
have that

f(x) = lim
R→∞

∫ Ç∫ R

−R
eıξ2π(x−y) dξ

å
f(y) dy

= lim
R→∞

1

2π

∫ 2πR

−2πR

e−ıξx
Å∫

eıξyf(y) dy

ã
dξ.

In other words, there is reason to hope that, under suitable conditions on f ,

(6.1) f(x) =
1

2π

∫
e−ıξxf̂(ξ) dξ where f̂(ξ) ≡

∫
eıξyf(y) dy.

The function f̂ is called the Fourier transform of f , and our primary goal here
will be to find out in what sense (6.1) is true, first when f ∈ L1(λR;C) and then

when f ∈ L2(λR;C). However, we will begin with some computations involving f̂
that don’t require our knowing when (6.1) holds.

7. Computations and Applications of L1 Fourier Transforms

If f ∈ L1(λR;C), then it is clear that f̂ is continuous and that

(7.1) ∥f̂∥u ≤ ∥f∥L1(λR;C).

Lemma 7.1. If f ∈ C1(R,C) ∩ L1(λR;C) and f ′ ∈ L1(λR;C), then

(7.2) “f ′(ξ) = −ıξf̂(ξ).

Proof. If f has compact support, then (7.2) is an easy application of integration by
parts. To prove it under the given conditions, choose a function η ∈ C∞(R; [0, 1])
for which η(y) = 1 when y ∈ [−1, 1] and η(y) = 0 when y /∈ [−2, 2], and set
fn(y) = η

(
y
n

)
f(y). Then fn −→ f and f ′n −→ f ′ in L1(λR;C) and so“f ′(ξ) = lim

n→∞
f̂ ′n(ξ) = −ıξ lim

n→∞
f̂n(ξ) = −ıξf̂(ξ).

□
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As a consequence of Lemma 7.1, it is easy to prove the Riemann-Lebesgue lemma
in this context. Namely, (7.2) makes it clear for compactly support f ∈ C1(R;C),
and (7.1) makes it clear that the set of f ’s for which it is holds is closed in L1(λR;C).

We next turn to the computation of f̂ in two important cases.

Set gt(x) = (2πt)−
1
2 e−

x2

2 for (t, x) ∈ (0,∞) × R, and check that ∂tgt(x) =
1
2∂

2
xgt(x). Hence, for any ζ ∈ C, integration by parts leads to

∂t

∫
eζxgt(x) dx =

1

2

∫
eζx∂2xgt(x) dx =

ζ2

2

∫
eζxgt(x) dx.

Since ∫
eζxgt(x) dx =

∫
et

1
2 ζxg1(x) dx −→ 1

as t↘ 0, ∫
eζxgt(x) dx = e

tζ2

2 .

In particular

(7.3) “gt(ξ) = e−
ξ2

2

Equivalently, “gt = ( 2πt ) 1
2 g 1

t
and so

(7.4)
(
ĝt)

∧ = 2πgt.

Set py(x) =
1
π

y
x2+y2 for (y, x) ∈ (0,∞)× R, and note that∫

py(x) dx =

∫
p1(x) dx = 1 for all y > 0.

In addition, because py(x) is the real part of ı
πz with z = x+ ıy, (x, y)⇝ py(x) is

harmonic. Thus, ∂2xpy = −∂2ypy, and so, by (7.2),

∂2y“py(ξ) = ξ2“py(ξ).
Thus, for each ξ, ’py(ξ) = a(ξ)eyξ + b(ξ)e−yξ,

where, since “py(0) = 1, a(ξ) + b(ξ) = 1. Because |’py(ξ)| ≤ 1, ξ ≥ 0 =⇒ a(ξ) =
0 & b(ξ) = 1 and ξ < 0 =⇒ a(ξ) = 1 & b(ξ) = 0. Hence

(7.5) “py(ξ) = e−y|ξ|.

Here is an interesting application of equations (7.3) and (7.5). Since

1

ξ2 + y2
=

∫ ∞

0

e−t(ξ
2+y2) dx =

∫ ∞

0

e−ty
2”g2t(ξ) dt

and
(”g2t)∧ = 2πg2t,

π

y
e−y|x| = 2π

∫ ∞

0

e−ty
2

g2t(x) dt = π
1
2

∫ ∞

0

t−
1
2 e−ty

2

e−
x2

4t dt.

Thus, for x, y ∈ (0,∞),

(7.6)

∫ ∞

0

t−
1
2 e−ty

2

e−
x2

t dt =
π

1
2 e−2yx

y
,

a computation which can also be done using a somewhat tricky change of variables.
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Theorem 7.2. (Poisson Sum) Let f ∈ L1(λR;C) ∩ C(R;C), and assume that∑
n∈Z

Ç
sup
x∈[0,1]

|f(x+ n)|+ |f̂(2πn)|
å
<∞.

Then

(7.7)
∑
n∈Z

f(n) =
∑
n∈Z

f̂(2πn).

Proof. Define f̃(x) =
∑
n∈Z f(x + n). Then f̃ is a continuous periodic function

with period 1, and(
f̃ , em

)
L2(λ[0,1];C)

=
∑
n∈Z

∫ 1

0

e−ı2πmxf(x+ n) dx =

∫
e−ı2πmxf(x) dx = f̂(−2πm).

Thus,
∑
m∈Z

∣∣(f̃ , em)L2(λ[0,1];C)
∣∣ <∞, and therefore

f̃(x) =
∑
m∈Z

f̂(−2πm)em(x) =
∑
m∈Z

f̂(2πm)e−m(x),

where the convergence of the series is absolute and uniform. By taking x = 0, (7.7)
follows. □

Equation (7.7) is known as the Poisson summation formula. Among its many
applications is the following.

When f = py, (7.7) says that

y

π

∑
n∈Z

1

y2 + n2
=
∑
n∈Z

e−2πy|n| =
1 + e−2πy

1− e−2πy
= cothπy,

and so

(7.8)
∑
n∈Z

1

y2 + n2
=
π cothπy

y

for y > 0.
A famous application of (7.8) is Euler’s product formula:

(7.9) sinπx = πx

∞∏
m=1

Å
1− x2

m2

ã
.

To prove it, first observe that

1

x2 +m2
=

1

2x
∂x log

(
x2 +m2

)
=

1

2x
∂x log

Å
1 +

x2

m2

ã
for m ̸= 0

and that π cothπy = ∂y log(sinhπy). Hence, by (7.8)

1

x
∂x log

∞∏
n=1

Å
1 +

x2

n2

ã
+

1

x2
=

1

x
∂x log(sinhπx),

which means that

∂x log

∞∏
n=1

Å
1 +

x2

n2

ã
= ∂x log(x

−1 sinhπx).
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Integrating both sides from 0 to x, one gets

log x

∞∏
n=1

Å
1 +

x2

n2

ã
= log(sinhπx)− log π = log

sinhπx

πx
,

which means that

(7.10) sinhπx = πx

∞∏
n=1

Å
1 +

x2

n2

ã
from which (7.9) follows by analytic continuation.

Another application of (7.5) is a proof6 that

(7.11) lim
R→∞

∫ R

−R

sin ξx

x
dx = sgn(ξ)π for ξ ̸= 0.

We begin with the more or less trivial observation that∫ R

−R

sin ξx

x
dx = sgn(ξ)

∫ R

−R

sin |ξ|x
x

dx = sgn(ξ)

∫ |ξ|R

−|ξ|R

sinx

x
dx.

Thus, what we have to show is that

lim
R→∞

∫ R

−R

sinx

x
dx = π. (∗)

The first step in the proof (∗), is to show that if

gR(ξ, y) ≡
∫ R

−R

x sin ξx

x2 + y2
dx −→ πe−yξ for ξ > 0, (∗∗)

then (∗) holds. Indeed,∣∣∣∣∣
∫ R

−R

sin ξx

x
dx− gR(ξ, y)

∣∣∣∣∣ ≤ 2y2
∣∣∣∣∫ ∞

0

| sin ξx|
x(x2 + y2)

dx

ã
≤ ξπy,

and so (∗∗) implies (∗).
The next step is to show that for each y > 0 there exists a continuous ξ ∈

(0,∞) 7−→ g(ξ, y) ∈ C such that gR(ξ, y) −→ g(ξ, y) uniformly for ξ compact
subsets of (0,∞). To this end, note that

gR(ξ, y) = 2

∫ R

0

x sin ξx

x2 + y2
dx =

2

ξ

Ç
−R cos ξR

R2 + y2
+ 2

∫ R

0

(y2 − x2) cos ξx

(x2 + y2)2
dx

å
−→ 4

ξ

∫ ∞

0

(y2 − x2) cos ξx

(x2 + y2)2
dx

uniformly for ξ in compacts subsets of (0,∞).
The final step is the identify g(ξ, y) as πe−yξ. For this purpose, observe that

gR(ξ, y) = −ı
∫ R

−R

xeıξx

x2 + y2
dx = ∂ξfR(ξ, y)

where

fR(ξ, y) = −π
y

∫ R

−R
py(x)e

ıξx dx −→ −π
y
e−yξ.

6The most commonly given proof is based on contour integration and Cauchy’s theorem.
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Hence

fR(η)− fR(ξ) =

∫ η

ξ

gR(t, y) dt,

and therefore
π

y

(
e−yξ − e−yη

)
=

∫ η

ξ

g(t, y) dt,

from which g(ξ, y) = πe−yξ follows easily.

Exercise 7.1. Show that if f ∈ L1(λR;C) and ft(x) = t−1f
(
t−1x), then f̂t(ξ) =

f̂(tξ).

Exercise 7.2. Show that if f ∈ C2(R;C) ∩ L1(λR;C) and both f ′ and f ′′ are in

L1(λR;C), then f̂ ∈ L1(λR;C).

Exercise 7.3. Using cosh t = 1+ t2

2 +O(t4) and sinh t = t+ t3

6 +O(t5), prove from

(7.8) that
∑∞
n=1

1
n2 = π2

6 .

Exercise 7.4. Show that ∑
n∈Z

e−
πn2

t = t
1
2

∑
n∈Z

e−πtn
2

,

a formula that plays an important role in the theory of Theta functions.

8. The L1 Fourier Inversion Formula

Here we will see to what extent (6.1) can be justified, and the idea is to use the
fact that we already know (cf. (7.4)) that it holds for gt. With this in mind, we
have, by Fubini’s theorem,

2πgt ∗ f(x) = 2π

∫
gt(y)f(x− y) dy = 2π

∫
gt(y)f(x+ y) dy

=

∫
(ĝt)

∧(y)f(x+ y) dy =

∫ “gt(ξ)Å∫ eıξyf(x+ y) dy

ã
dξ =

∫
e−

tξ2

2 e−ıξxf̂(ξ) dξ,

and so

gt ∗ f(x) =
1

2π

∫
e−

tξ2

2 e−ıξxf̂(ξ) dξ.

Let f ∈ L1(λR;C). If f is continuous at x, then limt↘0 gt ∗ f(x) = f(x), and so

(8.1) f(x) =
1

2π
lim
t↘0

∫
e−

tξ2

2 e−ıξxf̂(ξ) dξ if f is continuous at x.

In particular

(8.2) f(x) =
1

2π

∫
e−ıξxf̂(ξ) dξ if f̂ ∈ L1(λR;C).

More generally, for any f ∈ L1(λR;C), gt ∗ f −→ f in L1(λR;C), and so

(8.3)
1

2π

∫
e−

tξ2

2 e−ıξxf̂(ξ) dξ −→ f(x) in L1(λR;C),

which can be thought of the Abel version of (6.1). As an immediate consequence,

we know that f = 0 ⇐⇒ f̂ = 0.
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Exercise 8.1. Show that if f ∈ C2(R;C) ∩ L1(λR;C) and both f ′ and f ′′ are in

L1(λR;C), then f̂ ∈ L1(λR;C) and therefore f = (2π)−1
∫
e−ıξxf̂(ξ) dξ.

Exercise 8.2. Using Exercise 8.1, give another proof that “pt(ξ) = e−t|ξ|.

Exercise 8.3. There is nothing sacrosanct about gt in producing formulas like
(8.1) and (8.3). Indeed, give a ρ ∈ C

(
R, [0,∞)

)
for which

∫
ρ(x) dx = 1, set

ρt(x) = t−1ρ(t−1x). Then it is well known that, as t ↘ 0, ρt ∗ f(x) −→ f(x)
if f ∈ L1(λR;C) is continuous at x and that ρt ∗ f −→ f in L1(λR;C) for any
f ∈ L1(λR;C). Now suppose that ρ ∈ C2

(
R, [0,∞)

)
and that ρ′ and ρ′′ are in

L1(λR;C), and show that

1

2π

∫
e−ıξxρ̂(tξ)f̂(ξ) dξ −→ f(x) if f ∈ L1(λR;C) is continuous at x

and

1

2π

∫
ê−ıξxρ̂(tξ)f̂(ξ) dξ −→ f(x) in L1(λR;C) for any f ∈ L1(λR;C).

9. The Ornstein–Uhlenbeck Semigroup

Set gt(x) = (2πt)−
1
2 e−

x2

2t , and note that

(9.1)

∫
gs(x− ξ)gt(ξ − y) dξ = gs+t(y − x) and ∂tgt(x) =

1
2∂

2
xgt(x).

For (t, x, y) ∈ (0,∞)× R× R, define

(9.2)

p(t, x, y) = g1−e−t

(
y − e−

t
2x
)

=
(
2π(1− e−t)

)− 1
2 exp

Ç
− (y − e−

t
2x)2

2(1− e−t)

å
= e

t
2 get−1

(
x− e

t
2 y
)
.

From the first part of (9.1) and the third equality in (9.2), we see that∫
p(s, x, ξ)p(t, ξ, y) dξ = e

t
2

∫
g1−e−s

(
ξ − e−

s
2 y
)
get−1

(
ξ − e

t
2x
)
dξ

= e
t
2 get−e−s

(
e

t
2 y − e−

s
2x
)
= p(s+ t, x, y).

Hence p(t, x, y) satisfies the Chapman–Kolmogorov equation

(9.3) p(s+ t, x, y) =

∫
p(s, x, ξ)p(t, ξ, y) dξ.

In addition, using the second part of (9.1), one sees that

(9.4) ∂tp(t, x, y) = Lxp(t, x, y) where Lx = 1
2

(
∂2x − x∂x

)
.

Next define

(9.5) Ptφ(x) =

∫
φ(y)p(t, x, y) dy

for φ ∈ C(R;C) with at most exponential growth at ∞, and use (9.3) to see that
{Pt : t > 0} is a semigroup (i.e., Ps+t = Ps ◦ Pt). In addition, use (9.4) to show
that

(9.6) ∂tPtφ = LPtφ.
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After making the change of variable y → e
t
2 y, one sees that another expression for

Ptφ is

(9.7) Ptφ(x) =

∫
φ
(
e−

t
2 y
)
get−1(y − x

)
dy =

∫
g1(y)φ

(
(1− e−t)

1
2 y + x

)
dy,

from which it is easy to see that Ptφ −→ φ uniformly on compact subsets as t↘ 0.
Further, if p ∈ [1,∞), then, by Minkowski’s inequality,

∥Ptf∥Lp(λR;C) ≤
∫
g1(y)

Å∫ ∣∣f((1− e−t)
1
2 y + x

)∣∣p dxã 1
p

dy = ∥f∥Lp(λR;C),

and, as t↘ 0,

∥Ptf − f∥Lp(λR;C) ≤
∫
g1(y)

Å∫ ∣∣f((1− e−t)
1
2 y + x

)
− f(x)

∣∣p dyã 1
p

dx −→ 0

since

2∥f∥Lp(λR;C) ≥
Å∫ ∣∣f((1− e−t)

1
2 y + x

)
− f(x)

∣∣p dxã 1
p

−→ 0.

Therefore we know that

(9.8) ∥Ptf∥Lp(λR;C) ≤ ∥f∥Lp(λR;C) and lim
t↘0

∥Ptf − f∥Lp(λR;C) = 0.

In particular, we have now shown that {Pt : t > 0} is a continuous contraction
semigroup, known as the Ornstein–Uhlenbeck semigroup, on Lp(λR;C) for each
p ∈ [1,∞).

Although {Pt : t > 0} is a continuous semigroup on the Lebesgue spaces
Lp(λR;C), these are not the Lebesgue spaces on which it acts most naturally. In-
stead, one should consider its action on the spaces Lp(γ;C), where γ is the standard

Gauss measure γ(dx) = (2π)−
1
2 e−

x2

2 λR(dx). The reason why is that

e−
x2

2 p(t, x, y) = p(t, y, x)e−
y2

2 ,

which means that

(9.9)
(
φ, Ptψ

)
L2(γ;C) =

(
Ptφ,ψ

)
L2(γ;C).

Hence, since Pt1 = 1, ∫
Ptφdγ =

(
φ, Pt1

)
L2(γ;C) =

∫
φdγ.

At the same time, by Jensen’s inequality, |Ptφ|p ≤ Pt|φ|P , and so,∫
|Ptφ|p dγ ≤

∫
Pt|φ|p dγ =

∫
|φ|p dγ.

Thus,

(9.10) ∥Ptφ∥Lp(γ;C) ≤ ∥φ∥Lp(γ;C) for all p ∈ [1,∞).

In addition, if φ ∈ Cb(R;C), then ∥Ptφ∥u ≤ ∥φ∥u and Ptφ −→ φ pointwise as
t↘ 0, and therefore, for each p ∈ [1,∞), ∥Ptφ−φ∥Lp(γ;C) −→ 0 as t↘ 0. Finally,
if φ ∈ Lp(R;C), then there exists a sequence {φn : n ≥ 1} ⊆ Cb(R;C) such that
limn→∞ ∥fn − f∥Lp(γ;C) = 0, and

∥Ptφ− φ∥Lp(γ;C) ≤ ∥Pt(φ− φn)∥Lp(γ;C) + ∥Ptφn − φn∥Lp(γ;C) + ∥φn − φ∥Lp(γ;C)

≤ 2∥φn − φ∥Lp(γ;C) + ∥Ptφn − φn∥Lp(γ;C).
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Thus, after first letting t↘ 0 and then n→ ∞, we see that

(9.11) lim
t↘0

∥Ptφ− φ∥Lp(γ;C) = 0 for all p ∈ [1,∞).

Summarizing, {Pt : t > 0} is a continuous contraction semigroup on Cb(R;C)
and on Lp(γ;C) for each p ∈ [1,∞), and Pt is self-adjoint on L

2(γ;C).

Exercise 9.1. Show that

(9.12)
∥∥φ− (φ,1)L2(γ;C)

∥∥2
L2(γ;C) ≤ ∥φ′∥2L2(γ;C) for φ ∈ C1

b(R;C)

and that

(9.13)
∥∥Ptφ− (φ,1)L2(γ;C)

∥∥2
L2(γ;C) ≤ e−t

∥∥φ− (φ,1)L2(γ;C)
∥∥2
L2(γ;C)

for φ ∈ L2(γ;C). The inequality in (9.12) is the Poincaré inequality for γ.

Hint: Note that if suffices to handle φ ∈ C2
b(R;C) for which (φ,1)L2(γ;C) = 0.

Next, given such a φ, show that

(Ptφ)
′ = e−

t
2Ptφ

′ and − ∂t∥Ptφ∥2L2(γ;C) = ∥(Ptφ)′∥2L2(γ;C).

Use these to show that

−∂t∥Ptφ∥2L2(γ;C) =
∥∥(Ptφ)′∥∥2L2(γ;C) ≤ e−t∥φ′∥2L2(γ;C).

10. Hermite Polynomials

Define Hn(x) = (−1)ne
s2

2 ∂nx e
− x2

2 . Then Hn is an nth order monic polynomial
known as the nth Hermite polynomial. Define the operator A+ = x1−∂x, and note
that A+Hn = Hn+1, for which reason it is called the raising operator. Using this,
check that Hn(−x) = (−1)nHn(x).

Next note that if φ,ψ ∈ C1(R;C) which together with their derivatives have at
most exponential growth, then

(10.1)
(
A+φ,ψ

)
L2(γ;C) =

(
φ, ∂ψ

)
L2(γ;C).

Hence, if 0 ≤ m ≤ n, then(
Hn, Hm

)
L2(γ;C) =

(
H0, ∂

nHm

)
L2(γ;C) =

®
m! if n = m

0 if n > m.

Next, observe that if n ≥ 1, then ∂Hn ∈ span{Hm : 0 ≤ m < n}, and so

∂Hn =

n−1∑
m=0

(
∂Hn, Hm

)
L2(γ;C)Hm

m!

=

n−1∑
m=0

(
Hn, Hm+1

)
L2(γ;C)Hm

m!
=

(
Hn, Hn

)
L2(γ;C)Hn−1

(n− 1)!
.

Hence ∂Hn = nHn−1, and for this reason A− ≡ ∂ is called the lowering operator.

Theorem 10.1. ∥Hm∥L2(γ;C) = (m!)
1
2 and {Hm : m ≥ 0} is an orthogonal basis

in L2(γ;C). Equivalently, if H̃m = Hm√
m!

, then {H̃m : m ≥ 0} is an orthonormal

basis in L2(γ;C).
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Proof. All that we need to show is that if φ ∈ L2(γ;C) and (φ,Hm)L2(γ;C) = 0 for

all m ≥ 0, then φ = 0. To this end, use Taylor’s theorem for e−
x2

2 to see that, for
all ζ ∈ C,

(10.2) eζx−
ζ2

2 =

∞∑
m=0

ζm

m!
Hm(x),

where the series converges uniformly on compact subsets of C×R, and, by calulation
above, in L2(γ;C) uniformly for ζ in compact subsets of C. Now suppose that

φ ∈ L2(γ;C), and set ψ(x) = e−
s2

2 φ(x). Then

∥ψ∥L1(λR,C) =

∫
R
e−

x2

4

(
e−

x2

4 |φ(x)|
)
ds ≤ (2π)

1
2 ∥φ∥L2(γ;C),

and

e
ξ2

2 ψ̂(ξ) = (2π)
1
2

∫
R
eıξx−

(ıξ)2

2 φ(x)γ(dx) = (2π)
1
2

∞∑
m=0

(ıξ)m(φ,Hm)L2(γ;C)

m!
.

Hence ψ̂ and therefore φ vanish if (φ,Hm)L2(γ;C) = 0 for all m ≥ 0. □

Observe that L = −A+A−
2 , and therefore, by (10.1)(

Lφ,ψ
)
L2(γ;C) = − 1

2

(
φ′, ψ′)

L2(γ;C) =
(
φ,Lψ

)
L2(γ;C)

for φ,ψ ∈ C2(R;C) which together with their derivatives have at most exponential
growth. Thus, by (9.6) and (9.9),(

LPtφ,ψ
)
L2(γ;C) = ∂t

(
Ptφ,ψ

)
L2(γ;C) = ∂t

(
φ, Ptψ

)
L2(γ;C)

=
(
φ,LPtψ

)
L2(γ;C) =

(
PtLφ,ψ

)
L2(γ;C),

and therefore LPt = PtL. In particular, because −2LHn = nA+Hn−1 = nHn,

∂tPtHn = LPtHn = PtLHn = −n
2
PtHn,

and so, because limt↘0 PtHn = Hn,

(10.3) PtHn = e−
nt
2 Hn.

Exercise 10.1. Using (10.3), give another proof of (9.13), and, using A+Hm =
Hm+1, give another proof of (9.12).

11. Hermite Functions

Define T : L2(γ;C) −→ L2(λR;C) so that Tφ(x) = π− 1
4 e−

x2

2 φ(2
1
2x), and check

that

∥Tφ∥L2(λR;C) = ∥φ∥L2(γ;C) and T
−1f(x) = π

1
4 e

x2

4 f(2−
1
2x).

Thus T is an isometric isomorphism from L2(γ;C) onto L2(λR;C).
Set hm = THm and h̃m = hm = TH̃m. Then, because {H̃m : m ≥ 0} is an

orthonormal basis in L2(γ;C), {h̃m : m ≥ 0} is an orthonormal bases in L2(λR;C).
Assuming that φ ∈ C1(R;C), it easy to show that

TA±φ = a±Tφ where a± = 2−
1
2 (x1∓ ∂x)

and therefore that

(11.1) a+hm = hm+1 and a−hm = mhm−1.
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Theorem 11.1. For all m ≥ 0, ”hm = (2π)
1
2 ımhm.

Proof. Certainly ĥ0 = (2π)
1
2h0. Assuming that ”hm = (2π)

1
2 ımhm, use integration

by parts to see that’hm+1(ξ) = 2−
1
2

∫
eıξxa+hm(x) dx = 2−

1
2

∫
xeıξxhm(x) dx+ 2−

1
2 ıξĥm(ξ)

= 2−
1
2

(
−ı(”hm)′(ξ) + ıξĥm(ξ)

)
= (2π)

1
2 ım+1a+hm(ξ) = (2π)

1
2 ım+1hm+1(ξ).

□

Corollary 11.2. For all m ≥ 0,

(11.2)
∥h̃m∥L1(λR;C) ≤ (2π)

1
2 (m+ 1)

1
2 , ∥h̃m∥u ≤ (m+ 1)

1
2 and

∥xh̃m∥u ∨ ∥∂h̃m∥u ≤ 2m+
3

2
.

Proof. Since ∥h̃0∥L1(λR;C) = 2
1
2π

1
4 , ∥h̃0∥u ≤ π− 1

4 , and

π
1
4

∥∥(h̃0)′∥∥u = sup
x≥0

xe−
x2

2 = e−
1
2 ,

there is nothing to do when m = 0.
Now assume that m ≥ 1. Using the facts that xhm(x) − h′m = 2

1
2hm+1 and

xhm + h′m = 2
1
2mhm−1, one sees that

(11.3)

xh̃m(x) =
m

1
2 h̃m−1(x) + (m+ 1)

1
2 h̃m+1(x)

2
1
2

(h̃m)′(x) =
m

1
2 h̃m−1(x)− (m+ 1)

1
2 h̃m+1(x)

2
1
2

.

Hence, ∫
x2h̃m(x)2 dx = m+ 1

2 ,

and so ∫
(1 + x2)h̃m(x)2 dx = m+ 3

2 ,

which, by Schwarz’s inequality, means that

∥h̃m∥L1(λR;C) =

∫
(1+x2)−

1
2 (1+x2)

1
2 h̃m(x)2 dx ≤ π

1
2

(
m+ 3

2

) 1
2 ≤ (2π)

1
2 (m+1)

1
2 .

Because (h̃m)∧ = (2π)
1
2 ımh̃m,

∥h̃m∥u = (2π)−
1
2

∥∥(h̃m)∧
∥∥
u
≤ (2π)−

1
2 ∥h̃m∥L1(λR;C) ≤ (m+ 1)

1
2 .

To complete the proof, use the second part of (11.3) plus the preceding to see
that ∥∥∂h̃m∥∥u ≤

(
m

1
2 ∥h̃m−1∥u + (m+ 1)

1
2 ∥h̃m+1∥u

)
≤
(
m+ (m+ 1)

1
2 (m+ 2)

1
2

)
≤ 2m+

3

2
.

The same argument, only this time using the first part of (11.3), proves the same

estimate for ∥xh̃m∥u. □
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The kernel which plays the role for the Hermite functions that the Ornstein–
Uhlenbeck kernel (cf. (9.2)) p(t, x, y) plays for the Hermite polynomial is

(11.4)
q(t, x, y) = 2

1
2 e−

t
2 e−

x2

2 p
(
2t, 2

1
2x, 2

1
2 y)e

y2

2

= (2π sinh t)−
1
2 exp

Å
− x2

2 tanh t
+

xy

sinh t
− y2

2 tanh t

ã
.

Observe that q(t, x, · ) ∈ Lp(λR;C) for all p ∈ [1,∞] and that

e
t
2

∫
q(t, x, y)f(y) dy = e−

x2

2

∫
p(2t, 2

1
2x, y)e

y2

4 f
(
2−

1
2 y
)
dy =

(
TP2tT

−1f
)
(x).

Hence, the operator Qt given by

Qtf(x) =

∫
q(t, x, y)f(y) dy

is well defined on L2(λR;C) and is equal to e−
t
2TP2tT

−1. In particular, by (9.10),

e
t
2 ∥Qtf∥L2(λR;C) = ∥P2tT

−1f∥L2(γ;C) ≤ ∥T−1f∥L2(γ;C) = ∥f∥L2(λR;C),

and, by (9.11)∥∥∥e t
2Qtf − f

∥∥∥
L2(λR;C)

=
∥∥T (P2tT

−1f − T−1f)
∥∥
L2(λR;C)

=
∥∥P2tT

−1f − T−1f
∥∥
L2(γ;C) −→ 0 as t↘ 0.

Hence

∥Qtf∥L2(λR;C) ≤ e−
t
2 ∥f∥L2(λR;C) and lim

t↘0
∥Qtf − f∥L2(λR;C) = 0.

In addition, by (10.3), Qthm = e−
t
2TP2tHm = e−(m+ 1

2 )thm.

Theorem 11.3. If f ∈ L1(λR;C) ∪ L2(λR;C), then∫
q(t, x, y)f(y) dy = e−

1
2

∞∑
m=0

e−mt(f, h̃m)L2(λR;C)h̃m for t > 0,

where the convergence of the series is absolute uniformly for x ∈ R.

Proof. First observe that, by the estimates in Corollary 11.2, the series is absolutely
convergent uniformly in x ∈ R and that both sides are continuous as functions of
f ∈ L1(R;C) or of f ∈ L2(λR;C). In particular, it suffices to prove the equality
when f ∈ Cc(R;C).

Given f ∈ Cc(R;C), set fn =
∑n
m=0(f, h̃m)L2(λR;C)h̃m. Then∫

q(t, x, y)fn(y) dy = e−
t
2

n∑
m=0

e−mt(f, h̃m)L2(λR;C)h̃m(x).

Because q(t, x, · ) ∈ L2(λR;C) and fn −→ f in L2(λR;C), the left hand side con-
verges to

∫
q(t, x, y)f(y) dy. □

Exercise 11.1. Define the Mehler kernel M(θ, x, y) for (θ, x, y) ∈ (0, 1) × R × R
by

M(θ, x, y) =
(
2π(1− θ2)

)− 1
2 exp

Å
−θ

2x2 − 2θxy + θ2y2

2(1− θ2)

ã
,
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and show that

M(θ, x, y) =
(
1− θ2

)− 1
2

∞∑
m=0

θm
Hm(x)Hm(y)

m!
,

where the series converges uniformly for (x, y) in compact subsets. This famous
equation is known as Mehler’s formula.

12. The Fourier Transform for L2(λR;C)

The basic goal here is to extend the Fourier transform on L1(R;C) ∩ L2(λR;C)
as a bounded operation on L2(λR;C) into L2(λR;C). We will then examine some
of the fundamental properties of this extension.

Lemma 12.1. If f ∈ L1(R;C), then

(12.1)

e−
ξ2 tanh t

2

(2π cosh t)
1
2

∫
e

ıξx
cosh t e−

x2 tanh t
2 f(x) dx

= e−
t
2

∞∑
m=0

(ıe−t)m(f, h̃m)L2(λR;C)h̃m(ξ)

for (t, ξ) ∈ (0,∞)× R.

Proof. Since both sides of (12.1) are continuous functions of f ∈ L1(R;C), we may
and will assume that f ∈ Cc(R;C).

Set D = {ζ ∈ C : |ζ| < 1 & ζ /∈ (−1, 0]}, and define α±(ζ) =
1
2

(
1
ζ ∓ ζ

)
for ζ ∈ D.

Next, for fixed ξ ∈ R and all ζ ∈ D, define

Φ(ζ) =
(
2πα+(ζ)

)− 1
2 e

− α−(ζ)

2α+(ζ)
ξ2
∫
e

ξx
α+(ζ) e

− α−(ζ)

2α+(ζ)
x2

f(x) dx

and

Ψ(ζ) = ζ
1
2

∞∑
m=0

ζm(f, h̃m)L2(λR;C)h̃m(ξ),

and observe that both Φ and Ψ are analytic functions on D. Furthermore, since
α+(e

−t) = sinh t and α−(e
−t) = cosh t, Lemma 11.3 says that Φ = Ψ on (0, 1), and

therefore, by analytic continuation, Φ = Ψ on D. In particular, Φ
(
ıe−t

)
= Ψ

(
ıe−t

)
.

Finally, because α+

(
ıe−t

)
= cosh t

ı and α−
(
ıe−t

)
= sinh t

ı , one sees that the left

hand and right sides of (12.1) equal, respectively ı
1
2Φ
(
ıe−t

)
and ı

1
2Ψ
(
ıe−t

)
. □

Theorem 12.2. If f ∈ L1(R;C) ∩ L2(R;C), then

(12.2) f̂ = (2π)
1
2

∞∑
m=0

ım(f, h̃m)L2(λR;C)h̃m

almost everywhere.

Proof. Because f ∈ L1(R;C), the left hand side of (12.1) tends pointwise to

(2π)−
1
2 f̂ as t ↘ 0, and because f ∈ L2(λR;C), the right hand side tends in

L2(λR;C) to the series on the right hand side of (12.2). □
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As a consequence of Theorem 12.2, we know that ∥f̂∥L2(λR;C) = (2π)
1
2 ∥f∥L2(λR;C)

for f ∈ L1(λR;C)∩L2(λR;C). Hence the map f ∈ L1(λR;C)∩L2(λR;C)⇝ f̂ admits

a unique continuous extension as a linear map with norm (2π)
1
2 from L2(λR;C) into

L2(λR;C), and (12.2) continuous to hold for this extension.

Define f̆(x) = f(−x), and observe that h̆m = (−1)mhm, (f̆ , g)L2(λR;C) = (f, ğ)L2(λR;C),

and
˘̂
f =

“̆
f . In addition, by Fubini’s theorem,(

φ̂, h̃m
)
L2(λR;C)

=

∫ ∫
eıξxφ(x)h̃m(ξ) dxdξ =

∫
φ(x)

̂̃
hm(x) dx = (2π)

1
2 ım(φ, h̃m)L2(λR;C),

and so, for f, g ∈ L2(λR;C),(
f̂ , ĝ
)
L2(λR;C)

=

∞∑
m=0

(
f̂ , h̃m

)
L2(λR;C)

(
ĝ, h̃m

)
L2(λR;C)

= 2π

∞∑
m=0

(
f, h̃m

)
L2(λR;C)

(
g, h̃m

)
L2(λR;C)

= 2π(f, g)L2(λR;C),

which means that Parseval’s identity

(12.3)
(
f̂ , ĝ)L2(λR;C) = 2π

(
f, g
)
L2(λR;C)

holds. Finally, set f̌ =
˘̂
f , (f̂ , g)L2(λR;C) = (f, ǧ)L2(λR;C) and therefore, by (12.3),

that (
(f̂)∨, g

)
L2(λR;C)

=
(
f̂ , ĝ
)
L2(λR;C)

= 2π(f, g)L2(λR;C).

Similarly,
(
(f̌)∧, g

)
L2(λR;C)

= 2π
(
f, g
)
L2(λR;C)

, and so we have proved the Fourier

inversion formula

(12.4)
(
f̂
)∨

= 2πf = (f̌)∧.

It is important to keep in mind that f̂ is not given by a Lebesgue integral
for f ∈ L2(λR;C) unless f ∈ L1(λR;C) as well. On the other hand, because
fR ≡ 1[−R,R]f ∈ L1(λR;C) ∩ L2(λR;C) and fR −→ f in L2(λR;C),

f̂(ξ) = lim
R→∞

∫ R

−R
eıξxf(x) dx,

where the convergence is in L2(λR;C).

Exercise 12.1. Define Ff(ξ) = f̂(2πξ), and show that F is an orthogonal operator
on L2(λR;C). Further, show that if F∗ is the adjoint of F , then equals F−1f =

F∗f = (Ff)∪ = F f̆ .

13. Schwartz Test Functions

In this section we will study a space of functions introduced by Laurent Schwartz7

and used by him to construct the class of distributions discussed in the next section.
The function space alluded to above is denoted by S (R;C) and consists of

functions φ ∈ C∞(R;C) with the property that x ⇝ xk∂ℓφ(x) is bounded for all
k, ℓ ∈ N. Obviously, S (R;C) is a vector space. In addition, it is closed under

7There are many books in which Schwartz’s theory is presented, but his own original treatment
in Théorie des distributions, I published in 1950 by Hermann, Paris remains one of the best

accounts.
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differentiation as well as products with smooth functions which, together with all
their derivatives, have at most polynomial growth (i.e., grow no faster than some
power of (1 + x2)). Thus the Hermite functions are all in S (R;C). Finally, since,
for φ ∈ S (R;C), ∫

|φ(x)|p dx ≤ ∥(1 + x2)φ∥pu
∫
(1 + x2)−p dx,

S (R;C) ⊆
⋂
p∈[1,∞] L

p(λR;C).
There is an obvious notion of convergence for sequences in S (R;C). Namely,

define the norms

∥φ∥(k,ℓ)u = ∥xk∂ℓφ∥u
for k, ℓ ∈ N, and say that φj −→ φ in S (R;C) if limn→∞ ∥φj − φ∥(k,ℓ)u = 0 for all
k, ℓ ∈ N. The corresponding topology is the one for which G is open if and only if
for each φ ∈ G there an m ∈ N and r > 0 such that{

ψ : ∥ψ − φ∥(m)
u < r

}
⊆ G,

where

∥ · ∥(m)
u ≡ max

k,ℓ∈N
k+ℓ≤m

∥ · ∥(j,ℓ)u .

We will now develop a more convenient description of the topology on S (R;C),
one that shows that S (R;C) shares many properties with Hilbert spaces. Define
the operator H on S (R;C) into itself by

Hφ = x2φ− ∂2φ.

Since (cf. (11.1)) H = (2a+a− + 1),

(13.1) Hh̃k = µkh̃k where µk = 2k + 1,

and so we can define operators Hs for any s ∈ R by

Hsφ =

∞∑
m=0

µsm(φ, h̃m)L2(λR;C)h̃m.

For each m ≥ 0, set

S (m)(R;C) =

{
φ ∈ L2(λR;C) :

∞∑
k=1

µmk
∣∣(φ, h̃k)L2(λR;C)

∣∣2 <∞

}
,

and define

(φ,ψ)S (m)(R;C) =

∞∑
k=0

µmk (φ, h̃k)L2(λR;C)(h̃k, ψ)L2(λR;C) =
(
φ,Hmψ

)
L2(λR;C)

∥φ∥S (m)(R;C) = (φ,φ)
1
2

S (m)(R;C) =
(
φ,Hmφ

) 1
2 .

Clearly S (m)(R;C) is a vector space for which (φ,ψ)S (m)(R;C) is an inner prod-
uct. Below we will show below that it is a separable Hilbert space.

Lemma 13.1. For each m ≥ 0,

∥xφ∥S (m)(R;C) ∨ ∥∂φ∥S (m)(R;C) ≤ 3m∥φ∥S (m+1)(R;C).
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Proof. By the first part of (11.3),

∥xφ∥2S (m)(R;C) =

∞∑
k=0

µmk |(xφ, h̃k)L2(λR;C)|
2

=

∞∑
k=1

kµmk |(φ, h̃k−1)L2(λR;C)|
2 +

∞∑
k=0

(k + 1)µmk |(φ, h̃k+1)L2(λR;C)|
2

= µm1 |(φ, h̃0)L2(λR;C)|
2 +

∞∑
k=1

(
(k + 1)µmk+1 + kµmk−1

)
|(φ, h̃k)L2(λR;C)|

2

≤ 3mµm+1
0 m|(φ, h̃0)L2(λ[0,1);C)|

2 +

∞∑
k=1

(
2m(k + 1) + k

)
µmk |(φ, h̃k)L2(λR;C)|

2

≤ 3m∥φ∥S (m+1)(R;C).

Using the second part of (11.3) and the same argument, one can show that ∥∂φ∥S (m)(R;C)
≤ 3m∥φ∥S (m+1)(R;C). □

Theorem 13.2. For each m ∈ N, S (R;C) is a dense subset of S (m)(R;C). In
addition, for each m ≥ 0, there exists a Km ∈ (0,∞) such that

(13.2) ∥φ∥S (m)(R;C) ≤ Km∥φ∥(m+1)
u

and

(13.3) ∥φ∥(m)
u ≤ Km∥φ∥S (m+3)(R;C).

for all φ ∈ S (R;C). Thus φn −→ φ in S (R;C) if and only if

lim
n→∞

∥φn − φ∥S (m)(R;C) = 0

for all m ∈ N. In particular, for each φ ∈ S (R;C),
n∑
k=0

(φ, h̃k)L2(λR;C)h̃k −→ φ in S (R;C) as n→ ∞.

Proof. Since H ↾ S (R;C) is a symmetric operator, (13.1) implies that

µmk (φ, h̃k)L2(λR;C) = (φ,Hmh̃k)L2(λR;C) = (Hmφ, h̃k)L2(λR;C),

for all φ ∈ S (R;C) and m ≥ 0, from which it is clear that S (R;C) ⊆ S (m)(R;C)
for all m ≥ 0. Moreover, since, for each φ ∈ S (m)(R;C),

S (R;C) ∋
n∑
k=0

(φ, h̃k)L2(λR;C)h̃k −→ φ in S (m)(R;C) as n→ ∞,

S (R;C) is dense in S (m)(R;C).
Next observe that there exist constants c

(m)
j,ℓ ∈ R such that(

x2 − ∂2
)m
φ =

∑
k,ℓ∈N

k+ℓ≤2m

c
(m)
j.ℓ x

k∂ℓφ,

and use integration by parts to see that(
φ, xk∂ℓφ

)
L2(λR;C)

= (−1)ℓ
′(
∂ℓ

′
(xk

′
φ), xk−k

′
∂ℓ−ℓ

′
φ
)
L2(λR;C)

,
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where

k′ =

®
k
2 if k is even
k−1
2 if k is odd

and ℓ′ =

®
ℓ
2 if ℓ is even
ℓ+1
2 if ℓ is odd.

Hence there exist constants b
(m)
(k1,ℓ1),(k2,ℓ2)

∈ R such that(
φ,Hmφ

)
L2(λR;C)

≤
∑

(k1,ℓ1),(j2,ℓ2)∈N2

(k1+ℓ1)∨(j2+ℓ2)≤m

∣∣b(m)
(k1,ℓ1),(k2,ℓ2)

(
xk1∂ℓ1φ, xk2∂ℓ2φ

)
L2(λR;C)

∣∣
≤

∑
(k1,ℓ1),(k2,ℓ2)∈N2

(k1+ℓ1)∨(k2+ℓ2)≤m

|b(m)
(k1,ℓ1),(k2,ℓ2)

|
∥∥xk1∂ℓ1φ∥∥

L2(λR;C)

∥∥xk2∂ℓ2φ∥∥
L2(λR;C)

.

Finally, observe that

∥xk∂ℓφ∥2L2(λR;C) =

∫
(1 + x2)−1

∣∣(1 + x2)
1
2xk∂ℓφ(x)

∣∣2 dx
≤ π

(
∥xk∂ℓφ∥2u + ∥xk+1∂ℓφ∥2u

)
,

and combine this with the preceding to arrive at (13.2).
To prove (13.3), begin by making repeated application of Lemma 13.1 to show

that

∥xk∂ℓφ∥S (3)(R;C) ≤ 3
m(m+1)

2 ∥φ∥S (k+ℓ+3)(R;C) if k + ℓ ≤ m.

Thus, if we show that there is a K ∈ (0,∞) such that

∥φ∥u ≤ K∥φ∥S (3)(R;C), (∗)
then

∥xk∂ℓφ∥u ≤ K∥xk∂ℓφ∥S (3)(R;C) ≤ K∥φ∥S (k+ℓ+3)(R;C),

in which case we would know that ∥φ∥(m)
u ≤ 3

m(m+1)
2 K∥φ∥S (m+3)(R;C). To prove

(∗), use the estimate in (11.2) to see that

∥φ∥u ≤
∞∑
k=0

|(φ, h̃k)L2(λR;C)|∥h̃k∥u

≤
∞∑
k=0

(k + 1)
1
2 |(φ, h̃k)L2(λR;C)| =

∞∑
k=0

Å
k + 1

µ3
k

ã 1
2

µ
3
2

k |(φ, h̃k)L2(λR;C)|

≤

( ∞∑
k=0

k + 1

µ3
k

) 1
2
( ∞∑
k=0

µ3
k|(φ, h̃k)L2(λR;C)|

2

) 1
2

= K∥φ∥S (3)(R;C).

where K =
(∑∞

k=0
k+1
µ3
k

) 1
2

. □

As a consequence of Theorem 13.2, we know that

ρS (φ,ψ) ≡
∞∑
m=0

1

2m+1

∥φ− ψ∥S (m)(R;C)

1 + ∥φ− ψ∥S (m)(R;C)

is a metric for the topology on S (R;C). In addition, S (R;C) =
⋂∞
m=0 S (m)(R;C),

and so we can learn about properties of S (R;C) by understanding those of the
S (m)(R;C)’s.
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For each m ≥ 0, let s(m)(N;C) be the space of functions s : N −→ C such that

∥s∥s(m)(N;C) ≡

( ∞∑
k=0

µmk |s(k)|2
) 1

2

<∞,

and define

(s, t)s(m)(N;C) =

∞∑
k=0

µmk s(k)t(k) for s, t ∈ s(m)(N;C),

Clearly each s(m)(N;C) is a vector space with inner product (s, t)s(m)(N;C). Finally,

set s(N;C) =
⋂∞
m=0 s

(m)(N;C), and turn s(N;C) into a metric space with metric

ρs(s, t) ≡
∞∑
m=0

1

2m+1

∥t− s∥s(m)(N;C)

1 + ∥t− s∥s(m)(N;C)
.

The following corollary is essentially a reformulation of the results in Theorem
13.2. It is the analogue for S (R;C) of the fact that every separable Hilbert space
is isomorphic to ℓ2(N;C).

Corollary 13.3. Define the map S : L2(λR;C) −→ ℓ2(N;C) by

[S(φ)](k) = (φ, h̃k)L2(λR;C).

Then, for each m ≥ 0, S ↾ S (m)(R;C) is an isometric isomorphism from S (m)(R;C)
onto s(m)(N;C), and so S ↾ S (R;C) is isometric homeomorphism from S (R;C)
onto s(N;C).

Corollary 13.3 means that any topological property of s(m)(N;C) or s(N;C) is a
property of S (m)(R;C) or S (R;C), and the following lemma facilitates the study
of such properties.

Lemma 13.4. Let {αk : k ≥ 0} ⊆ (0,∞), and define the measure ν on N by
ν({k}) = αk. Then L2(ν;C) is a separable Hilbert space. In addition, a set B ⊆
L2(ν;C) is relatively compact if and only if B is bounded and tight in the sense that

lim
K→∞

sup
s∈B

∑
k>K

αk|s(k)|2 = 0.

Proof. Since the L2-space for any measure on a countably generated σ-algebra is a
separable Hilbert space, L2(ν;C) is a separable Hilbert space.

Since L2(ν;C) is complete, to prove that a bounded, tight subset B is relatively
compact it suffices to show that B is totally bounded (i.e., for every r > 0 there is
a finite cover of B by balls of radius r with centers in B). To that end, let r > 0
be given, and choose K so that

sup
s∈B

∑
k>K

αk|s(k)|2 <
r2

4
.

Next, note that
{(
s(0), . . . , s(K)

)
: s ∈ B

}
is a bounded subset of CK+1 and

therefore totally bounded there. Hence there exists a finite set {sj : 1 ≤ j ≤ J} ⊆ B
such that, for each s ∈ B,

min
1≤j≤J

K∑
k=0

αk|s(k)− sj(k)|2 <
r2

2
,
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which means that, for each s ∈ B there exists a 1 ≤ j ≤ J such that

∥s− sj∥2L2(ν;C) =

K∑
k=0

αk|s(k)− sj(k)|2 +
∑
k>K

αk|s(k)− sj(k)|2 ≤ r2.

Finally, suppose that B is relatively compact. Certainly it is bounded. To see
that it must be tight, suppose it were not. Then there would exist an ϵ > 0 such
that, for each K ∈ N,

sup
s∈B

∑
k>K

αk|s(k)|2 > ϵ.

Thus we could find a sequence {sK : K ≥ 0} ⊆ B with the property that∑
k>K αk|sK(k)|2 ≥ ϵ, and, because B is relatively compact, we could choose it

to be a sequence which converges to some t ∈ L2(ν;C). But this would mean that∑
k>K

αk|t(k)|2 ≥
∑
k>K

αk|sK(k)|2 − ∥t− sK∥2L2(ν;C) ≥
ϵ

2

for sufficient large K, and that would mean the t can’t be in L2(ν;C). □

Say that B ⊆ S (R;C) is bounded in S (R;C) if

sup
φ∈B

∥φ∥S (m)(R;C) <∞ for each m ≥ 0.

Theorem 13.5. S (m)(R;C) is a separable Hilbert space for each m ≥ 0, and
S (R;C) is a complete separable metric space. Moreover, a subset B ⊆ S (R;C) is
relatively compact if and only if it is bounded in S (R;C).

Proof. By Lemma 13.4 applied with αk = µmk , we know that each of the spaces

s(m)(N;C) is a separable Hilbert space, and therefore, by Corollary 13.3, so is each
S (m)(R;C). Thus, since S (R;C) is dense in every S (m)(R;C), we can use a
diagonalization argument to find a sequence {φn : n ≥ 1} ⊆ S (R;C) which is
dense in S (m)(R;C) for all m ≥ 0. Since this means that

inf
n≥1

∥φ− φn∥S (m)(R;C) = 0 for all φ ∈ S (R;C) and m ≥ 0,

it follows that

inf
n≥1

ρS (R;C)(φ,φn) = 0 for all φ ∈ S (R;C).

That is, {φn : n ≥ 1} is dense in S (R;C), and so S (R;C) is separable.
To see that S (R;C) is complete, first use Lemma 13.4 and Corollary 13.3 to see

that each S (m)(R;C) is complete. Now suppose that {φn : n ≥ 1} ⊆ S (R;C)
is ρS (R;C)-Cauchy convergent. Then it is ∥ · ∥S (m)(R;C)-Cauchy convergent for each

m ≥ 0, and therefore it is convergent in each S (m)(R;C) to some element of
S (m)(R;C). But if φn −→ φ in S (m+1)(R;C), then φn −→ φ in S (m)(R;C), and
so there is a unique φ ∈

⋂∞
m=0 S (m)(R;C) to which {φn : n ≥ 1} converges in

S (m)(R;C) for all m ≥ 0. Therefore φ ∈ S (R;C) and limn→∞ ρS (φ,φn) = 0.
Finally, suppose that B ⊆ S (R;C) is relatively compact in S (R;C). Because

B is then relatively compact in each S (m)(R;C) and therefore bounded there, it is
a bounded subset of S (R;C). Conversely, if B is bounded in S (R;C), in order to
show that it is relatively compact in S (R;C) we need only show that it is totally
bounded there. To that end, first observe that it is bounded in each S (m)(R;C).
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Thus, by Lemma 13.4 and Corollary 13.3, we will know that it is relatively compact
in S (m)(R;C) if

lim
K→∞

sup
φ∈B

∑
k>K

µmk |(φ, h̃k)L2(λR;C)|
2 = 0. (∗)

But ∑
k>K

µmk |(φ, h̃k)L2(λR;C)|
2 ≤ 1

µK+1
∥φ∥2S (m+1)(R;C),

and so, since B is bounded in S (m+1)(R;C), (∗) holds. To complete the proof that
B ρS -totally bounded, let r > 0 be given, and choose m so that 2−m < r

2 . Next,

using the fact that B is relatively compact in S (m)(R;C), choose {φj : 1 ≤ j ≤
J} ⊆ B so that

sup
φ∈B

min
1≤j≤J

∥φ− φj∥S (m)(R;C) <
r

2
,

and conclude that

B ⊆
J⋃
j=1

{
φ : ρS (R;C)(φ,φj) < r

}
.

□

The assertion in the following is one of the many virtues possessed by S (R;C).

Theorem 13.6. The map φ ⇝ φ̂ is an isomorphism from S (R;C) onto itself,

and, for each m ≥ 0, ∥φ̂∥S (m)(R;C) = (2π)
1
2 ∥φ∥S (m)(R;C).

Proof. We already know that the Fourier transform is an isomorphism of L2(λR;C)
onto L2(λR;C). In addition, by Theorem 12.2,

(φ̂, h̃k)L2(λR;C) = (2π)
1
2 (−ı)k(φ, h̃k)L2(λR;C),

and so

∥φ̂∥2S (m)(R;C) = 2π
∞∑
k=0

µmk |(φ, h̃k)L2(λR;C)|
2 = 2π∥φ∥2S (m)(R;C).

□

Exercise 13.1. Show that for each (m,n) ∈ N2 there is a Cn,m ∈ (0,∞) such that

1

Cn,m
max
k,ℓ∈N
k+ℓ≤m

∥xk∂ℓφ∥S (n)(R;C) ≤ ∥φ∥S (n+m)(R;C) ≤ Cn,m max
k,ℓ∈N
k+ℓ≤m

∥xk∂ℓφ∥S (n)(R;C).

Hint: In proving the upper bound, consider using the equation

(
an+φ, h̃k+n

)
L2(λR;C)

=

Å
(k + n)!

k!

ã 1
2 (
φ, h̃k

)
L2(λR;C)

.

.
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Exercise 13.2. Let {φn : n ≥ 1} be a bounded sequence in S (R;C) such that
limn→∞ φn(x) exists for each x ∈ R. Show that there is a φ ∈ S (R;C) such that
φn −→ φ in S (R;C).
Hint: Use Theorem 13.5.

Exercise 13.3. This exercise deals with the relationship between various function
spaces.

(i) Show that C∞
c (R;C) is a dense subset of S (R;C)

(ii) Set

C0(R;C) =
ß
f ∈ C(R;C) : lim

|x|→∞
f(x) = 0

™
.

Show that C0(R;C) with the uniform norm is a Banach space in which both C∞
c

and S (R;C) are dense subsets.

Exercise 13.4. For x ∈ R and φ ∈ S (R;C), define τxφ(y) = φ(x + y). Show

that τxφ ∈ S (R;C) and that ∥τxφ∥(m)
u ≤ 2m(|x| ∨ 1)m∥φ∥(m)

u for all m ≥ 0. In
addition, show that

∥τx2
φ− τx1

φ∥(m)
u ≤ 2m

(
|x1| ∨ |x2| ∨ 1)m∥φ∥(m+1)

u |x2 − x1|.
Hint: To prove the first estimate, check that

|yk∂ℓτxφ(y)| ≤
®
(2|x|)m

∣∣(∂ℓφ)(x+ y)
∣∣ if |y| ≤ 2|x|

2m
∣∣(x+ y)k(∂ℓφ)(x+ y)

∣∣ if |y| ≥ 2|x|.
To prove the second estimate, assume that x1 ≤ x2, note that

τx2
φ− τx1

φ =

∫ x2

x1

τtφ
′ dt,

and therefore that

∥τx2
φ− τx1

φ∥(m)
u ≤

∫ x2

x1

∥τtφ′∥(m)
u dt.

Finally, apply the first estimate.

14. Tempered Distributions

Schwartz developed the theory of distribution in order to provide a mathemati-
cally rigorous way to describe the sort of generalized functions that appear in the
work by Boole and Heaviside in connection with applications of the Laplace trans-
form to ordinary differential equations, and those that were somewhat later intro-
duced by Sobolev for applications to partial differential equations. What Schwartz
realized is that generalized functions should be thought of in terms of their action
(i.e., their L2(λR;C) inner product with) on smooth functions rather than their
value (which won’t exist in general) at points.

To make that idea mathematically precise, he said a generalized function, which
he called a distribution, should be a continuous linear functional on a topologi-
cal vector space of smooth functions. One of the spaces Schwartz considered is
C∞

c (R;C), but the appropriate topology on that space is rather cumbersome (for
instance, elements don’t have countable neighborhood bases). A second, and much
more tractable, choice is S (R;C). Because elements of S (R;C) need not have com-
pact support, an element of its dual space must satisfy restricted growth conditions
and is therefore called a tempered distribution.
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Recall that the dual space X∗ of a topological vector space X over C is the
space of continuous, C-valued linear functions on X. When, like S (R;C), all the
elements of X have a countable neighborhood basis, a linear function Λ on X is
an element of X∗ if Λxn −→ Λx whenever xn −→ x in X. Because we want to
think of elements of S (R;C)∗ as generalized functions which act via their L2-inner
product with elements of S (R;C), we will use letters like u to denote elements of
S (R;C)∗ and write their action on φ ∈ S (R;C) as ⟨φ, u⟩.

Lemma 14.1. For each u ∈ S (R;C)∗ there is an m ≥ 0 and a C ∈ (0,∞) such
that

|⟨φ, u⟩| ≤ C∥φ∥S (m)(R;C) for all φ ∈ S (R;C).

Proof. Because sets of the form
{
∥φ∥S (m)(R;C) ≤ r

}
form a neighborhood basis

for 0 in S (R;C), there is an m ≥ 0 and r > 0 such that |⟨φ, u⟩| ≤ 1 when
∥φ∥S (m)(R;C) ≤ r. Hence |⟨φ, u⟩| ≤ r−1∥φ∥S (m)(R;C). □

Simple as it is, Lemma 14.1 has many consequences. For example, it allows us
to say that

(14.1) ⟨φ, u⟩ =
∞∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩,

where the series is absolutely convergent. Indeed, if |⟨φ, u⟩| ≤ C∥φ∥S (m)(R;C), then

|⟨h̃k, u⟩| ≤ Cµmk , and so, since |(φ, h̃k)L2(λR;C)| = µ−n
k |(Hnφ, h̃k)L2(λR;C)| for all

n ≥ 0, the series
∑∞
k=0(φ, h̃k)L2(λR;C)⟨h̃k, u⟩ is absolutely convergent. Hence, if

φn =
∑n
k=0(φ, h̃k)L2(λR;C), then φn −→ φ in S (R;C) and therefore

⟨φ, u⟩ = lim
n→∞

⟨φn, u⟩ = lim
n→∞

n∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩

=

∞∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩.

Obviously, given a measurable function f : R −→ C with at most polynomial
growth, one can think of it as the element fλR of S (R;C)∗ given by ⟨φ, fλR⟩ =∫
φf̄ dλR, and in this way S (R;C) can be thought of as a subset of S (R;C)∗.

Although the distribution corresponding to f is fλR, it is conventional to denote
it by f instead, and we will adopt this convention.

We will need to know that S (R;C) is dense in S (R;C)∗. To see that it is, let
u ∈ S (R;C)∗, and set

ψn =

n∑
k=0

⟨h̃k, u⟩h̃k.

Clearly ψn ∈ S (R;C), and, for each φ ∈ S (R;C),

(φ,ψn)L2(λR;C) =

n∑
k=0

(φ, h̃k)L2(λR;C)(ψn, h̃k)L2(λR;C)

=

n∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩ −→
∞∑
k=0

(φ, h̃k)L2(λR;C)⟨h̃k, u⟩ = ⟨φ, u⟩.

The importance of this density result is that it tells us how to extend contin-
uous operators like Hs as continuous operators on S (R;C)∗. Namely, because
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(φ,Hsψ)L2(λR;C) = (Hsφ,ψ)L2(λR;C) for φ,ψ ∈ S (R;C) and S (R;C) is dense in

S (R;C)∗, the one and only continuous extension of Hs to S (R;C)∗ is given by

(14.2) ⟨φ,Hsu⟩ ≡ ⟨Hsφ, u⟩.

Since S (R;C) can be written as the intersection of the spaces S (m)(R;C),
S (R;C)∗ must be able to be written as the union of the spaces S (m)(R;C)∗. Of
course, because S (m)(R;C) is a Hilbert space, Riesz’s theorem provides an isomor-

phism between S (m)(R;C)∗ and S (m)(R;C). However, in order to be consistent
with the idea that ⟨φ, u⟩ is a generalization of the L2 inner product, this is not the

way we will think about S (m)(R;C)∗. Instead, we want to identify S (m)(R;C)∗

as the Hilbert space

S (−m)(R;C) =

{
u ∈ S (R;C)∗ :

∞∑
k=0

µ−m
k |⟨h̃k, u⟩|2 <∞

}
with inner product

(u, v)S (−m)(R;C) =

∞∑
k=0

µ−m
k ⟨h̃k, u⟩⟨h̃k, v⟩.

Recall that if X is a Banach space and Λ ∈ X∗, then ∥Λ∥X∗ = sup{|Λ(x)| :
∥x∥X = 1}. Thus

∥u∥S (m)(R;C)∗ = sup{|⟨φ, u⟩| : ∥φ∥S (m)(R;C) = 1}.

Theorem 14.2. For each m ≥ 0, S (−m)(R;C) is a separable Hilbert space in
which S (R;C) is a dense subset, and

u ∈ S (−m)(R;C) ⇐⇒ H−m
2 u ∈ L2(λR;C) & |H−m

2 u∥L2(λR;C) = ∥u∥S (−m)(R;C)

⇐⇒ u ∈ S (m)(R;C)
∗
.

Moreover, if u ∈ S (−m)(R;C), then ∥u∥S (m)(R;C)∗ = ∥u∥S (−m)(R;C) and therefore

(14.3) |⟨φ, u⟩| ≤ ∥φ∥S (m)(R;C)∥u∥S (−m)(R;C).

Proof. That S (−m)(R;C) is a seperable Hilbert space follows from Lemma 13.4.

Next, let u ∈ S (−m)(R;C) and set un =
∑n
k=0 ⟨h̃k, u⟩h̃k. Then un ∈ S (R;C) and

∥u− un∥2S (−m)(R;C) =
∑
k>n

µ−m
k

∣∣⟨h̃k, u⟩∣∣2 −→ 0.

Hence S (R;C) is dense in S (−m)(R;C).
If u ∈ S (−m)(R;C), then

|⟨φ,H−m
2 u⟩| =

∣∣∣∣∣
∞∑
k=0

µ
−m

2

k (φ, h̃k)L2(λR;C)⟨h̃k, u⟩
∣∣∣∣∣ ≤ ∥φ∥L2(λR;C)∥u∥S (−m)(R;C),

and so H−m
2 u ∈ L2(λR;C) and ∥H−m

2 u∥L2(λR;C) ≤ ∥u∥S (−m)(R;C). Conversely, if

H−m
2 u ∈ L2(λR;C), then

∥u∥2S (−m)(R;C) =

∞∑
k=0

µ−m
k |⟨h̃k, u⟩|2 =

∞∑
k=0

|⟨h̃k,H−m
2 u⟩|2 = ∥H−m

2 u∥L2(λR;C).



TOPICS IN FOURIER ANALYSIS 37

To prove the second equivalence, first suppose that u ∈ S (m)(R;C)∗. Then,
since ∥H−m

2 φ∥S (m)(R;C) = ∥φ∥L2(λR;C),

|⟨φ,H−m
2 u⟩| = |⟨H−m

2 φ, u⟩|
≤ ∥H−m

2 φ∥S (m)(R;C)∥u∥S (m)(R;C)∗ = ∥u∥S (m)(R;C)∗∥φ∥L2(λR;C),

and so H−m
2 u ∈ L2(λR;C) and ∥u∥S (−m)(R;C) ≤ ∥u∥S (m)(R;C)∗ . Conversely, if

u ∈ S (−m)(R;C), set f = H−m
2 u, then

|⟨φ, u⟩| = |(Hm
2 φ, f)L2(λR;C)|

≤ ∥Hm
2 φ∥L2(λR;C)∥f∥L2(λR;C) = ∥u∥S (−m)(R;C)∥φ∥S (m)(R;C),

and so u ∈ S (m)(R;C)∗ and ∥u∥S (m)(R;C)∗ ≤ ∥u∥S (−m)(R;C). □

By combining Lemma 14.1 and Theorem 14.2, we know that

S (R;C)∗ =

∞⋃
m=0

S (−m)(R;C).

Theorem 14.3. If u ∈ S (−m)(R;C) is non-negative in the sense that ⟨φ, u⟩ ≥ 0
whenever φ ∈ S (R;C) is non-negative, then there exists a Borel measure µ on R
such that ∫

(1 + x2)−
m+2

2 µ(dx) <∞ and ⟨φ, µ⟩ =
∫
φdµ.

Conversely, if µ is a Borel measure on R satisfying∫
(1 + x2)−

m
2 µ(dx) <∞

and u ∈ S (R;C)∗ is defined by ⟨φ, u⟩ =
∫
φdµ, then u ∈ S (−m−3)(R;C).

Proof. Assume that u ∈ S (−m)(R;C) is non-negative. Choose η ∈ C∞(R; [0, 1])
so that η = 1 on [−1, 1] and η = 0 off [−2, 2], set ηR(x) = η

(
x
R

)
for R ≥

1, and define uR ∈ S (R;C)∗ by ⟨φ, uR⟩ = ⟨ηRφ, u⟩. Given an R-valued φ ∈
S (R;C), ∥φ∥uηR ± φηR ≥ 0, and therefore |⟨φ, uR⟩| ≤ ∥φ∥u⟨ηR, u⟩. Thus there is
a unique extension of φ⇝ ⟨φ, uR⟩ as a continuous, non-negative linear functional on
C
(
[−2R; 2R],R

)
, which, by the Riesz representation theorem, means that there is a

finite Borel measure µR on R such that ⟨φ, uR⟩ =
∫
φdµR. In particular, µR(R) =

⟨ηR, u⟩ ≤ ∥ηR∥S (m)(R;C)∥u∥S (−m)(R;C). Since ∥ηR∥2S (m)(R;C) =
(
ηR,HmηR

)
L2(λR;C)

and HmηR is a linear combinations of terms of the form xk

Rℓ η
(ℓ)
(
x
R

)
, where 0 ≤

k + ℓ ≤ 2m, there exists a C <∞ such thatÅ∫
ηR(x)HmηR(x) dx

ã 1
2

≤ CRm+ 1
2 ,

and so µR(R) ≤ C∥u∥S (−m)(R;C)R
m+ 1

2 .

Note that R ≤ R′ =⇒ µR′ ↾ [−R,R] = µR ↾ [−R,R], and therefore there
is a Borel measure µ on R such that µ ↾ [−R,R] = µR ↾ [−R,R] for all R ≥ 1.



38 DANIEL W. STROOCK

Furthermore∫
(1 + x2)−

m+2
2 µ(dx) =

∞∑
n=−∞

∫
[n,n+1]

(1 + |x|2)−
m+2

2 µn(dx)

≤ 2C∥u∥S (−m)(R;C)

∞∑
n=0

(n+ 1)m+ 1
2

(1 + n2)
m+2

2

= 2
m+2

2 C∥u∥S (−m)(R;C)

∞∑
n=0

(1 + n)−
3
2 <∞.

Finally,

⟨φ, u⟩ = lim
R→∞

⟨ηRφ, u⟩ = lim
R→∞

∫
ηRφdµ =

∫
φdµ.

Conversely, suppose that µ is a Borel measure on R and that

C ≡
∫

(1 + x2)−
m
2 dµ(dx) <∞.

Clearly φ⇝
∫
φdµ determines a distribution u. In fact, by (13.3),

|⟨φ, u⟩| ≤ C∥(1 + x2)
m
2 φ∥u ≤ C∥(1 + |x|)mφ∥u ≤ CKm∥φ∥S (m+3)(R;C),

and therefore u ∈ S (−m−3)(R;C). □

As a consequence of Theorem 14.3, we know that for any measurable f : R −→ C
for which there exists an m ∈ Z such that∫

(1 + x2)−
m
2 |f(x)| dx <∞,

there is a distribution f ∈ S (−m−3)(R;C) such that

⟨φ, f⟩ =
∫
φ(x)f̄(x) dx.

The following generalizes the preceding observation.

Theorem 14.4. Let µ be a Borel measure on R, and assume that

Mµ ≡
∫

(1 + x2)−
m
2 µ(dx) <∞.

If f ∈ Lp(µ;C), then there is a distribution fµ given by

φ ∈ S (R;C) 7−→
∫
φf̄ dµ ∈ C.

Moreover, if mp = min
{
n : m ≤ 2p′n}, where p′ is the Hölder conjugate of p, then

fµ ∈ S (−mp−3)(R;C) and

∥fµ∥S (−mp−3)(R;C) ≤ Kmp
M

1
p′
µ ∥f∥Lp(µ;C).

Proof. By Hölder’s inequality,∣∣∣∣∫ φf̄ dµ

∣∣∣∣ ≤ ∥f∥Lp(µ;C)∥φ∥Lp′ (µ;C).

At the same time,

∥φ∥Lp′ (µ;C) ≤
Å∫

(1 + x2)−
m
2 (1 + x2)

m
2 |φ(x)|p

′
µ(dx)

ã 1
p′

≤M
1
p′
µ

∥∥(1 + x2)
m
2p′ φ

∥∥
u
≤ KmpM

1
p′
µ ∥φ∥S (mp+3)(R;C).
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Hence,

|⟨φ, fµ⟩| ≤ Kmp
M

1
p′
µ ∥f∥Lp(µ;C)∥φ∥S (mp+3)(R;C).

□

Loosely related to the preceding is the following theorem of Schwartz. Given
a u ∈ S (R;C)∗, its support is the smallest closed set F such that ⟨φ, u⟩ = 0 for

all φ that are 0 on F ∁. Equivalently, ⟨φ1, u⟩ = ⟨φ2, u⟩ if φ1 = φ2 on an open set
containing F .

Theorem 14.5. If u ∈ S (−n+1)(R;C), then u is supported on {0} if and only if
there exist {a0, . . . , an} ⊆ C for which

⟨φ, u⟩ =
n∑

m=0

am∂
mφ(0)

for all φ ∈ S (R;C). .

Proof. The sufficiency statement is trivial. To prove the necessity assertion, first

note that, by Theorem 13.2, there is a C ∈ [0,∞) such that |⟨φ, u⟩| ≤ C∥φ∥(n)u .
Next, choose η ∈ C∞(R; [0, 1]) so that η = 1 on [−1, 1] and η = 0 off of [−2, 2], and

define ηr(x) = η
(
x
r

)
for r ∈ (0, 1]. Because 0 is the support of u, ⟨φ, u⟩ = ⟨ηrφ, u⟩

for all r ∈ (0, 1]. In particular, this means that

|⟨φ, u⟩| ≤ C

n∑
ℓ=0

∥ηφ(ℓ)∥u

for some other C <∞.
We will now show that ⟨φ, u⟩ = 0 if φ(x) = xn+1η(x)ψ(x) for some ψ ∈

C∞(R;C). To this end, set φr(x) = xn+1ηr(x)ψ(x), and note ⟨φ, u⟩ = ⟨φr, u⟩
for all r ∈ (0, 1]. Next observe that ∂ℓφr is a linear combination of terms of the
form

xn+1−ir−jη(j)
(
x
r

)
ψ(k)(x) = xn+1−i−j

(x
r

)j
η(j)
(
x
r

)
ψ(k)(x)

where i+ j + k = ℓ. Since∣∣∣∣xn+1−i−j
(x
r

)j
η(j)
(
x
r

)
ψ(k)(x)

∣∣∣∣ ≤ (2r)n+1−i−j∥xjη(j)∥u∥ψ(k)∥u,

limr↘0 ∥φ(ℓ)
r ∥u = 0 for ℓ ≤ n, and so

⟨φ, u⟩ = lim
r↘0

⟨φr, u⟩ = 0.

Now let φ ∈ S (R;C) and use Taylor’s theorem to write

φ(x) =

n∑
m=0

φ(m)(0)

m!
xm +

xn+1

n!

∫ 1

0

(1− t)nφ(n+1)(tx) dt.

Set ψ(x) = 1
n!

∫ 1

0
(1−t)nφ(n+1)(tx) dt, and apply the preceding to see that ⟨xn+1ηψ, u⟩ =

0 and therefore that

⟨φ, u⟩ = ⟨ηφ, u⟩ =
n∑

m=0

φ(m)(0)

m!
⟨xmη, u⟩.

Hence we can take am = ⟨xmη,u⟩
m! . □
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The next result characterizes distributions u ∈ S (R;C)∗ which satisfy the min-
imum principle

(14.4) ⟨φ, u⟩ ≥ 0 if φ ∈ S (R;R) and φ(0) = min{φ(x) : x ∈ R}

and are quasi-local in the sense that

(14.5) lim
R→∞

⟨φR, u⟩ = 0 for all φ ∈ S (R;C),

where φR(x) = φ
(
x
R

)
.

In preparation for the proof of the characterization, I have to introduce the
following partition of unity for R \ {0}. Choose ψ ∈ C∞(R; [0, 1]) so that ψ has

compact support in (0, 2) \
(
0, 14

)
and ψ(y) = 1 when 1

2 ≤ |y| ≤ 1, and set ψm(y) =

ψ(2my) form ∈ Z. Then, if y ∈ R and 2−m−1 ≤ |y| ≤ 2−m, ψm(y) = 1 and ψn(y) =
0 unless −m − 2 ≤ n ≤ −m + 1. Hence, if Ψ(y) =

∑
m∈Z ψm(y) for y ∈ R \ {0},

then Ψ is a smooth function with values in [1, 4]; and therefore, for each m ∈ Z, the
function χm given by χm(0) = 0 and χm(y) = ψm(y)

Ψ(y) for y ∈ R \ {0} is a smooth,

[0, 1]-valued function that vanishes off of (0, 2−m+1) \ (0, 2−m−2). In addition, for
each y ∈ R \ {0},

∑
m∈Z χm(y) = 1 and χm(y) = 0 unless 2−m−2 ≤ |y| ≤ 2−m+1.

Lemma 14.6. If u ∈ S (R;R) satisfies (14.4) and (14.5), then there exists a unique

Borel measure M on R such that M({0}) = 0,
∫

y2

1+y2 M(dy) <∞, and

⟨φ, u⟩ =
∫
φ(y)M(dy)

if φ, φ′, and φ′′ vanish at 0.

Proof. Referring to the partition of unity described above, define Λmφ = ⟨χmφ, u⟩
for φ ∈ C∞((0, 2−m+1) \ (0, 2−m−2);R

)
, where

χmφ(y) =

®
χm(y)φ(y) if 2−m−2 ≤ |y| ≤ 2−m+1

0 otherwise.

Clearly Λm is linear. In addition, if φ ≥ 0, then χmφ ≥ 0 = χmφ(0), and so, by

(14.4), Λmφ ≥ 0. Similarly, for any φ ∈ C∞((0, 2−m+1)\(0, 2−m−2);R
)
, ∥φ∥uχm±

χmφ ≥ 0 =
(
∥φ∥uχm ± χmφ

)
(0), and therefore |Λmφ| ≤ Km∥φ∥u, where Km =

⟨χm, u⟩. Hence, Λm admits a unique extension as a continuous linear functional

on C
(
(0, 2−m+1) \ (0, 2−m−2);R

)
that is non-negativity preserving and has norm

Km; and so, by the Riesz representation theorem, we know that there is a unique
non-negative Borel measure Mm on R such that Mm is supported on (0, 2−m+1) \
(0, 2−m−2), Km =Mm(R), and ⟨χmφ, u⟩ =

∫
R φ(y)Mm(dy) for all φ ∈ S (R;R).

Now define the Borel measureM on R byM =
∑
m∈ZMm. Clearly,M({0}) = 0.

In addition, if φ ∈ C∞
c

(
R \ {0};R

)
, then there is an n ∈ Z such that χmφ ≡ 0

unless |m| ≤ n. Thus,

⟨φ, u⟩ =
n∑

m=−n
A(χmφ) =

n∑
m=−n

∫
R
φ(y)Mm(dy)

=

∫
RN

(
n∑

m=−n
χm(y)φ(y)

)
M(dy) =

∫
RN

φ(y)M(dy),
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and therefore

(14.6) ⟨φ, u⟩ =
∫
R
φ(y)M(dy)

for φ ∈ C∞
c

(
R \ {0};R

)
.

Before taking the next step, observe that, as an application of (14.4), if φ1, φ2 ∈
S (R;R), then

φ1 ≤ φ2 and φ1(0) = φ2(0) =⇒ ⟨φ1, u⟩ ≤ ⟨φ2, u⟩. (∗)

Indeed, this reduces to the observation that φ2 − φ1 ≥ 0 = (φ2 − φ1)(0).
With these preparations, we can show that, for any φ ∈ S (R;C),

φ ≥ 0 = φ(0) =⇒
∫
R
φ(y)M(dy) ≤ ⟨φ, u⟩. (∗∗)

To check this, apply (∗) to φn =
∑n
m=−n χmφ and φ, and use (14.6) together with

the monotone convergence theorem to conclude that∫
R
φ(y)M(dy) = lim

n→∞

∫
R
φn(y)M(dy) = lim

n→∞
⟨φn, u⟩ ≤ ⟨φ, u⟩.

Now let η ∈ C∞(R; [0, 1]) satisfy η = 0 on [−1, 1] and η = 0 off (−2, 2), and set

ηR(y) = η(R−1y) for R > 0. By (∗∗) with φ(y) = |y|2η(y) we know that∫
R
|y|2η(y)M(dy) ≤ ⟨φ, u⟩ <∞.

At the same time, by (14.6), for R ≥ 2,∫
RN

(
ηR(y)− η(y)

)
M(dy) = ⟨(ηR − η), u⟩ = ⟨ηR, u⟩ − ⟨η, u⟩

and therefore, by (14.5) and Fatou’s Lemma,∫
R

(
1− η(y)

)
M(dy) ≤ −⟨η, u⟩ <∞.

Hence, we have proved that

(14.7)

∫
R

y2

1 + y2
M(dy) <∞.

We are now in a position to show that (14.6) continues to hold for any φ ∈
S (R;R) that vanishes along with its first and second order derivatives at 0. To
this end, first suppose that φ vanishes in a neighborhood of 0. Then, for each
R > 0, (14.6) applies to ηRφ, and so∫

R
ηR(y)φ(y)M(dy) = ⟨ηRφ, u⟩ = ⟨φ, u⟩+ ⟨(1− ηR)φ, u⟩.

Since φ is M -integrable and (1 − ηR)φ −→ 0 in S (R;R) as R → ∞, Lebesgue’s
dominated convergence theorem implies that,

⟨φ, u⟩ = lim
R→∞

∫
R
ηR(y)φ(y)M(dy) =

∫
R
φ(y)M(dy).
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We still have to replace the assumption that φ vanishes in a neighborhood of 0
by the assumption that it vanishes to second order there. For this purpose, first
note that, by (14.7), φ is certainly M -integrable, and therefore∫

RN

φ(y)M(dy) = lim
r↘0

⟨(1− ηr)φ, u⟩ = ⟨φ, u⟩ − lim
r↘0

⟨ηrφ, u⟩.

By our assumptions about φ at 0, we can find a C < ∞ such that |ηrφ(y)| ≤
Cry2η(y) for all r ∈ (0, 1]. Hence, by (∗) and the M -integrability of y2η(y), there
is a C ′ <∞ such that ⟨ηrφ, u⟩ ≤ C ′r for small r > 0, and therefore ⟨ηrφ, u⟩ −→ 0
as r ↘ 0. □

Theorem 14.7. If u ∈ S (R;R) satisfies (14.4) and (14.5), then there exist an
a ≥ 0, a b ∈ R, and Borel measure M on R such that M({0}) = 0, (14.7) holds,
and

⟨φ, u⟩ = a
2φ

′′(0) + bφ′(0) +

∫ (
φ(y)− φ(0)− 1[0,1](y)φ

′(0)y
)
M(dy).

In fact, M is determined by

⟨φ, u⟩ =
∫
φ(y)M(dy) if φ ∈ C∞

c

(
R \ {0}

)
,

and, for any η ∈ C∞(R; [0, 1]) which is 1 on [−1, 1] and 0 off (−2, 2)

a = ⟨y2η2, u⟩ −
∫
y2η(y)2M(dy)

and

b = ⟨yη, y⟩ −
∫
y
(
η(y)− 1[0,1](y)

)
M(dy).

Proof. Let η be as in the statement, set ηR(x) = η
(
x
R

)
for R > 0, and define

ψR(y) = φ(y)− φ(0)ηR(y)− φ′(0)yη(y)− 1
2φ

′′(0)y2η(y)2.

Then ψ ∈ S (R;C) and vanishes to second order at 0, and so, by Lemma 14.6,
⟨ψR, u⟩ =

∫
ψ(y)M(dy). Hence,

⟨φ, u⟩ = φ(0)⟨ηR, u⟩+ φ′(0)⟨yη, u⟩+ 1
2φ

′′(0)⟨y2η2, u⟩

+

∫ (
φ(y)− φ(0)ηR(y)− φ′(0)yη(y)− 1

2φ
′′(0)y2η(y)2

)
M(dy),

and so

⟨φ, u⟩ = φ(0)

Å
⟨ηR, u⟩+

∫ (
1− ηR(y)

)
M(dy)

ã
+ φ′(0)⟨yη, u⟩ − 1

2φ
′′(0)

Å
⟨y2η2, u⟩ −

∫
y2η(y)2M(dy)

ã
+

∫ (
φ(y)− φ(0)− φ′(0)yη(y)

)
M(dy).

By (14.5) and the Lebesgue dominated convergence theorem, as R → ∞ both
⟨ηR, u⟩ and

∫
(1− ηR) dM tend to 0. Finally, because y

(
η(y)− 1[−1.1](y)

)
vanishes

on [−1, 1] and is therefore M -integrable, we can replace φ′(0)⟨yη, u⟩ by

φ′(0)
(
⟨yη, u⟩ −

∫
y
(
η(y)− 1[−1,1](y)

))
M(dy)
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and
∫ (
φ(y)− φ(0)− φ′(0)yη(y)

)
M(dy) by∫ (

φ(y)− φ(0)− φ′(0)y1[−1,1](y)
)
M(dy).

□

Exercise 14.1. Let f ∈ C1
b(R;C), set u = f(|x|), and show that u′ = sgn(x)f ′(|x|).

Next assume that f ∈ C2
b(R;C), and show that u′′ = f ′(0)δ0 + f ′′(|x|).

15. Extending Continuous Operators on S (R;C) to S (R;C)∗

The extension that we made of the operators Hs to S (R;C)∗ is a special case
of the fact that many continuous linear maps of S (R;C) into S (R;C)∗ determine
a unique continuous extension as a continuous map from S (R;C)∗ itself. The key
to making such an extension is contained in the following theorem.

Theorem 15.1. Let A be a continuous map of S (R;C) into S (R;C)∗, and assume
that there is a continuous operator A∗ on S (R;C) such that(

A∗φ,ψ
)
L2(λR;C)

=
(
φ,Aψ

)
L2(λR;C)

for all φ,ψ ∈ S (R;C).

If Au is defined for u ∈ S (R;C)∗ by

(15.1) ⟨φ,Au⟩ = ⟨A∗φ, u⟩ for φ ∈ S (R;C),
then u⇝ Au is the unique extension of A as a continuous operator on S (R;C)∗.

Proof. Because A∗ maps S (R;C) continuously into itself, for each m ≥ 0 there
exists an n ≥ 0 and C < ∞ such that ∥A∗φ∥S (m)(R;C) ≤ C∥φ∥S (n)(R;C), and

therefore, if u ∈ S (−m)(R;C), then
|⟨φ,Au⟩| = |⟨A∗φ, u⟩| ≤ ∥A∗φ∥S (m)(R;C)∥u∥S (−m)(R;C) ≤ C∥φ∥S (n)(R;C)∥u∥S (−m)(R;C).

Hence ∥Au∥S (−n)(R;C) ≤ C∥u∥S (−m)(R;C), and so A maps S (−m)(R;C) continu-

ously into S (−n)(R;C). Furthermore, since S (R;C) is dense in S (R;C)∗ and
⟨φ,Aψ⟩ =

(
A∗φ,ψ

)
L2(λR;C)

for ψ ∈ S (R;C), A is the one and only continuous

extension to S (R;C)∗ of A ↾ S (R;C). □

If A : S (R;C) −→ S (R;C)∗ is a continuous map, we will say that a continuous
operator A∗ on S (R;C) is its adjoint if (A∗φ,ψ)L2(λR;C) = ⟨φ,Aψ⟩ for all φ, ψ ∈
S (R;C).

Given a continuous operator A on S (R;C)∗ and m,n ∈ Z
∥A∥S (n)(R;C)→S (R;C)(m) = sup

{
|Au∥S (m)(R;C) : ∥u∥S (n)(R;C) = 1

}
.

The argument given in the proof of Theorem 15.1 shows that, for m,n ∈ N,
(15.2) ∥A∥S (−m)(R;C)→S (−n)(R;C) = ∥A∗∥S (n)(R;C)→S (m)(R;C).

Among the simplest maps to which Theorem 15.1 applies are φ ⇝ xkφ and
φ⇝ ∂ℓφ. Indeed, the first of these is its own adjoint, and the adjoint of ∂ℓ is (−∂)ℓ.
By Lemma 13.1, the extensions of these maps take, respectively, S (−m)(R;C) into
S (−m−k)(R;C) and S (−m)(R;C) into S (−m−ℓ)(R;C).

The Fourier transform is a particularly important operator on S (R;C)∗, and its
adjoint is given by φ ∈ S (R;C) 7−→ φ̌ ∈ S (R;C). Hence

⟨φ, u⟩ = ⟨φ̌, u⟩,
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and, since ∥φ̌∥S (m)(R;C) = (2π)
1
2 ∥φ∥S (m)(R;C) for all m ≥ 0, (15.2) says that

∥û∥S (−m)(R;C) = (2π)
1
2 ∥u∥S (−m)(R;C) for all m ≥ 0. In addition, since both sides of

the equation ⟨φ̂, û⟩ = 2π⟨φ, u⟩ are continuous functions of u ∈ S (R;C)∗ and, by
(12.3), the equation holds when u ∈ S (R;C),

⟨φ̂, û⟩ = (2π)⟨φ, u⟩.
The same continuity argument shows that

∂̂u = −ıξû, x̂u = ı∂û

and that the Fourier inversion formula

(û)∨ = 2πu = (ǔ)∧

holds.
Computing most Fourier transforms of functions is hard, and computing them

of distributions can be even harder. Among those that are easy are those of xkδa,
∂ℓδa and f ∈ L1(λR;C) ∪ L2(λR;C) when thought of as a tempered distribution.
Indeed,

⟨φ, δ̂a⟩ = φ̌(a) =

∫
e−ıaxφ(x) dx = ⟨φ, ea⟩, where ea(x) = eıax,

Hence, ‘∂ℓδa = (−ıξ)ℓea. To compute f̂ when f is thought of as a distribution, note
that

⟨φ̌, f⟩ =
∫
f̄(ξ)

Å∫
e−ıξxφ(x) dx

ã
dξ =

∫
φ(x)f̂(x) dx = ⟨φ, f̂⟩,

and therefore, when f ∈ L1(λR;C) is thought of as a distribution, its Fourier

transform is the distribution determined by the function f̂ ∈ Cb(R;C). When
f ∈ L2(λR;C), one uses the fact that, as R→ ∞, 1[−R,R]f −→ f in S (R;C)∗ and

therefore f̂ = f̂ where f̂ = limR→∞ f̂R is the L2-Fourier transform of f . Similarly,
when µ is a finite Borel measure on R, µ̂ as a distribution is equal to the function
µ̂ given by

(15.3) µ̂(ξ) =

∫
eıξx µ(dx).

Trickier is the computation of the Fourier transform of distributions like log |x|.
One way to do so is to observe that ∂ log |x| = 1

x and first compute x̂−1. For that

purpose, set fy(x) =
x

x2+y2 for y > 0, and observe that, as y ↘ 0, fy −→ x−1 and

therefore “fy −→ x̂−1 in S (R;C)∗. Next observe that observe that, by (7.11),“fy(ξ) = lim
R→∞

∫ R

−R

xeıξx

x2 + y2
dx = ı lim

R→∞

∫ R

−R

x sinx

x2 + y2
dx = ıπsgn(ξ)e−y|ξ|.

Hence

(15.4) x̂−1 = ıπsgn.

Knowing (15.4) one might expect that one can use ∂̂u = −ıξû to compute ÷log |x|.
However to do so it is necessary to confront a technical difficulty. Namely, ıπsgn(ξ)−ıξ =

− π
|ξ| , and |ξ|−1 is not a distribution. On the other hand,

φ⇝
∫
φ(ξ)− φ(0)e−

ξ2

2

|ξ|
dξ
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is a distribution. Thus, to overcome the problem, set u = log |x| and write

⟨φ, û⟩ = ⟨φ− φ(0)“g1, û⟩+ φ(0)⟨“g1, û⟩.
and note that ⟨“g1, û⟩ = 2π

∫
g1(x) log |x| dx. At the same time,

⟨φ− φ(0)“g1, û⟩ = 〈φ− φ(0)e−
ξ2

2

ıξ
,−ıξû

〉

=

〈
φ− φ(0)e−

ξ2

2

ıξ
, ∂̂u

〉
= −π

〈
φ− φ(0)e−

ξ2

2

|ξ|
, λR

〉
.

Hence

⟨φ,÷log |x|⟩ = −π
∫
φ(ξ)− φ(0)e−

ξ2

2

|ξ|
dξ + 2πφ(0)

∫
g1(x) log |x| dx.

Next, consider a differential operator L =
∑J
j=0 aj∂

j where {a0, . . . , aJ} ⊆
C∞(R;C) and all the aj ’s and their derivatives have at most polynomial growth. If

L∗φ ≡
J∑
j=0

(−1)j∂j(ajφ),

then it is clear that (L∗φ,ψ)L2(λR;C) = (φ,Lφ)L2(λR;C). To see that L∗ is a contin-
uous operator on S (R;C), we need the following lemma.

Lemma 15.2. Let f ∈ C∞(R;R), and assume that for each m ≥ 0 there exists an
km ≥ 0 such that

Fm ≡ max
1≤j≤m

sup
x∈R

|∂jf(x)|
|x|km ∨ 1

<∞.

Then, for each m ≥ 0, there is a Cm <∞ such that

∥φf∥S (m)(R;C) ≤ CmFm∥φ∥S (m+km)(R;C).

Proof. By Exercise 13.1 with n = 0, it is sufficient for us to show that for each
k, ℓ ∈ N with k + ℓ ≤ m, there is a ck,ℓ such that

∥xk∂ℓ(φf)∥L2(λR;C) ≤ ck,ℓFm∥φ∥S (m+km)(R;C).

To this end, remember that

∂ℓ(φf) =

ℓ∑
j=0

Ç
ℓ

j

å
∂jφ∂ℓ−jf,

and

∥xk∂jφ∂ℓ−jf∥L2(λR;C) ≤ Fm
∥∥(1 + |x|km)xk∂jφ∥L2(λR;C)

≤ 2 · 3m+kmFm∥φ∥S (m+km)(R;C)∥.

□

Using Lemma 15.2, it easy to check that L∗ is a continuous operator on S (R;C),
and therefore L extends as a continuous operator on S (R;C)∗.

Another important operation is convolution. That is, given ψ ∈ S (R;C), con-
sider the operator Cψ on S (R;C) given by Cψη = η ∗ ψ. Because ’η ∗ ψ = η̂ψ̂,
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Lemma 15.2 guarantees that Cψ maps S (m)(R;C) continuously into itself for all
m ≥ 0. In addition,

⟨φ,ψ ∗ η⟩ =
∫∫

φ(x)ψ̄(x− y)η̄(y) dxdy =

∫∫
φ(x+ y)ψ̄(x)η̄(y) dxdy = ⟨C∗

ψφ, η⟩

where

C∗
ψφ(y) =

∫
φ(x+ y)ψ̄(x) dx.

Since ‘C∗
ψφ(ξ) = φ̂(ψ̄)∨, Lemma 15.2 again guarantees that, for all m ≥ 0, C∗

ψ maps

S (m)(R;C) continuously into itself, and so Cψ has a unique continuous extension

to S (R;C)∗, and this extention is a continuous map of S (m)(R;C) into itself for
all m ∈ Z.

In order to gain a better understanding of Cψ, we need to use the translation maps
τx : S (R;C) −→ S (R;C) defined in Exercise 13.4, and define ψ ∗u(x) = ⟨τ−xψ, u⟩
for u ∈ S (R;C)∗ and x ∈ R.

Theorem 15.3. For ψ ∈ S (R;C) and u ∈ S (R;C)∗, ψ∗u is a continuous function

with at most polynomial growth, and Cψu = ψ ∗ u. In addition, ’ψ ∗ u = ψ̂û, and

ψ ∗ u = (2π)−1(ψ̂û)∨ .

Proof. By Exercise 13.4, x⇝ τ−xψ is a continuous map of S (R;C) into itself and
therefore that ψ ∗ u ∈ C(R;C). Also, the estimates given in that Exercise and
Lemma 13.1 show that

|ψ ∗ u(x)| ≤ 2mKm(|x| ∨ 1)m∥ψ∥S (m+3)(R;C)∥u∥S (−m−3)(R;C),

and therefore ψ ∗ u has at most polynomial growth.
Turing to the proof that Cψu = ψ ∗ u, suppose that u ∈ S (−m)(R;C) and set

un =
∑n
k=0 ⟨h̃k, u⟩h̃k. Then un ∈ S (R;C) and un −→ u in S (−m)(R;C). Since

Cψun = ψ∗un, we will know that Cψu = ψ∗u once we show that that ψ∗un −→ ψ∗u
in S (R;C)∗. To that end, note that, by Theorem 13.2 and that Exercise 13.4,

|ψ ∗ (un − u)(x)| ≤ ∥τ−xψ∥S (m)(R;C)∥un − u∥S (−m)(R;C)

≤ Km∥τ−xψ∥(m+1)
u ∥un − u∥S (−m)(R;C)

≤ 2(m+1)Km(|x| ∨ 1)m+1∥ψ∥(m+1)
u ∥un − u∥S (−m)(R;C),

and so ψ ∗ un −→ ψ ∗ u in S (R;C)∗.
Finally, since ’ψ ∗ u = ψ̂û and ψ ∗ u = (2π)−1

(
ψ̂û
)∨

when u ∈ S (R;C), the
S (R;C)∗-continuity of u ⇝ ψ ∗ u guarantees that these continue to hold for all
u ∈ S (R;C)∗. □

A simple, but typical, application of these results is to the ordinary differential
equation λu − u′′ = µ, where λ > 0 and µ is a finite Borel measure on R. The
solution u to this equation describes the electric potential along a wire produced by
a charge distribution µ when the wire has resistance that is a linear function of the
potential. To solve this equation, assume that u ∈ S (R;C)∗, and take the Fourier

transform of both sides. Then λû + ξ2û = µ̂, and so û = µ̂
λ+ξ2 . Next observe (cf.

(7.5)) that 1
λ+ξ2 =”Gλ, where

Gλ(x) =
1

2λ
1
2

e−λ
1
2 |x|.
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Even though Gλ /∈ S (R;C), it and the function x⇝ Gλ ∗µ(x) ≡
∫
Gλ(x−y)µ(dy)

are elements of L1(λR;C) and therefore of S (R;C)∗. In addition, by Fubini’s

theorem, ÷Gλ ∗ µ =”Gλµ̂, and so

u(x) =
1

2λ
1
2

∫
e−λ

1
2 |x−y| µ(dy).

It is an instructive exercise to check that this u is a solution. To this end, first
use Exercise 14.1 to see that u′ is the function

u′(x) =
λ

1
2

2

∫
sgn(y − x)e−λ

1
2 |x−y| dy.

Thus

⟨φ, u′′⟩ = −⟨φ′, u′⟩ =
∫
φ′(x)

Å
1

2

∫
sgn(x− y)e−λ

1
2 |x−y|φ′(y)µ(dy)

ã
dx

=

∫ Å
1

2

∫
sgn(x− y)e−λ

1
2 |x−y|φ′(x) dx

ã
µ(dy).

Next note that∫
sgn(x− y)e−λ

1
2 |x−y|φ′(x) dx =

∫ ∞

y

eλ
1
2 (y−x)φ′(x) dx−

∫ y

−∞
eλ

1
2 (x−y)φ′(x) dx

= −φ(y) + λ
1
2

∫ ∞

y

eλ
1
2 (y−x) dx− φ(y) + λ

1
2

∫ y

−∞
eλ

1
2 (x−y) dx = −2φ(y) + 2λu(y),

and therefore ⟨φ, u′′⟩ = −⟨φ, µ⟩+ λ⟨φ, u⟩, which means that λu− u′′ = µ.

Exercise 15.1. This exercise deals with the special case when an element of
S (R;C)∗ is given by a Borel measure µ.

(i) Show that ψ ∗ µ equals the function

x ∈ R 7−→
∫
ψ(x− y)µ(dy) ∈ C.

(ii) If µ is finite, show that µ̂ equals the function

ξ ∈ R 7−→ µ̂(ξ) ≡
∫
eıξx µ(dx) ∈ C

and that µ̂ ∈ Cb(R;C) with norm ∥û∥u = µ(R).
(iii) If

∫
(1 + x2)

m
2 µ(dx) <∞ for some m ≥ 0, show that µ̂ ∈ Cmb (R;C) and that

∥∂kµ̂∥u ≤
∫

|x|k µ(dx) for 0 ≤ k ≤ m.

(iv) Assume that
∫
|x|k µ(dx) <∞ for all k ∈ N, and show that ψ ∗µ is an element

of S (R;C) for all ψ ∈ S (R;C).

Hint: Show that ’ψ ∗ µ is an element of S (R;C).
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16. Moving to RN

With essentially no new ideas and the introduction of only slightly uglier nota-
tion, we will transfer most of the contents of §§7–15 to RN .

If f ∈ L1(RN ;C), its Fourier transform is the function

f̂(ξ) =

∫
eı(ξ,x)RN f(x) dx,

and, using exactly the same arguments as we did when N = 1, one can easily show

that ∥f̂∥u ≤ ∥f∥L1(λRN ;C), f̂ is continuous and that, if f ∈ C1(RN ;C)∩L1(λRN ;C)
and f ′ ∈ L1(λRN ;C), then ‘∂xjf(ξ) = −ıξj f̂(ξ) for 1 ≤ j ≤ N , from which it follows

that f̂(ξ) −→ 0 as |ξ| → ∞.
To develop an inversion formula, one introduces the functions

gt(x) = (2πt)−
N
2 e−

|x|2
2t ,

uses Fubini’s theorem to check that “gt(ξ) = e−
t|ξ|2

2 , and proceeds as before to see
first that ∫

gt(x− y)f(y) dy = (2π)−N
∫
e−

t|ξ|2
2 e−ı(ξ,x)RN f̂(ξ) dξ,

and then that, as t↘ 0,

(2π)−N
∫
e−

t|ξ|2
2 e−ı(ξ,x)RN f̂(ξ) dx converges to

®
f in L1(λRN ;C)
f(x) if f is continuous at x.

The normalized Hermite functions on RN are indexed by m = (m1, . . . ,mN ) ∈
NN and defined by

h̃m(x) = h̃n1(x1) · · · h̃nN
(xN ).

By standard results about products of Hilbert spaces, one knows that they form an
orthonormal basis in L2(λRN ;C). In addition, if

H = |x|2 −∆ =

N∑
j=1

(
x2j − ∂2xj

)
,

then

Hh̃m = µmh̃m where µm =

N∑
j=1

µmj

and

(h̃m)∧ = ı∥m∥1(2π)
N
2 h̃m where ∥m∥1 =

N∑
j=1

mj .

Finally, the estimates in (11.2) can be used to show that

(16.1)

∥h̃m∥L1(λRN ;C) ≤

Ñ
N∏
j=1

(
2π(mj + 1)

)é 1
2

, ∥h̃m∥u ≤

Ñ
N∏
j=1

(mj + 1)

é 1
2

and

∥xj h̃m∥u ∨ ∥∂xj
h̃m∥u ≤ 2N

N∏
j=1

(mj + 1).
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The Schwartz test function space S (RN ;C) for RN is defined as the space of
φ ∈ C∞(RN ;C) with the property that ∥xki ∂ℓxj

φ∥u < ∞ for all 1 ≤ i, j ≤ N and
k, ℓ ∈ N. Again one introduces the operators

Hsφ =
∑

k∈NN

µsk(φ, h̃k)L2(λRN ;C)h̃k

and defines the norms
∥φ∥(m)

u = max
1≤i,j≤N
k+ℓ≤m

∥xi∂xj
φ∥u

and
∥φ∥S (R;C)(m)(RN ;C) =

∑
k∈NN

µmk |(φ, h̃k)L2(λRN ;C)|2,

and the spaces

S (m)(RN ;C) = {φ ∈ C∞(RN ;C) : ∥φ∥S (R;C)(m) <∞}.

Clearly, if φ ∈ S (m)(R;C), then ∥φ∥S (R;C)(m) = ∥Hm
2 φ∥L2(λRN ;C).

Using the estimates in (16.1) and the reasoning in Lemma 13.1 and Theorem
13.2, one sees that, for each m there is a Km ∈ (0,∞) such that

∥φ∥S (m)(RN ;C) ≤ Km∥φ∥(m+N)
u

and
∥φ∥(m)

u ≤ Km∥φ∥S (m+3N)(RN ;C).

Hence, S (RN ;C) =
⋂∞
m=0 S (m)(RN ;C) and S (RN ;C)∗ can be identified as the

union
⋃∞
m=0 S (−m)(RN ;C) where S (−m)(RN ;C) is the analog for N ≥ 2 of

S (−m)(R;C) for N = 1. Further, the obvious analogs of Theorems 14.3 and 14.5
hold. In proving the analogs of Theorems 14.5 and 14.7, one needs to use the RN
version of Taylor’s theorem which says that

φ(x) =

n∑
m=0

∑
∥k∥1=m

∂kφ(0)

k!
xk +

1

n!

∑
∥k∥1=n+1

Ç
n+ 1

k

å
xk

∫ 1

0

(1− t)n∂kφ(tx) dt,

where k! =
∏N
j=1 kj , x

k =
∏N
j=1 x

kj
j , ∂k =

∏N
j=1 ∂

kj
xj , and

(
n+1
k

)
is the multinomial

coefficient (n+1)!
k! .

Once one has the preceding, it should be clear how to extend a continuous map
A : S (RN ;C) −→ S (RN ;C)∗ to continuous operators on S (RN ;C)∗ if A admits
an adjoint A∗ which is a continuous operator on S (RN ;C). In particular, both the
Fourier transform and convolution have such extensions.

The extension of the Fourier transform to L2(λRN ;C) can be done as follows.
First note that if φ ∈ S (RN ;C), then(

φ, h̃m
)
L2(λRN ;C) = µ−n

m

(
Hnφ, h̃m

)
L2(λRN ;C),

and therefore, using the first estimate in (16.1), one see that

φn ≡
∑

∥m∥1≤n

(φ, h̃m)L2(λRN ;C)h̃m −→ φ

in L1(λRN ;C) as well as L2(λRN ;C). Thus, ∥φ̂n − φ̂∥u −→ 0, and so

φ̂ = (2π)
N
2

∞∑
m=0

ı∥m∥1(φ, h̃m)L2(λRN ;C)h̃m
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for φ ∈ S (R;C). Next suppose that f ∈ L1(λRN ;C) ∩ L2(λRN ;C), and set

φn =
∑

∥m∥1≤n

(f, h̃m)L2(λRN ;C)h̃m ∈ S (RN ;C).

Then φn −→ f in L2(λRN ;C), and so, by Fatou’s lemma, one sees that ∥f̂∥L2(λRN ;C) ≤
(2π)

N
2 ∥f∥L2(λRN ;C). Hence the Fourier transform on L1(λRN ;C) ∩ L2(λRN ;C) ad-

mits a unique extension as a continuous operator on L2(λRN ;C). In particular, for
all f ∈ L2(λRN ;C),

f̂(ξ) = lim
R→∞

∫
|x|≤R

eı(ξ,x)RN f(x) dx,

where the convergence is in L2(λRN ;C). Also

f̂ = (2π)
N
2

∑
m∈NN

ı∥m∥1
(
f, h̃m

)
L2(λRN ;C)h̃m,

and so the Parseval identity

(f̂ , ĝ)L2(λRN ;C) = (2π)N (f, g)L2(λRN ;C)

holds for all f, g ∈ L2(λRN ;C), from which the Fourier inversion formula (f̂)∨ =
(2π)Nf = (f̌)∨ follows in the same way that it did when N = 1. Finally, by

the same argument used when N = 1, one can show that ‘∂xj
f = −ıξj ĥ if f ∈

L2(λRN ;C) ∩ C1(RN ;C) and ∂xj
f ∈ L2(λRN ;C).

To demonstrate the use these considerations, consider again the example dis-
cussed at the end of §15, only now its analog λu − ∆u = µ in RN , where λ > 0
and µ is a finite Borel measure on RN . Just as before, the Fourier transform of this
equation lead to the conclusion that û = µ̂

λ+|ξ|2 . To find the function Gλ of which

(λ+ |ξ|2)−1 is the Fourier transform, note that

1

λ+ |ξ|2
=

∫ ∞

0

e−t(λ+|ξ|2) dt =

∫ ∞

0

e−λt”g2t(ξ) dt,
from which it follows that

Gλ(x) =

∫ ∞

0

e−λtg2t(x) dt = (4π)−
1
2

∫ ∞

0

t−
N
2 e−λt−

|x|2
4 dt.

The function Gλ is a Bessel function, and a more explicit expression for it is easy
to obtain only when N is odd. For example, when N = 1, we already knew that

Gλ(x) =
1

2λ− 1
2
e−λ

1
2 |x|, and when N = 3, after differentiating (7.6) with respect to

x, one sees that

Gλ(x) =
e−λ

1
2 |x|

2π|x|
.

In any case, Gλ ∈ L1(λR;C), and it is clear that if a solution u ∈ S (RN ;C)∗ exists,
then it is the function

x⇝ Gλ ∗ µ(x) ≡
∫
Gλ(x− y)µ(dy). (∗)

Also, if the function Gλ ∗ µ is an element of S (RN ;C)∗, for instance if∫
(1 + |x|2)−m

2

Å∫
Gλ(x− y)µ(dy)

ã
dx <∞,
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then the function in (∗) determines the u ∈ S (RN ;C)∗ which is the one and only

solution in S (RN ;C)∗.
The Poisson problem ∆u = −µ is a closely related to the preceding, but are two

reasons why this problem is more difficult than the preceding one. The first reason
is that, if one exists, then there is more than one solution. Indeed, if u is a solution
and ∆v = 0, then u + v is again a solution. A v satisfying ∆v = 0 is said to be
harmonic, and there are lots of them. To see this, observe that ∆v = 0 ⇐⇒ |ξ|2v̂ =
and that |ξ|2v̂ = 0 implies that {0} is the support of v̂, which by Theorem 14.5
means that it is a linear combination of δ0 and its derivatives and therefore that v
must be a polynomial. 14.5 means that v̂ is a linear combination of derivatives of δ0
and therefore that v is a polynomial. Thus, v ∈ S (R;C)∗ is harmonic harmonic if
and only if v = ax+ b. When N ≥ 2, there are harmonic polynomials of all orders.
For example, the real part of any complex polynomial will be a harmonic element
of S (R2;C).

The second difficulty is that when N ∈ {1, 2}, 1
|ξ|2 /∈ S (RN ;C)∗, and there-

fore µ̂
|ξ|2 is not the Fourier transform of the convolution of u with an element of

L1(λR;C). Nonetheless, when N = 1 and
∫
|y|µ(dy) < ∞, one can check by hand

that if G
(1)
0 (x) = x−, then u = G

(1)
0 ∗ µ is an element of S (R;C)∗ which satisfies

∆u = −µ. When N = 2, one can use Green’s formula and the divergence theorem
to show that ∫

∆φ(x) log |x− y| dx = 2πφ(y)

for φ ∈ S (R;C), and therefore, if G
(2)
0 (y) ≡ − 1

2π log |y| and there is an m ≥ 0 for
which ∫

(1 + |x|2)−m
2

Å∫ ∣∣G(2)
0 (x− y)

∣∣µ(dy)ã dx <∞,

then the function

x⇝
∫
G

(2)
0 (x− y)µ(dy)

determines a solution u ∈ S (R;C)(R2;C)∗.
When N ≥ 3, one should look for the tempered distribution of which |ξ|−2 is

the Fourier transform. To that end, observe that

1

|ξ|2
=

∫ ∞

0

e−t|ξ|
2

dt =

∫ ∞

0

”g2t(ξ) dt,
and so |ξ|−2 is the Fourier transform of

G0(x) = (4π)−
N
2

∫ ∞

0

t−
N
2 e−

|x|2
4t dt =

1

4π
N
2 |x|N−2

∫ ∞

0

t
N
2 −2e−t dt =

Γ
(
N−2
2

)
4π

N
2 |x|N−2

,

where Γ is Euler’s gamma function. Because Γ
(
N
2

)
= N−2

2 Γ
(
N−2
2

)
and 2π

N
2

Γ
(

N
2

) is

the area ωN−1 of the unit sphere SN−1 in RN , we have that

G
(N)
0 (x) =

1

(N − 2)ωN−1|x|N−2
.

Thus, if the function

x⇝
∫
G

(N)
0 (x− y)µ(dy)
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determines a u ∈ S (RN ;C)∗, then u is a solution.

The function G
(N)
0 is called the Green’s function for the Laplacian in RN .

Exercise 16.1. Show that if f is an entire function on C (i.e., an analytic function
there), then, as a function on R2 it is tempered distribution if and only if it is a
polynomial. Conclude that if an entire function is not a polynomial, then it grows
at infinity faster that any power of z.

17. Convergence of Probability Measures

Define M1(RN ) to be the set of Borel probability measures on RN . Clearly
M1(RN ) is a convex subset of S (RN ;C)∗, but it is a subset that possesses prop-

erties that are not shared by most other elements of S (RN ;C)∗, and the topology

of S (RN ;C)∗ does not take full advantage of those properties. There are three
stronger topologies that recommend themselves. Namely: the uniform topology,
which is the one for which8

∥µ− ν∥var ≡ sup
{
|⟨φ, µ− ν⟩| : φ a Borel measurable function with ∥φ∥u = 1

}
is the metric; the strong for which sets of the form

S(µ, r;φ1, . . . , φn) =
{
ν : |⟨φm, ν − µ⟩| < r for 1 ≤ m ≤ n

}
,

where φm’s are bounded Borel measurable R-valued functions on RN , are a neigh-
borhood basis for µ; and the weak for which sets of the S(µ, r;φ1, . . . , φn) are a
neighborhood basis for µ, only now with the restriction that φm’s must be contin-
uous as well as bounded.

Obviously, the strength of the uniform topology is greater than that of the strong
topology, which is stronger than the weak topology, which, at first sight (cf. Exercise

17.1), looks stronger than the one whichM1(RN ) inherits as a subset of S (RN ;C)∗.
Each of them has its virtues and flaws. The uniform topology admits a metric and
is the strong topology on the dual space of the Banach space C0(RN ;R) with
the uniform topology; the strong topology is not separable and points don’t have
countable neighborhood bases; as we will show below, the weak topology is both
separable and admits a metric. In addition, convergence of measures in the weak
topology is intimately related to the convergence of their Fourier transforms.

In what follows, we will study some of the properties and applications of the
weak topology.

Lemma 17.1. The sets S(µ, r;φ1, . . . , φn) with φ1, . . . , φn ∈ C∞
c (RN ;R) are a

neighborhood basis at µ for the weak topology.

Proof. We begin by showing if that φ ∈ C∞
b (R;C) with ∥φ∥u = 1 and r > 0, then

there exist φ1, φ2 ∈ C∞
c (RN ;C) such that{

ν : |⟨φ1, ν − µ⟩| ∨ |⟨φ2, ν − µ⟩| < r
4

}
⊆ {ν : |⟨φ, ν − µ⟩| < r}.

To this end, choose R > 0 so that µ
(
B(0, R)

)
> 1 − r

4 , and take η ∈ C∞(RN ;R)
so that η = 1 on B(0, R) and η = 0 off B(0, R+ 1). Then

|⟨φ, ν − µ⟩| ≤ |⟨ηφ, ν − µ⟩|+ |⟨(1− η)φ, ν − µ⟩|

8We will continue to use ⟨φ, µ⟩ to denote the integral with respect to µ of a function φ, even
if φ /∈ S (RN ;C). Also, ⟨φ, ν − µ⟩ ≡ ⟨φ, ν⟩ − ⟨φ, µ⟩.
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and

|⟨(1− η)φ, ν − µ⟩| ≤ ⟨1− η, µ⟩+ ⟨1− η, ν⟩
≤ 2⟨1− η, µ⟩+ |⟨1− η, ν − µ⟩| = 2⟨1− η, µ⟩+ |⟨η, ν − µ⟩|.

Thus

|⟨(1− η)φ, ν − µ⟩| ≤ |⟨ηφ, ν − µ⟩|+ 2µ
(
B(0, R)∁

)
+ |⟨η, ν − µ⟩|,

and so {
ν : |⟨ηφ, ν − µ⟩| ∨ |⟨η, ν − µ⟩| < r

4

}
⊆ {ν : |⟨φ, ν − µ⟩| < r}.

In view of the preceding, it suffices to show that if φ ∈ Cc(RN ;C) with ∥φ∥u = 1
and r > 0, then there exists a ψ ∈ C∞

c (RN ;C) such

|⟨ψ, ν − µ⟩| < r
3 =⇒ |⟨φ, ν − µ⟩| < r.

To this end, simply choose ψ ∈ C∞
c (RN ;C) so that ∥φ− ψ∥u < r

3 , and check that
this ψ will serve. □

As Lemma 17.1 makes clear, what we are calling the weak topology on M1(RN )
is what a functional analyst would call the weak* topology on the dual space
C0(RN ;R)∗ of the Banach space C0(RN ;R) (the space of continuous functions that
tend to 0 at infinity) with the uniform norm. Indeed, the Riesz representation theo-
rem allows one to identify C0(RN ;R) with the space of finite signed Borel measures
on RN , and so M1(RN ) can be thought of as a convex subset of the unit ball in
C0(RN ;R)∗, in which case Lemma 17.1 shows that the weak topology on M1(RN ) is
the topology M1(RN ) inherits as a subset from the weak* topology on C0(RN ;R)∗.

Theorem 17.2. The weak topology on M1(RN ) is a separable, metric topology.

Proof. Let {φk : k ≥ 1} be a dense subset of Cc(RN ;R), and define

ρ(µ, ν) =

∞∑
k=1

|⟨φk, ν − µ⟩|
2k(1 + |⟨φk, ν − µ⟩|)

.

Using Lemma 17.1, it is easy to check that φ is a metric for the weak topology on
M1(RN ).

To prove separability, define D to be the set of measures
∑n
m=1 amδxm

, where
n ≥ 1, the am’s are non-negative rational numbers whose sum is 1, and the xm’s
are elements of RN with rational coordinates. Clearly D is countable. Therefore
it suffices to show that, for each µ ∈ M1(RN ), each cellection {φ1, . . . , φℓ} ⊆
Cb(RN ;R), and ϵ > 0, there is a ν ∈ D such that max1≤k≤ℓ |⟨φk, ν − µ⟩| < ϵ.
Further, we need do so only for φk’s and a µ which are supported on a ball B(0, R).
Given such φk’s and µ, choose r > 0 so that max1≤k≤ℓ |φk(y) − φk(x)| < ϵ

2 if

|y − x| < r. Next, cover B(0, R) with balls B(xm, r), where 1 ≤ m ≤ n, each
xm ∈ B(0, R) and has rational coordinates, and define A1 = B(x1, r) and Am =

B(xm, r)\
⋃m−1
k=1 Ak for 2 ≤ m ≤ n. Finally, choose non-negative, rational numbers

a1, . . . , an so that

max
1≤k≤ℓ

∥φk∥u
n∑

m=1

|am − µ(Am)| < ϵ

2
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and
∑n
m=1 am = 1, and take ν =

∑n
m=1 amδxm

. Then, for 1 ≤ k ≤ ℓ,

|⟨φk, µ− ν⟩| ≤
n∑

m=1

∫
Am

|φk(x)− φk(xm)| dµ+ ∥φk∥u
∑
m=1

|µ(Am)− am| < ϵ.

□

We will use the notation µn
w−→µ to mean that µn −→ in the weak topology on

M1(RN ).

Theorem 17.3. Given {µn : n ≥ 1}∪{µ} ⊆ M1(RN ), the following are equivalent:

(i) µn
w−→µ.

(ii) |⟨φ, µn − µ⟩| −→ 0 for all φ ∈ C∞
c (RN ;R).

(iii) For all closed sets F ⊆ RN , limn→∞ µn(F ) ≤ µ(F ).

(iv) For all open sets G ⊆ RN , limn→∞ µn(G) ≥ µ(G).

(v) For all upper continuous functions f : RN −→ R that are bounded above,
limn→∞⟨f, µn⟩ ≤ ⟨f, µ⟩.

(vi) For all lower continuous functions f : RN −→ R that are bounded below,
limn→∞⟨f, µn⟩ ≥ ⟨f, µ⟩.

Finally, if Γ ∈ B and its boundary ∂Γ has µ-measure 0, then µn
w−→µ =⇒

µ(Γ) = limn→∞ µn(Γ).

Proof. We already proved in Lemma 17.1 the equivalence of (i) and (ii), and the
equivalence of (iii) and (iv) as well as that of (v) and (vi) is obvious. In addition,
it is clear that (v) together with (vi) implies (i). Thus, we need only check that (i)
implies (iii) and that (iv) implies (vi).

Assume that µn
w−→µ. Given a closed set F , define φk(x) = 1 −

Ä
|x−F |

1+|x−F |

ä 1
k
.

Then φk ∈ C
(
RN ; [0, 1]

)
and φk ↘ 1F as k → ∞. Hence, for all k,

⟨φk, µ⟩ = lim
n→∞

⟨φk, µn⟩ ≥ lim
n→∞

µn(F ),

and so µ(F ) = limk→∞⟨φk, µ⟩ ≥ limn→∞ µn(F ). Thus (i) =⇒ (iii).
In proving that (iv) implies (vi), it suffices to handle f ’s which are positive as

well as lower semicontinuous. Given such an f , define

fk =

∞∑
j=1

j ∧ 4k

2k
1Ij,k ◦ f =

1

2k

4k∑
j=1

1Jj,k ◦ f,

where

Ij,k =

Å
j

2k
,
j + 1

2k

ò
and Jj,k =

Å
j

2k
,∞
ã
.

Then 0 ≤ fk ↗ f as k → ∞. In addition, because f is lower semicontinuous, the
sets Gj,k = {x : f(x) ∈ Jj,k} are open. Hence, if (iv) holds, then, for all k,

⟨fk, µ⟩ ≤ lim
n→∞

⟨fk, µn⟩ ≤ lim
n→∞

⟨f, µn⟩,

and so

⟨f, µ⟩ = lim
k→∞

⟨fk, µ⟩ ≤ lim
n→∞

⟨f, µn⟩.
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To prove the concluding assertion, assume µn
w−→µ and that µ(∂Γ) = 0. Set

G =
◦
Γ and F = Γ̄. Then

µ(Γ) = µ(G) ≤ lim
n→∞

µn(G) ≤ lim
n→∞

µn(Γ)

and

µ(Γ) = µ(F ) ≥ lim
n→∞

µn(F ) ≥ lim
n→∞

µn(Γ),

and so µ(Γ) = limn→∞ µn(Γ). □

Another useful fact about weak convergence is the following.

Theorem 17.4. Assume that µn
w−→µ, let ψ ∈ C

(
RN ; [0,∞)

)
be an element of

L1(µ;R) as well as of
⋂∞
n=1 L

1(µn;R). Then ⟨ψ, µ⟩ ≤ limn→∞⟨ψ, µn⟩. In addition,
if {φn : n ≥ 1} ⊆ C(RN ;R), |φn| ≤ ψ for all n ≥ 1, and ⟨ψ, µn⟩ −→ ⟨ψ, µ⟩, then
⟨φn, µn⟩ −→ ⟨φ, µ⟩ if φn −→ φ uniformly on compact subsets.

Proof. Clearly,

⟨ψ ∧R,µ⟩ = lim
n→∞

⟨ψ ∧R,µn⟩ ≤ lim
n→∞

⟨ψ, µn⟩

for all R > 0, and so ⟨ψ, µ⟩ ≤ limn→∞⟨ψ, µn⟩.
Now suppose that ⟨ψ, µn⟩ −→ ⟨ψ, µ⟩, that |φn| ≤ ψ, and that φn −→ φ uni-

formly on compact subsets. Clearly

|⟨φn, µn⟩ − ⟨φ, µ⟩| ≤ |⟨φn − φ, µn⟩|+ |⟨φ, µ− µn⟩|.

For each R > 0, choose ηR ∈ C∞(RN ; [0, 1]
)
so that ηR = 1 on B(0, R) and ηR = 0

off B(0, R+ 1). Then, for each R > 0,

lim
n→∞

|⟨φn − φ, µn⟩|

≤ lim
n→∞

sup
|x|≤R+1

|φn(x)− φ(x)|⟨ηR, µn⟩+ lim
n→∞

|⟨(1− ηR)(φn − φ), µn⟩|

≤ 2 lim
n→∞

⟨(1− ηR)ψ, µn⟩ = 2⟨(1− ηR)ψ, µ⟩,

and, by Lebesgue’s dominated convergence theorem, the last expression tends to 0
as R→ ∞. Similarly, for all R > 0,

lim
n→∞

|⟨φ, µn − µ⟩|

≤ lim
n→∞

|⟨ηRφ, µn − µ⟩|+ lim
n→∞

⟨(1− ηR)ψ, µn⟩+ ⟨(1− ηR)ψ, µ⟩ ≤ 2⟨(1− ηR)ψ, µ⟩,

and so limn→∞ |⟨φ, µn − µ⟩| = 0. □

We will next investigate when a subset ofM1(RN ) is relatively compact. Because
the unit ball in the dual space of a Banach is compact in the weak* topology, a
careless functional analyst might think that M1(RN ) is itself compact. However,
although M1(RN ) is closed in the strong topology on C0(RN ;R)∗, it is not closed
in the weak* topology. Indeed, the sequence {δn : n ≥ 1} ⊆ M1(R) is weak*
convergent to the measure whose total mass is 0, which is not an element of M1(R).
As this example indicates, in order for the weak* limit of a sequence {µn : n ≥ 1}
⊆ M1(RN ) to be in M1(RN ), one needs to know that the mass of the µn’s is not
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escaping to infinity. With that in mind, we will say that a subset A of M1(RN ) is
tight if, for each ϵ ∈ (0, 1), there exists an R ∈ [0,∞) such that

inf
µ∈A

µ
(
B(0, R)

)
≥ 1− ϵ.

Theorem 17.5. A subset A ⊆ M1(RN ) is relatively compact in the weak topology
if and only if it is tight.

Proof. Assume that A is tight, and let {µn : n ≥ 1} ⊆ A. As pointed out above,
there is a subsequence of {µn : n ≥ 1} which is weak* convergent in C0(RN ;R)∗
to a ν ∈ C0(RN ;R)∗ which is a non-negative measure with total mass less than or
equal to 1, and so, without loss in generality, we will assume that {µn : n ≥ 1} is
weak* convergent to ν. In order to check that ν(RN ) = 1, for any ϵ ∈ (0, 1) choose

R so that infn≥1 µn
(
B(0, R)

)
≥ 1 − ϵ, and choose η ∈ C

(
RN ; [0, 1]

)
so that η = 1

on B(0, R) and η = 0 off B(0, R+ 1). Then

ν(RN ) ≥ ν
(
B(0, R+ 1)

)
≥ ⟨η, ν⟩ = lim

n→∞
⟨η, µn⟩ ≥ lim

n→∞
µn
(
B(0, R)

)
≥ 1− ϵ,

and so ν(RN ) must be 1.
Conversely, suppose that A ⊆ M1(RN ) is relatively compact in the weak topol-

ogy. If A were not tight, then there would exist a θ ∈ [0, 1) and, for each n ≥ 1, a

µn ∈ A such that µn
(
B(0, n)

)
≤ θ, and, because A is relatively compact, we could

assume that µn
w−→µ for some µ ∈ M1(RN ). But if ηm ∈ C

(
RN ; [0, 1]

)
equals 1 on

B(0,m) and 0 off of B(0,m+ 1), that would mean that, for all m ≥ 1,

µ
(
B(0,m)

)
≤ ⟨ηm, µ⟩ = lim

n→∞
⟨ηm, µn⟩ ≤ lim

n→∞
µn
(
B(0, n)

)
≤ θ,

and so µ(RN ) would have to be less than or equal to θ < 1. □

Exercise 17.1. Show that µn
w−→µ if and only if µn −→ µ in S (RN ;C)∗.

18. The Fourier Transform for M1(RN )

In many applications, it is important to know the relationship between the weak
convergence of measures and convergence of their Fourier transforms, which are
often called characteristic functions in the probability literature.

Theorem 18.1. Given {µn : n ≥ 1} ∪ {µ} ⊆ M1(RN ), µn
w−→µ if and only if

µ̂n(ξ) −→ µ̂(ξ) for each ξ ∈ RN . In fact, if µn
w−→µ, then µ̂n −→ µ̂ uniformly on

compact subsets.

Proof. Suppose that µ̂n −→ µ̂ pointwise. Then, by Parseval’s identity and Lebesgue’s
dominated convergence theorem, for each φ ∈ S (RN ;C),

(2π)N ⟨φ, µn⟩ =
∫
φ̂(ξ)µ̂n(−ξ) dξ −→

∫
φ̂(ξ)µ̂(−ξ) dξ = (2π)N ⟨φ, µ⟩,

and so, by Theorem 17.3, µn
w−→µ.

Now suppose that µn
w−→µ and that ξn −→ ξ in RN . Then the functions φn(x) =

eı(ξn,x)RN converge uniformly on compact subsets to the function φ(x) = eı(ξ,x),
and therefore, by Theorem 17.4, µ̂n(ξn) −→ µ̂(ξ). Hence µ̂n −→ µ uniformly on
compact subsets. □
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Undoubtedly the most famous application of Theorem 18.1 is to the derivation
of the Central Limit Theorem in probability theory. The C.L.T. states that if
{Xn : n ≥ 1} is a sequence of RN -valued, mutually independent, uniformly square
integrable random variables on some probability space (Ω,F ,P) have the properties
that their expected value is 0 and

lim
n→∞

1

n

n∑
m=1

E
[
(ξ,Xm)2RN

]
= |ξ|2

for all ξ ∈ RN , then the distribution σn of∑n
m=1 Xm

n
1
2

converges weakly to γN , where γ(dx) = (2π)−
1
2 e−

x2

2 dx is the standard Gaussian
measure on R. To phrase this in analytic terms, let µm be the distribution of Xm.
Then the distribution of

∑n
m=1 Xm is the measure µ1 ∗ · · · ∗ µn, and so

σ̂n(ξ) =

n∏
m=1

µ̂m
(

ξ

n
1
2

)
is the Fourier transform of the distribution σn of 1

n
1
2

∑n
m=1 Xm. Next note that,

by Taylor’s theorem,

µ̂m
(

ξ

n
1
2

)
) = 1 + ı

n
1
2

∫
(ξ,x)RN µm(dx)− 1

2n

∫
(ξ,x)2 µm(dx) + om( 1n ),

where, because the Xm’s are uniformly square integrable,

lim
n→∞

n sup
m≥1

om
(
1
n

)
= 0.

Hence, because the Xm have expected value 0 and

lim
n→∞

1

n

n∑
m=1

∫
(ξ,x)2RN µm(dx) = |ξ|2,

one can use | log(1− t)− t| ≤ t2 for |t| ≤ 1
2 to check that

σ̂n(ξ) =
n∏

m=1

Å
1− 1

2n

∫
(ξ,x)2RN µm(dx) + om

(
1
n

)ã
−→ e−

|ξ|2
2 = ”γN (ξ).

In spite of Theorem 18.1, it is not true that a sequence of probability measures
converges weakly just because their Fourier transform converge pointwise. The
reason why is that if the sequence converges weakly, then it is relatively compact
and therefore must be tight. The following theorem of P. Lévy shows how one can
use Fourier transforms to test for tightness.

Theorem 18.2. (Lévy’s Continuity Theorem) If A ⊆ M1(RN ), then A is tight
if and only if for each ϵ > 0 there exists an r > 0 such that

(18.1) sup
µ∈A
|ξ|≤r

∣∣1− µ̂(ξ)
∣∣ ≤ ϵ.

Hence, {µn : n ≥ 1} ⊆ M1(RN ) is weakly convergent in M1(RN ) if and only if µ̂n
converges uniformly in a neighborhood of 0, in which case there is a µ ∈ M1(RN )
to which {µn : n ≥ 1} is converging weakly.
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Proof. Assume that A is tight and therefore relatively compact. To see that (18.1)
hold, suppose it did not. Then there would be an ϵ > 0 such that, for each
n ≥ 1,

∣∣1 − µ̂n(ξn)
∣∣ ≥ ϵ for some µn ∈ A and ξn ∈ B

(
0, 1

n

)
. Because A is

relatively compact, we could choose these µn so that they converge weakly to some
µ ∈ M1(RN ), in which case there would exist an m ≥ 1 for which

|1− µ̂(ξ)| ∨
∣∣µ̂n(ξ)− µ̂(ξ)

∣∣ < ϵ

2

when n ≥ m and |ξ| ≤ 1
n , which would mean that ϵ ≤

∣∣1− µ̂n(ξn)| < ϵ.
Now assume that (18.1) holds. To show that A must be tight, begin by observing

that

|1− µ̂(ξ)| ≥
∫ (

1− cos(ξ,y)RN

)
µ(dy).

Therefore, if 9 e ∈ SN−1, for all r > 0,

1

r

∫ r

0

∣∣1− µ̂(te)
∣∣ dt ≥ ∫

RN\{0}

Ç
1−

sin
(
r(e,y)RN

)
r(e,y)RN

å
µ(dy).

Now set

s(t) = inf

ß
1− sin τ

τ
: τ ≥ t

™
for t > 0.

Then s(t) > 0 for all t > 0, and, for all R > 0 and e ∈ SN−1,

sup
t∈(0,r]

∣∣1− µ̂(te)
∣∣ ≥ 1

r

∫ r

0

∣∣1− µ̂(te)
∣∣ dt ≥ s(rR)µ

(
{y : |(e,y)RN | ≥ R}

)
.

Since
µ
(
{y : |y| ≥ R}

)
≤ N sup

e∈SN−1

µ
({

y :
∣∣(e,y)RN

∣∣ ≥ N− 1
2R
})
,

we have the estimate

(18.2) µ
(
{y : |y| ≥ R}

)
≤ N

s(rN− 1
2R)

sup
|ξ|≤r

∣∣1− µ̂(ξ)|.

Now let ϵ > 0 be given, choose r > 0 so that sup|ξ|≤r |1 − µ̂(ξ)| < s(1)
N for µ ∈ A,

and take R = N
1
2

r . Then

sup
µ∈A

µ
(
{y : |y| ≥ R}

)
≤ ϵ.

□

Bochner found an interesting characterization of characteristic functions, one
which is intimately related to Lévy’s continuity theorem. To describe his result,
say that a function f : RN −→ C is non-negative definite if the matrix((

f(ξj − ξk)
))

1≤j,k≤n

is non-negative definite for all n ≥ 2 and ξ1, . . . , ξn ∈ RN , which is equivalent to
saying

n∑
j,k=1

f(ξj − ξk)αjαk ≥ 0

for all α1, . . . , αn ∈ C.

9SN−1 is the unit sphere in RN .
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Theorem 18.3. A function f : RN −→ C is a characteristic function if and only
if f is continuous, f(0) = 1, and f is non-negative definite.

Proof. Assume that f = µ̂ for some µ ∈ M1(RN ). Then it is obvious that f is
continuous and that f(0) = 1. To see that it is non-negative definite, observe that

n∑
j,k=1

f(ξj − ξk)αjαk =

∫ Ñ n∑
j,k=1

ei(ξj−ξk,x)RN αjαk

é
µ(dx)

=

∫ ∣∣∣∣∣∣
n∑

j,k=1

eiξjxαj

∣∣∣∣∣∣
2

µ(dx) ≥ 0.

Now assume that f is a continuous, non-negative definite function with f(0) = 1.
Because

A ≡
Å

1 f(ξ)
f(−ξ) 1

ã
is non-negative definite, Im

(
f(ξ) + f(−ξ)

)
and Im

(
if(ξ) − if(−ξ)

)
are both 0,

and therefore f(ξ) = f(−ξ). Thus A is Hermitian, and because it is non-negative
definite, 1 − |f(ξ)|2 ≥ 0. Therefore |f(ξ)| ≤ 1. Next, let ψ ∈ S (RN ;R), and use
Riemann approximations to see that∫∫

f(ξ − η)ψ̂(ξ)ψ̂(η) dξdη ≥ 0.

Assume for the moment that f is in L1(λRN ;C), and set

h(x) = (2π)−N
∫
e−i(ξ,x)RN f(ξ) dξ.

By Parseval’s identity, Fubini’s Theorem and the fact that ψ̂(ξ) = ψ̂(−ξ),

(2π)N
∫
h(x)ψ(x)2 dx =

∫
f(ξ)ψ̂2(−ξ) dξ =

∫
f(ξ)

(
ψ̂ ∗ ψ̂

)
(−ξ) dξ

=

∫∫
f(ξ)ψ̂(ξ + η)ψ̂(η) dξdη =

∫∫
f(ξ − η)ψ̂(ξ)ψ̂(η) dξdη ≥ 0.

Hence, since h is continuous, it follows that h ≥ 0. In addition, by the Fourier
inversion formula for L1(λRN ;C),

1 = f(0) = lim
t↘0

gt ∗ f(0) =
∫
e−

t|ξ|2
2 h(ξ) dx =

∫
h dλRN ,

and so f is the Fourier transform of the probability measure dµ = h dλRN .

To remove the assumption that f is integrable, set gt(x) = (2πt)−
N
2 e−

|x|2
2t and

define γt(dx) = gt(x) dx. Then “γt(ξ) = e−
t|ξ|2

2 and therefore ft ≡ “γtf is a continu-
ous, λRN -integrable function that is 1 at 0. To see that ft is non-negative definite,
note that

n∑
j,k=1

ft(ξj − ξk)αjαk =

n∑
j,k=1

f(ξj − ξk)αjαk

∫
ei(ξj−ξk,x)RN γt(dx)

=

∫ Ñ n∑
j,k=1

f(ξj − ξk)
(
αje

i(ξj ,x)RN
)(
αke

i(ξk,x)RN
)é

γt(dx) ≥ 0.
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Thus ft = “µt for some µt ∈M1(RN ), and so, since ft −→ f uniformly on compact
subsets, Lévy’s continuity theorem implies that µt tends weakly to a µ ∈ M1(RN )
for which f = µ̂. □

Because it is difficult to check whether a function is non-negative definite, it
is the more or less trivial necessity part of Bochner’s Theorem that turns out in
practice to be more useful than the sufficiency conditions.

Exercise 18.1. Given f ∈ Cb(RN ;C) with f(0) = 1, define the quadratic form

(φ,ψ)f =

∫∫
RN×RN

φ(ξ)f(ξ − η)ψ(η) dξdη

for φ,ψ ∈ S (RN ;C). Show that this quadratic form is non-negative (i.e., (φ,φ)f ≥
0) if and only if f is a characteristic function. Further, if f = µ̂, show that

(φ,ψ)f = (φ̂, ψ̂)L2(µ;C) and therefore that ( · , · )f is non-degenerate (i.e., (φ,φ)f =
0 =⇒ φ = 0) if and only if µ(G) > 0 for all non-empty open sets G.

Exercise 18.2. Here are some interesting facts about characteristic functions.

(i) It is easy to check that if µ ∈ M1(RN ), then

|µ̂(η)− µ̂(ξ)|2 ≤ 2Re
(
1− µ̂(η − ξ)

)
,

and so, by Theorem 18.3, one sees that if f is a continuous, non-negative definite
function for which f(0) = 1, then |f(ξ)| ≤ 1 and |f(η)−f(ξ)|2 ≤ 2

(
1−Ref(η−ξ)

)
.

Show that these inequalities hold even if one drops the continuity assumption.

Hint: Use the non-negative definiteness of the matricesÅ
1 f(−ξ)

f(ξ) 1

ã
and

Ñ
1 f(−ξ) f(−η)

f(ξ) 1 f(ξ − η)
f(η) f(η − ξ) 1

é
to see that f(−ξ) = f(ξ) and that

|z|2 − 2z̄|f(η)− f(ξ)|+ 2
(
1−Ref(η − ξ)

)
≥ 0.

(ii) Without using Bochner’s theorem, show that if f1 and f2 are non-negative
definite functions, then so are f1f2 and, for any a, b ≥ 0, af1 + bf2 is also.

Hint: Show that if A and B are non-negative definite, Hermitian N ×N matrices,
then

((
Ak,ℓBk,ℓ

))
1≤k,ℓ≤N is also. One way to see this is to use the fact that B

admits a square root.

(iii) Suppose that f : RN −→ C is a non-constant function for which f(0) = 1.

Show that if lim|x|↘0
1−f(x)
|x|2 = 0, then f cannot be a characteristic function. In

particular, if α > 2, then e−|ξ|α is not a characteristic function.

(iv) Given a finite signed Borel measure µ on RN , define

µ̂(ξ) =

∫
ei(ξ,x)RN µ(dx),

and show that µ̂ = 0 if and only if µ = 0.

Hint: Use the Hahn Decomposition Theorem to write µ as the difference of two,
mutually singular, non-negative Borel measures on RN .



TOPICS IN FOURIER ANALYSIS 61

(v) Suppose that f : R −→ C is a non-constant, twice continuously differentiable

characteristic function. Show that f ′′(0) < 0 and that f ′′

f ′′(0) is again a characteristic

function. In addition, show that ∥f ′∥2u ∨ ∥f ′′∥u ≤ |f ′′(0)| and that |f(η)− f(ξ)| ≤
|f ′′(0)| 12 |η − ξ|.

(vi) Suppose that {µn : n ≥ 1} ⊆ M1(R) and that f(ξ) = limn→∞ µ̂n(ξ) exists
for each ξ ∈ R. Show that f is a characteristic function if and only if it is continuous
at 0, and notice that this provides an alternative proof of Theorem 18.2.

(vii) Let µn ∈ M1(R) be the measure for which dµn

dλR
= (2n)−11[−n,n]. Show

that µ̂n −→ 1{0} pointwise, and conclude that {µn : n ≥ 1} has no weak limits.
This example demonstrates the essential role that continuity plays in Bochner’s and
Lévy’s theorems.

19. Infinitely Divisible Probability Measures

The convolution product turns M1(RN ) into a commutative ring in which δ0 is
the identity. A µ ∈ M1(RN ) is said to be infinitely divisible in this ring if, for each
n ≥ 1, there exists a µ 1

n
∈ M1(RN ) such that

µ = µ∗n
1
n

≡ µ 1
n
∗ · · · ∗ µ 1

n︸ ︷︷ ︸
n times

,

and the set I(RN ) of infinitely divisible measures is an important source of building
blocks for constructions in probability theory.

For probabililists, an element of I(RN ) is the distribution of a random variable
which, for each n ≥ 1, can be written as the sum of n identically distributed random
variables. Using commutativity, it is easy to check that set I(RN ) of infinitely
divisible measures is a subring of M1(RN ).

A famous theorem of Lévy and A. Khinchine describes the characteristic function
of every element of I(RN ). Namely, µ ∈ I(RN ) if and only if

(19.1)

µ̂(ξ) = exp

Å
i(b, ξ)RN − 1

2

(
ξ, Aξ

)
RN

+

∫ (
ei(ξ,y)RN − 1− i1B(0,1)(y)(ξ, y)RN

)
M(dy)

ã
,

for some b ∈ RN , non-negative definite, symmetric A ∈ Hom(RN ;RN ), and Borel

measureM on RN such thatM({0}) = 0 and
∫ |y|2

1+|y|2 M(dy) <∞. The expression

in (19.1) is called the Lévy–Khinchine formula, a measure M satisfying the stated
conditions is called a Lévy measure, and the triple (b, A,M) is called a Lévy system.
It is clear that if the right hand side of (19.1) is a characteristic function for every
Lévy system, then these are characteristic functions of infinitely divisible laws.
Indeed, if µ corresponds to (b, A,M) and µ 1

n
corresponds to

(
b
n ,

A
n ,

M
n

)
, then µ̂ =

(”µ 1
n
)n.

Proving that the function f(b,A,M) on the right hand side of (19.1) is a charac-
teristic function is a relatively easy. To wit, f(0,I,0) = γ̂, where γ is the standard

Gaussian measure on RN , and so it is easy to check that fb,A,0 is the characteristic

function of the distribution of x⇝ b+A
1
2x under γ. Also, if the Lévy measure M
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is finite and πM is the Poisson measure given by

(19.2) πM = e−M(RN )
∞∑
n=0

M∗n

n!
,

then

π̂M (ξ) = e−M(RN )
∞∑
n=0

M̂(ξ)n

n!
= e−M(RN )+M̂(ξ) = exp

Å∫ (
eı(ξ,y)RN − 1

ã
M(dy),

and so π̂M = f(bM ,0,M), where bM =
∫
B(0,1)

yM(dy). Hence, when M is finite,

f(b,A,M) is the characteristic function of γb−bM ,A ∗ πM . Finally, for general Lévy
measures M , set Mk(dy) = 1[ 1k ,∞)(|y|)M(dy). Then Mk is finite, and so f(b,A,Mk)

is a characteristic function. Therefore, since f(b,A,Mk) −→ f(b,A,M) uniformly on
compact subsets, Theorem 18.2 says that f(b,A,M) is a characteristic function.

There are no easy proofs that the characteristic function of any µ ∈ I(RN ) is
given by (19.1). The first step is to show that if µ ∈ I(RN ), then there is a unique

ℓ ∈ C(RN ;C) such that ℓ(0) = 0, |ℓ(ξ)|
1+|ξ|2 is bounded, and µ̂(ξ) = eℓ(ξ). Showing

that ℓ exists and is unique comes down to showing that µ̂ never vanishes. To do
that, choose r > 0 so that |1− µ̂(ξ)| ≤ 1

2 when |ξ| ≤ r. Then there is an ℓ for which

ℓ(0) = 0, |ℓ(ξ)| ≤ 2, and µ̂(ξ) = eℓ(ξ) if |ξ| ≤ r. Using log z = −
∑∞
n=1

(1−z)n
n when

|1− z| < 1, one sees that |ℓ(ξ)| ≤ 2 for |ξ| < r.
Since ”µ 1

n
(ξ)n = µ̂(ξ), ”µ 1

n
(ξ) ̸= 0 when |ξ| ≤ r, and so, by uniqueness, it must be

that ÷µ 1
n
(ξ) = e

ℓ(ξ)
n for |ξ| ≤ r, and therefore |1−”µ 1

n
(ξ)| ≤ 2

n when |ξ| ≤ r. Hence,

by (18.2), for any R > 0,

µ 1
n

(
{y : |y| ≥ R}

)
≤ 2N

ns(rN− 1
2R)

,

and so

|1−÷µ 1
n
(ξ)| ≤

∫ ∣∣1−eı(ξ,y)∣∣µ 1
n
(dy) ≤ |ξ|R+2µ 1

n

(
{y : |y| ≥ R}

)
≤ |ξ|R+ 2N

ns(rN− 1
2R)

.

Given ξ ̸= 0, take R = 1
4|ξ| , choose n so that 2N

ns(rN− 1
2R)

≤ 1
4 , and conclude that

|1 − ”µ 1
n
(ξ)| ≤ 1

2 and therefore |µ̂(ξ)| ≥ 2−n. This proves that µ̂ never vanishes

and therefore that µ̂ = eℓ. In addition, by using the fact that limt↘
s(t)
t2 = 1

6 , the

preceding line of reasoning shows that there is a C < ∞ such that
∣∣1 − e

ℓ(ξ)
n

∣∣ ≤ 1
2

when n ≥ C|ξ|2, and therefore |ℓ(ξ)|
1+|ξ|2 is bounded.

Knowing that ”µ 1
n
= e

ℓ
n , one knows that

ℓ(ξ) = lim
n→∞

n
(”µ 1

n
(ξ)− 1

)
.

Thinking of ℓ as a tempered distribution, the challenge is to describe the distribution
of which it is the Fourier transform. Thus, set u = ℓ̌. Then, since ℓ has at most
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quadratic growth,

(2π)N ⟨φ, u⟩ = ⟨φ̂, ℓ⟩ = lim
n→∞

n

∫
φ̂(ξ)

Å∫ (
e−ı(ξ,x)RN − 1

)
µ 1

n
(dx)

ã
dξ

= lim
n→∞

n

∫ Å∫ (
e−ı(ξ,x)RN − 1

)
φ̂(ξ)

)
dξ

ã
µ 1

n
(dx)

= (2π)N lim
n→∞

n

∫ (
φ(x)− φ(0)

)
µ 1

n
(dx),

and so

⟨φ, u⟩ = lim
n→∞

n

∫ (
φ(x)− φ(0)

)
µ 1

n
(dx).

In particular, u satisfies the obvious RN analog of the minimum principle in (14.4).

In addition, because ℓ(0) = 0 and ℓ̌ = ℓ̂,

⟨φR, u⟩ =
∫
φR(ξ)ℓ̂(ξ) dξ = (2π)NR

∫
φ̌(Rξ)ℓ(ξ) dξ

= (2π)N
∫
φ̌(ξ)ℓ

(
R−1ξ

)
dξ −→ 0

as R → ∞. Thus u satisfies the RN -analog of (14.5), and therefore, by the RN -
analog of Theorem 14.7, we know that

⟨φ, u⟩ = 1

2

N∑
i,j=1

Ai,j∂xi
∂xj

φ(0) +
∑
i=1

bi∂xi
φ(0)

+

∫ (
φ(y)− φ(0)− 1B(0,1)(y)

(
y,∇φ(0)

)
RN

)
M(dy),

where (b, A,M) is a Lévy system.
To compute the Fourier transform of u, introduce the operator

L(b,A,M)φ(x) =
1

2

N∑
i,j=1

Ai,j∂xi∂xjφ(x) +

N∑
i=1

bi∂xiφ(x)

+

∫ (
φ(x+ y)− φ(x)−

(
b,∇φ(x)

)
RN

)
M(dy).

What we have shown is that ⟨φ, u⟩ = L(b,A,M)φ(0). Using ‘∂xj
φ(ξ) = −ıξjφ̂(ξ) and

Fubini’s theorem, one sees that⁄�L(b,A,M)φ(ξ) = φ̂(ξ)ℓ(b,A,M)(−ξ),

where

ℓ(b,A,M)(ξ) = log f(b,A,M)

= − 1
2

(
ξ, Aξ)RN + ı(b, ξ)RN +

∫ (
eı(ξ,y) − 1− ı1B(0,1)(y)

(
ξ,y)RN

)
M(dy).

Hence, by Parseval’s indentity,

⟨φ̂, ℓ⟩ = (2π)N ⟨φ, u⟩ = (2π)NL(b,A,M)(0) = ⟨φ̂, ℓ(b,A,M)(ξ)⟩,
and so ℓ = ℓ(b,A,M).

We will now use (19.1) to prove some properties of the associated measures

based on properties of the Lévy system. Use µ(b,A,M) ∈ S (RN ;C)∗ to denote
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the probability measure of which f(b,A,M) is the Fourier transform, and set µt =
µ(tb,tA,tM) for t > 0. Then

(2π)N∂t⟨φ, µt⟩ = ⟨φ̂, ℓ(b,A,M)f(tb,tA,tM)⟩ = (2π)N ⟨L(b,A,M)φ, µt⟩.

That is, we have shown that

(19.3) ∂t⟨φ, µ(tb,tA,tM)⟩ = ⟨L(b,A,M)φ, µ(tb,tA,tM)⟩.

Theorem 19.1. If either A is non-degenerate or M(G) > 0 for all non-empty open
sets G ⊆ RN \ {0}, then µ(b,A,M)(G) > 0 for all non-empty open sets G ⊆ RN .

Proof. First observe that µ(b,A,M) = δb ∗ µ(0,A,M), and therefore we can assume
that b = 0. Next note that µ(0,A,M) = γA ∗ µ(0,0,M) where γA is the distribution

of x⇝ A
1
2x under γ, and so, if A is non-degenerate and therefore γA has a strictly

positive density, µ(0,A,M) does also.

Now assume that b = 0, A = 0, and M(G) > 0 for all open ∅ ≠ G ⊆ RN \ {0}.
Given an open G ̸= ∅, choose an η ∈ C∞(RN ; [0, 1]

)
which is strictly positive on G

and vanishes off of G. Then

L(0,0,M)η(x) =

∫ (
η(x+ y)− η(x)− 1B(0,1)(y)

(
∇η(x),y

)
RN

)
M(dy)

=

∫
η(x+ y)M(dy) > 0

if x /∈ G. Hence, if f(t) = ⟨η, µ(0,0,tM)⟩, then f ≥ 0 and, by (19.3), µ(0,0,tM)(G) =
0 =⇒ f ′(t) > 0. But µ(0,0,tM)(G) = 0 also implies that f(t) = 0, which, by the
first derivative test, is possible only if f ′(t) = 0. Hence f(t) > 0 for all t > 0, and
so µ(0,0,M)(G) > 0. □

Theorem 19.2. If N = 1, then µ(b,A,M)

(
(−∞, 0)

)
= 0 if and only if

(19.4) A = 0, M
(
(−∞, 0)

)
= 0, and

∫
|y|<1

yM(dy) ≤ b.

Proof. Observe that, for n ≥ 1,

{x ∈ Rn : xj < 0 for 1 ≤ j ≤ n|} ⊆

x ∈ Rn :

n∑
j=1

xj < 0

 ,

and therefore µ 1
n

(
(−∞, 0)

)n ≤ µ∗n((−∞, 0)
)
for any µ ∈ M1(R).

Now assume that µ(b,A,M)

(
(−∞, 0)

)
= 0. Since µ(b,A,M) = γA ∗ µ(b,0,M) and

γA(G) > 0 for all open G ̸= ∅ unless A = 0, it follows that A = 0. Next observe
that f(b,0,M) has a bounded analytic extension to {ζ ∈ C : Reζ < 0}, and there-

fore M
(
(−∞, 0)

)
must be 0. Finally, to prove the inequality in (19.4), set µ 1

n
=

µ( b
n ,0,

M
n ). Since µ1 = µ∗n

1
n

, the observation above shows that µ 1
n

(
(−∞, 0)

)
= 0, and

therefore, if φ ≥ 0 on [0,∞) and φ(0) = 0, then, by (19.3),

L(b,0,M)φ(0) = lim
n→∞

n
(
⟨φ, µ 1

n
⟩ − φ(0)

)
≥ 0,

and so

bφ′(0) +

∫ (
φ(y)− 1(−1,1)(y)yφ

′(0)
)
M(dy) ≥ 0.
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Now choose η ∈ C∞(R; [0, 1]) so that η = 1 on
[
− 1

2 ,
1
2

]
and η = 0 off (−1, 1), and,

for r ∈ (0, 1), set φr(x) = yηr(y) where ηr(y) = η
(
y
r

)
. By the preceding applied to

φr,

b−
∫ (

1(−1,1)(y)− ηr(y)
)
yM(dy) ≥ 0,

and so ∫
(r,1)

yM(dy) ≤ b for all r ∈ (0, 1).

Finally, assume that (19.4) holds, and set Mr(dy) = 1[r,∞)(y)M(dy) and br =

b−
∫
yMr(dy) for r > 0. Then (19.4) holds for (b, 0,Mr) and (cf. (19.2)) µ(b,0,Mr) =

δbr ∗ πMr , from which it is clear that µ(b,0,Mr)

(
(−∞, 0)

)
= 0. Therefore, since

µ(b,0,Mr)
w−→µ(b,0,M), µ(b,0,M)

(
(−∞, 0)

)
= 0. □

Exercise 19.1. IfM is symmetric, show that the integral in (19.1) can be replaced
by ∫ (

cos(ξ,y)RN − 1
)
M(dy).

If M(y) = |y|−1−α for some α ∈ (0, 2), show that∫
SN−1

(
cos(ξ,y)RN − 1

)
M(dy) = |ξ|α

∫ (
cos(e,y)RN − 1

)
dy,

for every e ∈ SN−1. In particular, by combining this with part (iii) of Exercise
18.2, conclude that e−|ξ|α is a characteristic function if and only if α ∈ [0, 2].

20. Singular Integral Operators

The classic Poisson problem is that of finding, for a given a function φ, a solution
u to the equation ∆u = −φ in RN , and one of the questions that arises is determin-
ing how properties of the function φ are reflected by the solution u. In particular,
one wants to know whether second order derivatives of u can be estimated in terms
of φ. When N = 1, this problem doesn’t arise because −φ is the second derivative
of u. However, when N ≥ 2, it is not at all clear to what extent the entire Hessian
matrix of u is controlled by its trace.

To address this question, it is best to begin by giving an integral representation
of the solution u. Depending on dimension, u is given by

u(x) =

∫
G

(N)
0 (x− y)φ(y) dy,

where G
(N)
0 is the (cf. § 16) Green’s function for the Laplacian in RN :

G
(N)
0 (x) =

®
1
π log |x| if N = 2

1
(N−2)ωN−1|x|N−2 if N ≥ 3.

Thus

∂xi
∂xj

u(x) =

∫
G

(N)
i,j (x− y)φ(y) dy

where

(20.1) G
(N)
i,j (x) =

1

ωN−1|x|N

∫ Å
−δi,j +N

xixj
|x|2

ã
.
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Because G
(N)
i,j is not an integrable function, one has take care when interpreting

convolution with it. On the other hand, since G
(N)
0 ∈ S (RN ;C)∗, so is is G

(N)
i,j , and

therefore φ ∗G(N)
i,j makes perfectly good sense when φ ∈ S (RN ;C). The question

then is whether, using this interpretation, one can derive estimates.
Before getting into the details, it is important to know what sort of estimates are

possible. In particular, because G
(N)
i,j is neither integrable nor bounded, one should

not expect that convolution with it will map either L1(λRN ;C) or L∞(λRN ;C) into
itself. Even so, it turns out (cf. (24.2) below) that it maps Lp(λRN ;C) boundedly
into itself when p ∈ (1,∞), and what follows is one way to prove that.

21. The Hilbert Transform

A key fact about G
(N)
i,j is that it is a Borel measurable, homogeneous function of

order N whose integral over SN−1 is 0. That is, it is a function of the form

k(x) =
Ω(x)

|x|N

where Ω ↾ SN−1 ∈ L1(λSN−1 ;C) satisfies Ω(rx) = Ω(x) for all r > 0 and∫
SN−1

Ω(ω)λSN−1(dω) = 0.

A Calderòn–Zygmund kernel k determines a tempered distribution by the prescrip-
tion

⟨φ, k⟩ = lim
r↘0

∫
|y|≥r

φ(y)k̄(y) dy

= lim
r↘0

∫
|y|≥r

(
φ(y)− φ(0)1[−1,1](y)

)
k̄(y) dy =

∫ (
φ(y)− φ(0)1[−1,1](y)

)
k̄(y) dy.

Such functions k are called Calderòn–Zygmund kernels because Calderòn and
Zygmund were able to prove a large number of deep results about convolution
with respect to them. In particular (cf. (23.2) below), they showed that, in great
generality, for each p ∈ (1,∞) there is a constant Cp, depending on N and Ω, such
that ∥φ ∗ k∥Lp(λRN ;C) ≤ Cp∥φ∥Lp(λRN ;C).

WhenN = 1 there is, up to a multiple constant, only one C-K kernel, namely, the
function h(x) = 1

πx . Convolution with respect to h was studied originally by Hilbert
and has been known as the Hilbert transform ever since. A seminal observation
made by Hilbert is that, even though h /∈ L1(λR;C), this transform is a bounded
mapping of L2(λR;C) into itself. Indeed, thinking of h as a tempered distribution,

we showed in (6.2) that ĥ(ξ) = ısgn(ξ). Thus, we know that ∥φ ∗ h∥L2(λR;C) ≤
∥φ∥L2(λR;C).

In order to prove the estimate for p ̸= 2, I will use an beautiful approach that
I think was introduced by M. Riesz and is closely related to the ideas we used

to compute ĥ. Recall the functions py(x) = 1
π

y
x2+y2 and qy = 1

π
x

x2+y2 which

are, respectively, the real and imaginary parts of ı
z when z = x + ıy. Next, set

hy(x) = 1[y,∞)(x)h(x), and observe that ∥hy − qy∥L1(λR;C) = ∥h1 − q1∥L1(λR;C) ≤
2
π , and therefore ∥φ ∗ hy − φ ∗ qy∥Lp(λR;C) ≤ 2

π∥φ∥Lp(λR;C). Thus, showing that
supy>0 ∥φ ∗ qy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C) for some Cp <∞ will show that

sup
y>0

∥φ ∗ hy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C) for some other Cp <∞.
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The advantage that qy has over hy is its connection to analytic functions. Namely,
since ı

z = py(x) + ıqy(x) when z = x+ ıy,

f(z) ≡ φ ∗ py(x) + ıφ ∗ qy(x) =
ı

π

∫
φ(ξ)

x+ ıy − ξ
dξ.

Further, because ∥py∥Lp(λR;C) = 1, ∥φ ∗ py∥Lp(λR;C) ≤ ∥φ∥Lp(λR;C), and Riesz’s idea
was to use these observations to control ∥φ∗qy∥Lp(λR;C) in terms of ∥φ∗py∥Lp(λR;C).
To do so he needed the fact that, for each n ≥ 1 there exist finite constants An and
Bn such that

(Imζ)2n ≤ AnReζ2n +Bn(Reζ)2n for ζ ∈ C. (∗)
Proving (∗) comes down to showing that cos2n θ ≤ An cos 2nθ + Bn sin

2n θ for
θ ∈ [−π, π]. Clearly, if θ ∈

[
− π

8n ,
π
8n

]
∪
[
7π
8 ,

9π
8

]
, An can be chosen so the An cos 2nθ

dominates cos2n θ; and for θ not in those intervals, Bn can be chosen so that
Bn sin

2n θ dominates cos2n θ −An cos 2nθ.
With the preceding at hand, we know that∫ (

φ ∗ qy(x)
)2n

dx ≤ AnRe

Å∫
f(x+ ıy)2n dx

ã
dx+Bn

∫ (
φ ∗ py(x)

)2n
dx.

What Riesz saw is that he could use Cauchy’s theorem to prove that the integral
of x ⇝ f(x + ıy)2n is independent of y > 0. Indeed, consider the rectangle {z =
x+ ıy : |x| ≤ R & y1 ≤ y ≤ y2}. Cauchy’s theorem says that the contour integral
of f2n around the boundary is 0. In addition, since φ ∈ S (R2;C), as R → ∞
the contribution to the integral from the vertical parts of the boundary tends to
0, and so the integrals over the horizontal parts are equal. Finally, as y ↗ ∞,∫
f(x+ ıy)2n dx −→ 0, and so we now know that

∥φ ∗ qy∥L2n(λR;C) ≤ B
1
2n
n ∥φ∥L2n(λR;C).

Hence, we have proved that, for each n ≥ 1 there is a C2n <∞ such that

(21.1) sup
y>0

∥φ ∗ hy∥L2n(λR;C) ≤ C2n∥φ∥L2n(λR;C).

22. Interpolation

Although (21.1) is already significant, one should suspect that a similar estimate
holds for all p ∈ (0,∞), not just even integers. However, because Riesz needed fp

to be an analytic function, he needed p to be an integer; and because he needed
(Ref)p to be non-negative, he needed it to be an even integer. It was to overcome
this problem that he proved a powerful general result, known as an interpolation
theorem, that can be viewed as an operator theoretic analog of Hölder’s equality.
The following version and proof of his result is due to G. Thorin.

Theorem 22.1. (Riesz–Thorin) Given a σ-finite measure space (E,F , µ) and
numbers

1 ≤ p0, p1, q0, q1 ≤ ∞ with p0 ∧ p1 <∞,

assume that T is a linear operator on Lp0(µ;C)∩Lp1(µ;C) into Lq0(µ;C)∩Lq1(µ;C)
satisfying

∥Tf∥Lqj (µ;C) ≤Mj∥f∥Lpj (µ;C) for j ∈ {0, 1},
where M0 ∨M1 <∞. Then, for each θ ∈ [0, 1]

∥Tf∥Lqθ (µ;C) ≤M1−θ
1 Mθ

2 ∥f∥Lpθ (µ;C),
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where 1
pθ

= 1−θ
p0

+ θ
p1

.

Thorin’s proof of Theorem 22.1 requires to following simple version, due to
Hadamard and known as the three lines theorem, of the Phragmen–Lindelöf theo-
rem.

Lemma 22.2. Suppose that F is a bounded continuous function on the closed strip
S = {z ∈ C : Rez ∈ [0, 1]} which is analytic on the interior of S. If |F (ıy)| ≤ m0

and |F (1 + ıy)| ≤ m1 for all y ∈ R, then |F (z)| ≤ m1−x
0 mx

1 for z = x+ ıy ∈ S.

Proof. By replacing F with F (z)

m1−z
0 mz

1

, one can reduce to the case whenm0 = m1 = 1,

in which case one needs to show that |F (z)| ≤ 1 for z ∈ S. Thus we will assume
that m0 = m1 = 1 and will prove that |F | ≤ 1.

If lim|y|→∞ supx∈[0,1] |F (x + ıy)| = 0, then the maximum principle for analytic
functions says that

sup
z∈S

|Imz|≤R

|F (z)| = sup
{
|F (x+ ıy)| : (x, y) ∈

(
{0, 1} × [−R,R]

)
∪
(
(0, 1)× {−R,R}

)}
−→ sup

y∈R
{|F (ıy) ∨ |F (1 + ıy)|} ≤ 1.

Even if F (x + ıy) doesn’t tend to 0 as |y| → ∞, for each n ≥ 1, the function

Fn(z) = e
z2−1

n F (z) does. In addition, |Fn(ıy)|∨|Fn(1+ıy)| ≤ 1, and so |Fn(z)| ≤ 1.
Now let n→ ∞. □

Proof of Theorem 22.1. Without loss in generality, we will assume that p0 ≤ p1.
Also, q′ will be used to denote the Hölder conjugate of q ∈ [1,∞].

The first step is to check that it suffices to prove that∣∣∣∣∫ g(ξ)Tf(ξ)µ(dξ)

∣∣∣∣ ≤M1−θ
0 Mθ

1 (∗)

for simple functions f and g satisfying ∥f∥Lpθ (µ;C) = 1 and ∥g∥
Lq′

θ (µ;C) = 1. In-

deed, ∥Tf∥Lqθ (µ;C) equals the supremum of
∣∣∫ gTf dµ∣∣ over simple functions g with

∥g∥
Lq′

θ (µ;C) = 1, and, if p1 < ∞, then, for any f ∈ Lp0(µ;C) ∩ Lp1(µ;C), we can

choose simple function fn such that fn −→ f both in Lp0(µ;C) and in Lp1(µ;C).
Hence, if (∗) holds for simple functions, then, by Hölder’s inequality,

∥Tf∥Lqθ (µ;C) ≤ ∥T (fn − f)∥Lqθ (µ;C) + ∥Tfn∥Lqθ (µ;C)

≤ ∥T (fn − f)∥1−θLq0 (µ;C)∥T (fn − f)∥θLq1 (µ;C) +M1−θ
0 Mθ

2 ∥fn∥Lpθ (µ;C)

≤M1−θ
0 Mθ

1

(
2∥fn − f∥1−θLp0 (µ;C)∥fn − f∥θLp1 (µ;C) + ∥f∥Lpθ (µ;C)

)
,

from which the required estimate follows when n → ∞. When p1 = ∞, one can
choose the fn’s so that they converge to f in Lp1(µ;C) and are uniformly bounded
and thereby use the preceding argument to get the desired result.

Turning to the proof of (∗), let θ ∈ (0, 1) and determine p and q by 1
p = 1−θ

p0
+ θ
p1

and 1
q = 1−θ

q0
+ θ

q1
. Next, define p(z) and q(z) for (cf. Lemma 22.2) z ∈ S so that

1
p(z) =

1−z
p0

+ z
p1

and 1
q′(z) =

1−z
q′0

+ z
q′1
. Given simple functions

f =

n∑
m=1

am1Γm and g =

n∑
m=1

bm1∆m with ∥f∥Lp(µ;C) = 1 and ∥g∥Lq′ (µ;C) = 1,
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define fz = |f |
p

p(z) f
|f | and gz = |g|

q′
q′(z) g

|g| , where
h(ξ)
|h(ξ)| is taken to be equal 0 if

h(ξ) = 0. Then

fz =

n∑
m=1

|am|
p

p(z)
am
|am|

1Γm and gz =

n∑
m=1

|bm|
q′

q′(z)
bm
|bm|

1∆m .

Now define

F (z) =

∫
gz(ξ)Tfz(ξ)µ(dξ) =

n∑
k,ℓ=1

|ak|
p

p(z)
ak
|ak|

|bℓ|
q′

q′(z)
bℓ
|bℓ|

∫
∆ℓ

T1Γk
(ξ)µ(dξ).

Then F is a bounded continuous function on S that is analytic function on the
interior of S, and so, by Lemma 22.2,

|F (θ)| ≤ m1−θ
0 mθ

1 where m0 = sup
y∈R

|F (ıy)| and m1 = sup
y∈R

|F (1 + ıy)|.

Thus, what remains is to check that m0 ≤ M0 and m1 ≤ M1. But, by Hölder’s
inequality,

|F (ıy)| ≤ ∥gıy∥Lq′0 (µ;C)∥Tfıy∥Lq0 (µ;C) ≤M0∥gıy∥Lq′0 (µ;C)∥fıy∥Lp0 (µ;C),

and

∥fıy∥p0Lp0 (µ;C) =

n∑
m=1

∣∣|am|
p

p(ıy)
∣∣p0µ(Γm) =

n∑
m=1

|am|pµ(Γm) = 1

Similarly

∥f1+ıy∥p1Lp1 (µ;C) = 1, ∥gıy∥
q′0

Lq′0 (µ;C)
= 1, and ∥g1+ıy∥

q′1

Lq′1 (µ;C)
= 1.

□
By combining (21.1) and Theorem 22.1, we know that there is a Cp < ∞ such

supy>0 ∥φ ∗ hy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C) for each p ∈ [2,∞). To extend this result
to p ∈ (1, 2), observe that if p ∈ (1, 2), then p′ ∈ (2,∞). Hence, since

(ψ,φ ∗ hy)L2(λR;C) = −(ψ ∗ hy, φ)L2(λR;C),

we have that

|(ψ,φ ∗ hy)L2(λR;C)| ≤ Cp′∥ψ∥Lp′ (λR;C)∥φ∥Lp(λR;C)

and therefore that, for all p ∈ (1,∞),

(22.1) sup
y>0

∥φ ∗ hy∥Lp(λR;C) ≤ Cp∥φ∥Lp(λR;C),

where Cp = Cp′ when p ∈ (1, 2).

Exercise 22.1. Note that ∥φ̂∥L2(λRN ;C) = (2π)
N
2 ∥φ∥L2(λR;C) and ∥φ̂∥L∞(λRN ;C) ≤

∥φ∥L1(λRN ;C), and use Theorem 22.1 to prove that ∥φ̂∥Lp′ (λRN ;C) ≤ (2π)
N
p′ ∥φ∥Lp(λRN ;C)

for p ∈ [1, 2]. Next, let ψ ∈ Lp(λRN ;C) for some p ∈ [1,∞), and define Tφ = φ ∗ψ.
Remember that ∥Tφ∥Lp(λRN ;C) ≤ ∥φ∥Lp(λRN ;C)∥ψ∥L1(λRN ;C) and ∥Tφ∥L∞(λRN ;C) ≤
∥φ∥Lp(λRN ;C)∥ψ∥Lp′ (λRN ;C), and use Theorem 22.1 to prove Young’s inequality

∥ψ ∗ ψ∥Lr(λRN ;C) ≤ ∥φ∥Lp(λRN ;C)∥ψ∥Lq(λRN ;C) if
1

r
=

1

p
+

1

q
− 1 ≥ 0.
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23. The Method of Rotations

Calderòn and Zygmund noticed that the Hilbert transform, and especially (22.1),
can be used to prove the Lp boundedness of their kernels when Ω ∈ L1(λSN−1 ;C) is
odd (i.e., Ω(−ω) = −Ω(ω) for ω ∈ SN−1). For example, set ky(x) = 1[y,∞)(|x|)k(x)
for (x, y) ∈ RN × (0,∞). Then because

k̂y(ξ) = lim
R→∞

∫
y<|x|≤R

eı(ξ,x)k(x) dx

= lim
R→∞

∫
SN−1

Ω(ω)

Ç∫
(y,R]

eır(ξ,ω) 1

r
dr

å
λSN−1dω,

if Ω is odd, one has that

k̂y(ξ) = lim
R→∞

1

2

∫
SN−1

Ω(ω)

Ç∫
y<|r|≤R

eır(ξ,ω) 1

r
dr

å
λSN−1(dω)

=
π

2

∫
SN−1

Ω(ω)ĥy
(
(ξ,ω)

)
λSN−1(dω).

Hence,

(23.1) k̂y(ξ) =
ıπ

2

∫
SN−1

Ω(ω)ĥy
(
(ξ,ω)

)
λSN−1(dω),

and so

∥k̂y∥u ≤
π∥Ω∥L1(λSN−1 ;C)∥ĥy∥u

2
.

In particular, we already know that

∥φ ∗ k∥L2(λRN ;C) ≤
π∥Ω∥L1(λSN−1 ;C)

2
∥φ∥L2(λRN ;C).

The same trick as we just used allows us to prove estimates for general p ∈ (1,∞).
Namely, again using the oddness of k, one can first write

φ ∗ ky(x) =
1

2

∫
SN−1

Ω(ω)

Ç∫
|r|>y

φ(x− rω)
dr

r

å
λSN−1(dω),

and then, after applying Minkowski’s inequality,

∥φ ∗ kϵ∥Lp(λRN ;C) ≤
1

2

∫
SN−1

|Ω(ω)|

(∫
RN

∣∣∣∣∣
∫
|r|>y

φ(x− rω)
dr

r

∣∣∣∣∣
p

dx

) 1
p

λSN−1(dω).

Finally, for fixed e ∈ SN−1, choose Euclidean coordinates for RN so that e points
in the direction of the first coordinate. Then∫
RN

∣∣∣∣∣
∫
|r|>y

φ(x− re)
dr

r

∣∣∣∣∣
p

dx

= πp
∫

· · ·
∫

RN−1

Å∫
R

∣∣[φ ∗ hy( · , x2, . . . , xN )](x1)
∣∣p dx1ã dx2 · · · dxN

≤ (πCp)
p

∫
· · ·
∫

RN−1

∥φ( · , x2, . . . , xN )∥pLp(λR;C) dx2 · · · dxN = (πCp)
p∥φ∥pLp(λRN ;C),
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which, together with the preceding, leads immediately to

(23.2) ∥φ ∗ k∥Lp(λRN ;C) ≤ kp∥φ∥Lp(λRN ;C) for p ∈ (1,∞),

where Kp = πCp∥Ω∥L1(λSN−1 ;C).

24. The Riesz Kernels

In a sense which can be made very precise, the basic C-Z kernels for RN are the
Riesz kernels ri(x) = cN

xi

|x|N+1 , 1 ≤ i ≤ N , where

cN ≡
Å
π

2

∫
SN−1

|ω1|λSN−1(dω)

ã−1

.

Obviously, the preceding applies to each of these. To get a feeling for how
convolution with respect to ri acts, apply (23.1) to see that“ri(ξ) = ıπcN

2

∫
SN−1

ωisgn
(
(ξ,ω)

)
λSN−1(dω).

Certainly, “ri is homogeneous of degree 0, and so we need only worry about ξ ∈ SN−1.
Given ξ ∈ SN−1, write ω = (ω, ξ)ξ + ω⊥ξ . Then∫

SN−1

ωisgn
(
(ξ,ω)

)
λSN−1(dω)

= ξi

∫
SN−1

|(ω, ξ)|λSN−1(dω) +

∫
SN−1

(
ω⊥ξ

)
i
sgn
(
(ξ,ω)

)
λSN−1(dω).

Because the integrand in the second term is an odd function of ω ⇝ (ξ,ω), the
second term vanishes. Hence,

(24.1) “ri(ξ) = ıξi
|ξ|
, ξ ∈ RN \ {0}.

To evaluate cN , observe that c1 = 1
π is trivial. When N ≥ 2, use∫

SN−1

|ω1|λSN−1(dω) = ωN−2

∫
(−1,1)

|ρ|
(
1− ρ2

)N−3
2 dρ

= ωN−2

∫
(0,1)

(1− t)
N−3

2 dt =
2ωN−2

N − 1
= 2ΩN−1,

where ΩN−1 is the volume to the unit ball in RN−1, and so cN = 1
πΩN−1

.

From the Riesz transforms one can build other kernels. For instance, recall the

kernels in (20.1). Because ∂xi
∂xj

φ = −(∆φ) ∗G(N)
i,j , −ξiξjφ̂ = |ξ|2’G(N)

i,j φ̂, and so’
G

(N)
i,j (ξ) = −ξiξj

|ξ|2
= −“ri(ξ)“rj(ξ).

Hence, φ ∗G(N)
i,j = −(φ ∗ ri) ∗ rj , and so

(24.2) ∥φ ∗G(N)
i,j ∥Lp(λRN ;C) ≤ K2

p∥φ∥Lp(λRN ;C) for p ∈ (1,∞).

Equivalently, we now know that

∥∂xi
∂xj

φ∥Lp(λRN ;C) ≤ K2
p∥∆φ∥Lp(λRN ;C) for p ∈ (1,∞).


